PHYSICAL REVIEW VOLUME

144,

NUMBER 1 8 APRIL 1966

Wave Propagation in a Dispersive and Emissive Medium*

T. A. WEBER anD D. B. TrizNA
Institute for Atomic Research and Department of Physics, Towa State University, Ames, Towa
(Received 1 November 1965; revised manuscript received 7 December 1965)

Recently a measurement of the velocity of longitudinal ultrasonic waves propagating through a phonon
maser amplifier showed that the pulse traveled with the maximum or cutoff velocity at resonance. With an
approximate dispersion rule for a homogeneously broadened spin-resonance transition, the propagation of the
wave is analyzed using a method for the asymptotic expansion of Fourier-type integrals. This analysis, con-
trary to earlier studies, indicates that the pulse observed, or at least the leading edge of that pulse, was an
amplified precursor (transient response). For a sinusoidal imput signal, the asymptotic wave form at a given

position is given for all possible values of the time.

I. INTRODUCTION

ECENTLY, Shiren! has made a measurement of
the velocity of longitudinal ultrasonic waves
propagating through a phonon maser amplifier. The
result shows that the pulse traveled with the maximum
or cutoff velocity; the units chosen here are such that
this velocity is 1. Shiren’s conclusion is that the signal,
defined as the steady-state response, travels with the
velocity 1 for the case of amplification with the input-
signal frequency at resonance. Some theoretical results
are presented here, based on a technique of asymptotic
expansion of Fourier-type integrals,? which differ from
the results of the analysis given by Shiren. These results
show that the only wave which travels with velocity 1
is an amplified precursor (a transient response) and the
signal velocity, Eq. (20a) or (20b), is less than 1.
For a sinusoidal input signal

I(0,t)=sinw’t;

>0
1<0, 1

the solution to the wave equation for a plane wave
traveling in the positive x direction, by dispersion
theory, is

1(x,)=lim Re<—517—r> / " exp{ —i[wi—kx]}
- de

—. (2
w—w' i€

In the following, the approximate dispersion rule for a
homogeneously broadened spin resonance transition,

k=wFa/(wo—w—1ip), 3)

valid near resonance (w'=w,) under the conditions
p/wek1 and a/p<Kwo, is used.l* Here p is the half-width
of the resonance and a/p with the upper (lower) sign
is the amplification (absorption) per unit length at
resonance. Thus, for the case of amplification, Eq. (2)

* Work was performed at the Ames Laboratory of the U. S.
Atormc Energy Commission. Contribution No. 1816.
!N. S. Shiren, Phys. Rev. Letters 15, 341 (1965); ibid. 15,
597 (E) (1965).
2T. A. Weber, D. M. Fradkin, and C. L. Hammer, Ann. Phys.
(N Y) 217, 362 (1964).
N. S. thren, Phys. Rev. 128, 2103 (1962).
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is written as

0

1) =1lim Re(—-%) [ ) exP[—it[u—g)w

+ a& :” dw.,(4)

wo—w—ipd) w—w'41e

where £=ux/1.

Before the asymptotic solution of I is investigated,
the special case of £=1 is considered. For this case,
Eq. (4) can be written as

(wo—w") = ita
I=lim ———— / exp{ }
0 O —» z+1p

X[ (z41e)2—

The contour of integration can be completed in either
the upper or the lower half complex plane with the
integration along the path at « giving zero. This
follows from the z? dependence in the denominator of
the integrand. Since the integrand is analytic in the
upper half plane one concludes that 7=0 for £¢=1. In
completing the contour in the lower half-plane, since
the result must also be zero, the contribution from the
poles which gives rise to the steady-state response must
exactly cancel the contribution from the essential
singularity at z=—14p. Thus it is concluded that in the
neighborhood of £=1, the signal (steady-state response)
cannot dominate and that probably there will be a
precursor (a dominant transient response).

(wo—w'}Tdz.  (5)

II. SIGNAL VELOCITY

For the asymptotic expansion of I given in Eq. (4),
the parameter ¢ is considered large. More specific con-
ditions will be given in the sequel. In order to obtain
the asymptotic expansion, the integral is converted
into a Fourier integral by the transformation

§=w(1—§)+at/(wo—w—1ip), (6)
with the inverse transformation
w=[{+(1—£)(wo—1p)

FE—s 2= )/2(1-8), ()
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F16. 1. Schematic drawing of the contour of integration in the
complex ¢ plane. The phases of the double-valued functions are
zero to the right of their respective branch points ¢, or ¢_.

where (= (1—§)(wo—ip)+2i[at(1—£)]/2. Then I,
given by Eq. (4), can be written as

I=11+12, (8)
where
1 et
Il:'—_— dg‘} (9)
drJeE—§¢p
and
1 — (11— —ip) |B—2
fee b e_m[s“ (1—§) (wo—1ip) ]B—2at (10)

=) G—g) G =g

Here B=w)—w'—ip and the position of the pole is
given by {,=(1—§)w'+atB™. In all results obtained
from Egs. (9) and (10), the real part must be taken.
A schematic drawing of the contour of integration in
the complex ¢ plane is given in Fig. 1. The phases of the
double-valued functions are zero to the right of their
respective branch points at {; and {_ on the sheet
shown in the figure. To obtain the asymptotic ex-
pansion, the contour is distorted into the lower half
complex { plane, indenting where necessary around
branch points along lines of constant phase of e~* as

4wB J ¢

COMPLEX { PLANE
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T16. 2. The distorted contour of integration in the complex ¢ plane.
The branch point at ¢_ has been displaced to the right.
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shown in Fig. 2. The integrand has an exponential
damping factor along the path at infinity and thus the
integration over this path gives zero. Also, along the
lines of constant phase (vertical lines) toward infinity,
the modulus of e~#* damps out most rapidly. For each
singularity an integral is obtained. For each integral a
translation of coordinates is made so that the singu-
larity lies at the origin. This is accomplished by the
transformation {=z-{,, where {, is the position of the
singularity in the complex { plane. Thus, each integral
about a branch point will be of the form e~¥s¢ times a
Laplace-type integral. The asymptotic expansion is
then obtained by the Laplace method, i.e., by ex-
panding the integrand, except for the exponential and
the singular function giving rise to the branch point,
about the origin in a power series and integrating term
by term. Thus for each branch point one obtains an
exponential e~% times a series of decreasing powers of
t. The exact contribution from the pole at {, is of course
obtained and has the exponential e=#%»¢,

It then becomes apparent that the dominant con-
tribution to the asymptotic expansion of 7 will come
from the singularity with maximum Img,. This pre-
supposes that the given singularity actually exists. For
a case given below it is found that the pole dominates
in the above sense but that its residue is zero, i.e., the
sum of the integrands of Egs. (9) and (10) is analytic
at {,. For the conditions under which the pole con-
tribution will dominate, Im¢, is set equal to Im{,.
Solving the quadratic equation, one obtains

2 1
AE[ji] — (D (D—pDy =4, (11)
o

where D= (woy—w’)?>+p?. Thus the pole will dominate
for
A> A, (122)

A<A4_. (12b)

If both of these actually applied, a peculiar phenomenon
would occur. That is, at a given point x the pole con-
tribution or steady state response would first be ob-
served at the cutoff velocity £=1, according to Eq.
(12a). Then as time progressed and neither Eq. (12a)
nor (12b) applied, the transient response would domi-
nate and finally, the steady-state response would again
dominate according to Eq. (12b) for times to infinity.
Evidently Eq. (12a) is not applicable since it contra-
dicts the analysis of Eq. (5). To clear up the contra-
diction, the contributions from the singularities must
be examined in detail.

The contributions from the pole are easily obtained
from Egs. (9) and (10) by the residue theorem, and are

or

Iip=3ie"", (13)
and (B 4]
Tup=—}ic . W
BL(B+4%/By]"
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where
B+A4%/B= (wop—w')[14+42/D]+ip[A2/D—1].

It must now be determined whether a plus or a minus
square root should be taken in Eq. (14). The square
root arises from ({p—¢4)V2(¢p—¢—)"? and the phase of
the square root can be determined by finding the
position of {, with respect to { in the complex { plane.
Now

$o—§x=(1—{[4*/D—1](wo—0")
+ip[ A2/ D+1]F2i4}. (16)

Let w'>wo. Then for A2>D it is seen that Re({p,—¢.)
is negative so that the pole lies to the left of {. as shown
in Fig. 2. The pole lies in the second or third quadrant
as measured from {, or {_ so that the phase of ({,—¢1)
is between %7 and $r. Thus the phase of ({p—{1)!?
X (¢p—¢ )2 is between 37 and 7. From Eq. (15) it
is then seen that the positive square root must be taken
in Eq. (14) and the sum of the pole contributions /,,
and 7,, is zero. For the case 42< D, the negative square
root must be taken and the contribution due to the
pole is

I,=1 exp[pax/D] exp{—i[ (—x)o’
+ (ax/D) (wo—w') J}.  (17)

Hence, for the pole to contribute, the necessary con-
dition is*
(18)

By using a similar argument to that given above, it is
easily shown that Eq. (18) also applies for the case of
resonance where o’ =wo.

The condition given in Eq. (18) is compatible only
with the condition given in Eq. (12b), since

A, >Dw>4_

(15)

42<D.

(19)

for all values of w’. Therefore, it is concluded that the
velocity of the signal or steady state response is given
by & determined from 4 =A4_. Thus,

D[D"2— |o’ —wo| J?
V=
p2a+D[DV2— |o'—wo| J?

<1, (20a)

where D= (w’—wo)?*+p% This velocity decreases as one
moves the input signal away from the resonant fre-
quency wo. This comes about since the precursor has
the factor

exp{2[ax(i—x) ]"*—p(t—2)—i(l—*)wo},

4In the complex w plane the pole at w=cw’—7e gives the steady
state response which is present for all values of £ less than one.
Thus it can be said that this response travels with velocity equal
to 1; however, the transient response given by the other singu-
larities in the w plane cancel this for £=1. Here in the { plane
there is no pole for 42> D, so the cancellation is automatically
accomplished in the transformation. What is left after the can-
cellation is given by the singularities at ¢, and {— in the { plane,
and is also referred to as the transient response.
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which is independent of «’. Thus the amplification due
to this factor is independent of the input frequency.
On the other hand, the signal has the amplification
factor exp(epx/D) which decreases as «’ moves away
from resonance. This seems strange since one would
expect not only the signal to decrease but the precursor
to disappear as the interaction with the resonance
decreases. So far we have assumed the dominance of
the exponential factors which is strictly true in the
asymptotic limit of large ¢ (large x). For finite times,
other factors become important, and it is found in Sec.
IIT that the precursor decreases and approaches zero
as w —o, Depending on how much the transient
response is decreased due to these other factors, the
signal velocity will increase over that given in Eq.
(20a). It should be noted that it is not simply a masking
effect of the transient over the steady state. If the
transient dominates then terms neglected in the ex-
pansion about ¢, will also dominate the pole contri-
bution which therefore cannot be kept. Thus the theory
does not predict an increase in the signal velocity due
to tuning the detector so as to discriminate against the
transient response. However, if the transient decreases
sufficiently—because, for example, w'—wo is large,—
then the leading term in the asymptotic expansion in
the region DV?>A4>A_ comes from the pole and the
signal velocity is then given by the ¢ determined from
A?=D. Thus for this limiting case,

v’=D/(a+D). (20b)

This agrees with the velocity v, given in Eq. (20a) for
the case w'=wp but as o’ —o, v/ — 1. The velocity
v,’ is the same as the signal velocity for the case of
absorption® where a is positive but @/p has the meaning
of absorption per unit length.

In the above analysis the pole enters in a discon-
tinuous way. But for off resonance, the asymptotic
solution is continuous since the pole first enters with
¢+ having the dominant exponential. Therefore, terms
neglected in the series generated by the branch point
at {4 will dominate the contribution from the pole which
should be neglected. The solution for the transition at
A=A_ from precursor to signal is continuous since the
pole will contribute on both sides of the transition and
must be taken into account. Now for the case of reso-
nance, 4,=A4_=D'? so that the pole first contributes
just at the time when it and the singularity at ¢, have
equal exponentials. The treatment so far suggested
would give a discontinuous result. One notes that for
resonance as 4 — D2, ¢, — ¢, so that the power
series expansion of the integrand for the contour about
¢+ will have a radius of convergence which approaches
zero. To avoid this difficulty, the singularities at ¢,
and ¢, for the contour about {; are treated jointly, i.e.,
in the expansion of the integrand both of the functions
(E—¢p) 2 and (§—¢p)! are left unexpanded. Thus the

§ H. Baerwald, Ann. Physik 7, 731 (1930).
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radius of convergence will be the distance to the next
nearest singularity at {_.

III. WAVE FORM

The asymptotic wave form is now given for the
various cases.

1. First in the region {1, the two branch points
must be treated jointly since as §— 1, { — {_. Here
the pole does not contribute. Then for the contribution
from ¢, the integrand of Eq. (10), except for the two
branch points and the exponential, is expanded about
¢4 The first term gives

-1 t[ﬁ" (1—8) (wo—1p) 1B—2at

R f+_"_§'p

47B
0—
X e=¥+t / e—iztz—1/2 (Z+ g- o ;-_)——llzdz . (21)

The contour is C; as shown in Fig. 2 with {; at the
origin of the z complex plane. The phase of z at the end
of the contour is 7 and the phase of {—¢_ on the
line connecting the points =0 and {_—{; is 37+,
Here 6 is a positive parameter introduced so that {4
and ¢_ have the relative positions as shown in Fig. 2.
The limit § — 0 is taken at the end of the calculation.
The integral which is now well defined can be written
in terms of a Hankel function®7 to give

—mie exp[4(sy— £t/ 21Ho® (| Gp—§-)1/2|e7i%).

A similar result is obtained from the contour about {_
and the sum of the two contributions is

I=—14 exp[—i(1—§) (wo—1p)t]
X{ (Bid) o0 (ULat (1—§) TP
+ (B+1A4)1H @ (24 at (1—&)2e—im2)} . (22)

It is easily found that ReI=0 in the limit £ — 1. This
is in agreement with the conclusions following Eq. (5).
It should be noted that the asymptotic expansion of the
Hankel functions cannot be used here since for £=1
the arguments of these functions are zero.

2. For the case 4>DY2 but £51, the branch point
¢, dominates and the residue of the pole is zero. The
first term in the expansion about {4 of Eq. (10) gives

| — | e
47 B
% {B’+— (wo—1ip)(1— E)]B—Zdé}
§+—$»

0—
X e+t / ety 12dy (23)

6 See for example Ref. 2, Egs. (3.6) and (3.9). .

7 The integrations can also be done by using the convention
that the branch point at ¢ approaches the branch line of ¢, from
the left. A different result from that given in Eq. (22) is obtained
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where the contour is C. of Fig. 2 with ¢, at the origin
of the z complex plane. The integral® is equal to
— 2ml2g3Til4=1/2 g0 that

4
I=3ir " [ax(t—x) VA"
3 e s

Xexp{2[ax(t—x) 12— p(t—x) —i(f—x)wo} - (24)

This is the same as that obtained from Eq. (22) by
taking the asymptotic expansion of the Hankel func-
tions and keeping the leading term.

3. For A<DY? but 4>A4_, the pole will have a
nonzero residue, but the branch point at ¢ will domi-
nate giving the same result as case 2. It should be noted
that this transient response is amplified for 4> A4_, but
that for a given position of observation, this transient
will eventually become exponentially damped as ¢
increases.

4. For A<A_, the contribution from the pole will
dominate giving Eq. (17).

5. For the case of resonance, w'=w,, the above
results apply except in the region of transition from
precursor to signal at 4=p. Here {,=¢; for A=p so
that the two singularities must be treated jointly. For
A>p, the pole has zero residue so that the only con-
tribution comes from the branch point at {;. The first
term in the expansion of Eq. (10) gives

I=— (4aB) Mg (1— £) JA(IB—A)e=is+t

O—
X / ety 2 g o — . (25)

—10

The integral can be written in terms of regular confluent
hypergeometric functions® to yield

I=(i/2p)[at(1—&) T p/ (1—§) J2e 5+
X{exp[ (1—§)(4—p)*t/p]
— 2R (1—§) [p ]2
X|4—p|:1F1(1,5,(1—8) (A —p)%/p)} .

For A <p, the branch point at {; gives exactly the same
result as that given in Eq. (26) except that the over-all
sign is changed. To this must be added the pole con-
tribution which is given by Eq. (17) with «o'=w,.
Taking the limit 4 — p with either the solution for
A>p or A<p the same result

(26)

I= %ie‘“" pg—i(t—z)wp R

27
which is just half of the pole contribution, is obtained.

since the integrals giving I are not done exactly. However, if B
can be neglected compared to A4, which is the case for £ — 1, then
the results are identical. Also, in the limit of large arguments of
the Hankel functions, the results will be the same.

-8 See for example Ref. 2, Eq. (2.6).

9 See for example Ref. 2, Eq. (3.6) and Bateman Manuscript
Project, Higher Transcendental Functions, edited by A. Erdelyi,
él\glc}(a}rav%%{i]l Book Company, New York, 1953), Vol. 1, Sec.

.5, Eq. (7).
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This solution is therefore continuous in the transition
from precursor to signal.

If the incident signal is just off resonance, then in
the transition region 4=4_ it may be necessary for
greater accuracy to treat the singularities jointly
because of their proximity. The result for A2<D is

1
Ty =——"at(1— &) 4 (EB—A){mg 1 2e—wttn/d)
2xB

— it Py (13,6i0)),  (28)
where g={,—¢{, and —4r<argg<—3w. To this must
be added the contribution from the pole to obtain I.
If 42> D, the pole contribution is zero and the result
for the integral about ¢, is the same as that given in
Eq. (26) but here — 37 <argg<im.

The situation in the region A4%?~D may best be
described as in Fig. 3. Here [ is determined using Eq.
(10) only. For 42> D, ¢, gives the location of the pole
with no contour about it. As £ decreases, the pole will
move toward the branch line and will be at the branch
line for A2=D. Crossing the branch line is done in a
continuous manner (the pole is in both Riemann sheets)
by continuously distorting the contour and finally
pinching off separate contours for the pole as shown in
Fig. 3. The positions of the pole in each sheet are the
same but are drawn separately in the figure. The dashed
contour is on the undersheet. The sum of the contri-
butions from the contours about the pole gives the
steady-state response.

The approximations that are made are limited by
the fact that the power series expansions have finite
radii of convergence. This in turn limits the number of
terms one may keep in the expansion (only the first
term is kept in the above). The radius of convergence 7
for the expansion in the neighborhood of a given
singularity will be the distance to the next nearest
singularity. Then the number of terms N--1, if any,
that may be taken in the expansion must meet the
condition?

n>N-+X, (29)
where \ is the power of the singularity about which
the expansion is made (\=—% for the expansion about
¢4+). This condition insures that on the path of inte-
gration, the terms retained in the series expansion of
the integrand have their maximum values within the
region of convergence. Therefore, the contribution of
these terms to the value of the integral will be sig-
nificant only in the region of convergence. If more
terms are taken than allowed under the above con-
dition, the result will diverge from the best approxi-
mate answer. The first neglected term in the series may
be used as the error.

It is difficult to set any general condition that would
limit the error in the expansion to some tolerable
amount. For some cases, however, the expansion is a
series in powers of (r2)~' with decreasing coefficients.8
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Fic. 3. Motion of the pole with respect to the branch line as ¢
increases. As the pole passes continuously across the branch line
it picks up a contour on both sheets as shown.

In particular, the second coefficient in the expansion
which gives Eq. (24) for the precursor is down at worse
by a factor of £. Therefore, as a rough rule, the minimum
allowable value of 7/ may be taken equal to one. Then,
in addition to Eq. (29), one has the condition

rt>1. (30)

This minimum value of 7¢ will insure that Eq. (29) is
fulfilled with V=0 in the cases considered here.

The group velocity calculated in the usual way
(vy=dw/dkg) actually agrees with Eq. (20a) at reso-
nance but far from resonance becomes greater than
one. Here it is assumed that the dispersion rule is not
restricted to frequencies near resonance. As noted
earlier, in the limit ' —, Eq. (20a) gives a velocity
less than 1. However, from Eq. (24) it is seen that the
precursor has the factor [4-p—2(w'—wo) 2. For
finite time, one can always find an ’ such that this
factor will overcome the amplification of the exponential
so that the signal velocity will be increased over that
given in Eq. (20a). In particular, as o’ — o, the signal
velocity now given by Eq. (20b) will approach 1.

IV. DISCUSSION AND CONCLUSION

First it must be determined whether the asymptotic
conditions are fulfilled in the experiment performed by
Shiren. For example, the range of values of
A=[at/(1—§)]J" for which Eq. (24) gives the pre-
cursor, can be determined. Considering only the case
of resonance one sees that as £ — 1, {_ approaches ¢,
so that the expansion about ¢, will have decreasing
radius of convergence. This puts an upper limit on 4
(for A’s larger than this, Eq. (22) gives the precursor).
As A — p, ¢, approaches {, so this sets a lower limit
on A. Letting A=ap and applying Eq. (30) for the
two cases, one finds that a can range between 3.2 and
12 for ax/p=3. This value of ax/p is the largest used
in the experiment and is the best as far as the appli-



282

cation of the asymptotic expansion. If ax/p is such
that no o can be found, then there will be values of 4
for which none of the solutions will apply.

The smallest value of ax/p, for which 4 =p gives the
signal velocity at resonance, can be estimated using
Eq. (30). For 4=p, the wave is one half of the final
steady state as given in Eq. (27). This is considered the
beginning of the signal. In obtaining Eq. (27), the
singularities at ¢, and ¢, are treated jointly so that the
radius of convergence for the expansion is the distance
from {,=¢, to {_. Applying Eq. (30), one finds the
minimum value of ax/p equal to 0.25. While the above
limits are only rough estimates, they do indicate that
the asymptotic expansions can be validly applied to the
experiment.

Furthermore, if the precursor was observed, it
appears that the signal should also have been seen.
The signal velocity at resonance is the same for both
amplification and absorption so that, in Fig. 1(a) of Ref.
1, one should expect to see the signal delayed by the
amount shown in Fig. 1(b). If the signal is a sinusoidal
pulse of finite duration 7 (an integral number of periods)
then the observed pulse is just the solution given above
minus the same solution with the time changed to ¢—7.
Thus the finite pulse can be thought of as two semi-
infinite wave trains, one incident at £=0 and the other
incident at {=r. Now if 7 is of the order of the delay
time, then just as the steady-state response is reached
for the first wave train, the transient response begins
to grow for the second wave train. Taking the difference
one would expect to obtain a pulse with roughly a
duration of 27, the leading half composed of the tran-
sient response and the trailing half composed mainly
of the steady state response. In the experimental
situation 7 was equal to 0.5 usec and it appears that
the delay time was almost equal to this. From the
wave form given in Sec. ITI under the conditions of the
experiment, there seems to be no reason to expect a
sharp division between the transient and the steady-
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state response, and they may appear as one pulse.
Unlike the case of amplification where the main fre-
quency component of the precursor is wo, the precursor
for the case of absorption has frequency components
split above and below the resonant frequency wy and
may be discriminated against in the detection. Then,
for absorption, the pulse will be composed of the steady
state response and have duration 7.

It is dangerous to assume, without making the
detailed subtraction, that the signal in the case of
amplification is just an amplification factor times the
signal in the case of absorption. If such an assumption
were true, then the shape of the trailing edge of the
amplified pulse would be quite different from that which
is observed. It was seen in Sec. III that for resonance
in the case of amplification, the signal and the pre-
cursor have the same frequency and also the pole at
¢» and the branch point {; must be treated jointly in
the transition from precursor to signal, since {,— {4
This is not true for the case of absorption. This dis-
tinction will surely make a difference in the shape of the
pulses for the two cases, particularly in their trailing
edges.

It should also be pointed out that no firm conclusion
can be drawn from the time duration of the pulses in
the study of the figures of Ref. 1 unless one knows
the shape of the pulse (i.e., whether there are long
tails of small amplitude), the effect of the detection
apparatus on the pulse, and the masking effect of the
noise on the small amplitude components of the pulse.

It appears that if the approximate dispersion rule
applies, the leading edge of the pulse with velocity
approximately equal to 1 was actually the amplified
precursor. However, Shiren!® has proposed a further
experiment to test whether the pulse was the precursor
or the signal by making use of the fact that the main
frequency component of the precursor is wo.

1 N. S. Shiren (private communication).



