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Surface-Wave Instability in Helicon-Wave Propagation
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A novel instability is described which can be utilized to amplify helicon waves in a single-component solid-
state plasma. The instability is created by carrier drift at threshold velocities which can be smaller than the
phase velocity of the wave which is being ampliGed. The instability can be excited in composite structures
made up of two or more layers of solid-state plasma of diGerent carrier densities with the interface parallel to
an applied static magnetic Geld. It is intrinsically connected with the presence of a surface wave at the inter-
face between the two media.

I. INTRODUCTION
' 'T is now well established that transverse electro-
& ~ magnetic waves can propagate with little attenua-
tion through solid-state plasmas in metals and semicon-
ductors. ' Because the phase velocity of these waves
(helicon or Alfven waves) can be made very much
smaller than the speed of light, the idea of amplifying
them has intrigued many workers, The most notable
of the various amplification schemes is that of Bok and
Nozieres. ' These authors pointed out that a helicon
wave in a two-component plasma (of unequal electron
and hole concentration) can be unstable when the elec-
trons and holes are made to drift relative to each other.
A necessary, though not sufEcient, condition for the
instability to occur is that the drift velocity exceed the
phase velocity of the wave. Although the Bok-Nozieres
scheme has been criticized by some authors, ' there is
no question that various instabilities can be induced by
drifts in excess of the phase velocity of the wave. In
gaseous plasmas, a myriad of such instabilities is well
known. In solids, the establishment of large drift is
not easy since it is then accompanied by large heat
dissipation.

In the present paper, we discuss a novel instability
associated with propagation of helicon waves in bounded
composite plasmas (waveguides) which can be excited
with threshold drift velocities smaQer than the phase
velocity of the wave. The structure which we consider
is shown in Fig. 1. Media I and II are dissimilar solid-
state plasmas in the form of thin, infinite slabs. A static
magnetic 6eM Bo is oriented parallel to the interfaces
between the two media. As pointed out by Legendy and

by Klozenberg, McXamara, and Thonemann, ' in a
6nite medium (such as a single slab or a cylinder
oriented parallel to a static magnetic field), the prop-
agation of a helicon wave is accompanied by a surface
wave, which is required to match boundary conditions

' See, for example, S.J. Buchsbaum, and R. Bowers, in Proceed-
ings of the Symposium on Plasma E'sects in Solids, Puris, 1964
(Dunod Cie., Paris, 1965), pp. 3-18, 19-35.

' J. Bob and P. Nozibres, J. Phys. Chem. Solids 24, 709 (1963).' T. Misawa, Japan J. Appl. Phys. 2, 500 (1963); A. Hers and
A. L. MAVhorter, Phys. Rev. Letters 15, 755 {1965);A. Hase-
gawa, J. Phys. Soc. Japan 20, 1072 (1965).

4 C. R. Legendy, Phys. Rev. 135, A1713 (1964); J. P. K.lozen-
berg, B. McNamara, and P. Thonemann, J. Fluid Mech. 21, 545
{1965).
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FIG. 1.SchematiC of
the sandwich structure
analyzed in the text.
Media I and II are as-
sumed to contain dif-
ferent concentrations
of free carriers leading
to different effective
dielectric constants Ef
and E2.

' G. A. Barali aud S. J. Buchsbaum, Appl. Phys. Letters 6,
219 (1965).
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at the plasma-vacuum interface. Such a surface wave in
a passive medium contributes to loss. In a preliminary
publication' we pointed out that in a composite struc-
ture of the sort shown in I'ig. 1 an instability, which is
associated with the "surface" wave at the interface
between media I and II, can be excited. The instability
is produced by carrier drift at a threshold drift velocity
which can be made much smaller than the helicon-wave
velocity in the guiding structure. At threshold, the loss
associated with the wave at the interface vanishes, and
at velocities exceeding threshold, the loss turns into gain.

The purpose of this paper is to derive the conditions
for the instability and to describe its properties in a
detail not possible in Ref. 5. Since the mathematical
complexities associated with the derivation are con-
siderable, we 6rst summarize in words the physics of
the instability.

I et us assume that the two media in Fig. 1 can be
characterized, so far as helicon wave propagation is
considered, by dielectric constants E1 and E2, where

+i=&oyi /oxoc,

Here &u~;=(X;g'/rn, es)'" is the plasma frequency in

medium i, ~„is the cyclotron frequency in medium i,
and co the frequency of the wave. E; plays the role of
the dielectric constant in the sense that the speed of
helicon waves propagating along a static magnetic Geld

in medium i, if it were infinit in extent, would be
c/gE;. As we mentioned earlier, in a structure of the
sort depicted in I'ig. 1, a "surface" wave must exist at
the interface between the two media in order to match
the boundary conditions there. It is a surface wave in
that, for conditions of interest in the present paper, the
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strength of the fields associated with the wave decays
exponentially in the direction transverse to the inter-
face. With such a wave is associated loss. The origin
of that loss is similar to that of the plasma-vacuum
surface wave of Legendy. Here, however, the strength
of the surface wave at the interface depends essentially
on the difference in dielectric constant across the inter-
face; it can be made arbitrarily small by making

~
Ei—Ep

~

arbitrarily small.
Now assume that the carriers in one of the two media

comprising the structure possess a steady drift in a
direction parallel to the interface. As we shall show
in Sec. II, the presence of the drift effectively modifies
the dielectric constant in that medium from E; to
K,(I—Vq/V@), where Vq is the drift velocity of the
carriers and Vq is the (as yet undetermined) phase
velocity of the wave propagating in the guide. For the
sake of an example, assume that the carriers in medium
I drift. Then by making

Zi(1—Vg/Vy) =X2, (1.2)

the surface wave at the interface between the two media
vanishes, because the two media now have the same
effective dielectric constant; and to the wave, the two
media appear to be identical. The drift velocity given
by Eq. (1.2) is the threshold drift velocity. For drift
velocities larger than the threshold, the surface wave
reappears. But now its phase is reversed with respect
to the phase below threshold. Ke shall show that it is
this reversal in phase and the interaction between the
surface wave and helicon-like wave in the bulk (the
bulk wave) which leads to gain. It is clear that by
making K& and K2 nearly equal, the threshold drift
velocity can be made arbitrarily small, albeit at the
price of low gain. In practice the over-all losses in the
system will, by setting a minimum value of amplifica-
tion needed for net gain, establish the minimum dis-
continuity in dielectric constant, and will determine,
thereby, the threshold drift velocity.

The structure of this paper is as follows: in Sec. II,
we study the effect of drift on propagation in infinite
media. Most of the physics of the model and most of the
approximations are contained in this section. As a
result, it contains most of the steps needed in the
derivations. In Sec. III, we derive and discuss the dis-
persion relation for the sandwich structure shown in
Fig. 1, and in particular, the damping or growth con-
stant of the waves near threshold. The derivation and
discussion here allows us to infer what the damping or
growth constant is likely to be for the multilayered
structure shown in Fig. 2. In that section, as in the
fourth section, most of the algebra is relegated to the
appendices. Finally, in Sec. IV, we analyze the in-
stability on the basis of power-Qow considerations.

II. INFINITE-MEDIUM SOLUTIONS

The sandwich structure depicted in Fig. 1 is to be
considered as being infinite in the x and s directions.

FiG. 2. Multilayer
generalization
sandwich structure de-
picted in Fig. 1.
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The drift current and magnetic field are parallel, and
will be taken in the s direction. Although our interest
is in waves which propagate along the 2: direction, the
boundary conditions will force the electromagnetic
6elds to depend on the y coordinate as well. There is
no essential reason for any of the fields to depend on x,
and so, for simplicity, we shall be concerned only with
x independent fields and currents.

In this section, we shall calculate the various infinite
medium solutions possible in the helicon regime. By
helicon regime, we mean the conditions

sr/ca, ((1,
E=

pi„'/&happ&&—

1.

(2.1a)

(2.1b)

(2.1c)

We assume that the motion of an average carrier in
the plasma is governed by the transport equation",

nzLV+ (V v) Vi= ALE+ VX 81—mvV. (2.2)

V= Vp+v,

8= Bp+b,
E= Ep+ e.

(2.3)

We drop products of first-order (lower-case) quantities,
and regard the zeroth-order quantities as uniform, time-
independent, externally determined quantities. The re-
sulting equation is treated by postulating an exponential
variation expi(k r—cot) for all first-order quantities.
Maxwell's third equation,

V'g e= —b, (2.4)

is then used to eliminate b, leaving the following vector

'L. Spitzer, Physics of Faddy Ionized Guses (Interscience Pub-
lishers, Inc., New York, 1962). Deleting the pressure tensor p
and the gravitational potential q from Eq. (6.16) of this reference
leads essentially to {2.2). The neglect of the pressure tensor means
in eGect that we are neglecting the random or thermal motion of
the carriers, an approximation which is justified when keg7. & 1.

Here V and v=1/r are the velocity and collision fre-

quency of the carrier; E and 8 are the total electric
and magnetic 6elds. The equation is linearized by
writing
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equation relating the velocity v to the electric field e: (2.8):
(i/~op)j=s e, (2.9K)

(1—n U+iy)v+iyXv
o—(pi&o/iNoq)[e+ UX (nX e)j (2.5a)

(2.5b)g2 ~ 2/~2 lV q2/(~o~2)

g= ppg/op =qBp/(skd) )

7= "/~ ~

U= Vo/c,

n= ck/~.

(2.5c)

(2.5d)

(2.5e)

(2.5f)

The index-of-refraction vector n is not to be confused
with the scalar n which emerges when we linearize the
density by writing

X= imp+I.

A f'/P iA

(~' f'-)
zB

Af/P i-~/~

f-~/~ (f-P P-+i-o&')lfeA-

(2.9b)

3=1—Ue„
8= Ue„.

(2.9c)

(2.9cl)

Using (2.4) to eliminate b and (2.9a) to eliminate j
converts this to an equation for e alone:

This current acts as a source of the magnetic 6eld b
via the fourth Maxwell equation

VXb= poj+poooe.

(iSpq/coop) v=M e, (2.6a)

The solution to (2.5) may be expressed in matrix
form as

K e+nX(nXe)=0,
K= I+S.

(2.10a)

(2.10b)

where

f'o iPt 0 '1—Ur4 0 p

M= —ipse. fp 0 0
(o' f')-

0 0 P—P'. . 0

t.=1 Un, +—iq,

P=
( g( Xsigq,

U=
J Uf.

4 —Ue, Uey

(2.6b)

(2.6c)

(2.6d)

(2.6e)

g= Epv+n Vp. (2 &)

From the continuity equation

In obtaining Eqs. (2.6), we have used the fact that
U and g are parallel to s and that n has no x com-
ponent. Thus, we are here restricting our solutions to be
independent of x. Havi'ng obtained the velocity, we
calculate the particle current G=EV and concentrate
our attention on the first-order part

It is now appropriate to make the helicon approxima-
tion in (2.10). I'or simplicity, we also assume that the
frequency is well below the scattering frequency so that
y= 1/(&ur) is much larger than unity. Thus

(2.11)

because even at the largest drift currents, Un, will be
comparable to unity. Now the ratio f/I3 becomes

i /P =iV/0 = i/pi. r (2.12)

g2P/ (82 f.2) —g2/P —~ 2/~~ (2.13)

The second helicon approximation (2.1c) allows us to
neglect the unit tensor in (2.10b). With these approxi-
mations, Kq. (2.10) determining the electric field is

5—e„'—n,2 iX iI'e„eg
iX S——e,o (iZ+rf,,)n„e„=0,

iYN„—(iZ+ro, )no P+Qe„' e.
(2.14a)

The 6rst approximation is that co,z is large enough that
(1/co, r) is negligible compared to unity. (It will soon
be evident why we cannot drop terms of order 1/pi, r.)
This approximation gives

or
V g+ti=0,

k (Spv+eVp) —pie=0,

g=lVp[v+U(n v)/(1 —n U)j (2 g)

we can solve for n and, with that solution, eliminate e
from (2.7):

S=iE(1 Ue, )/oo, r, —

X=X(1—UN, ),
F=EU,
Z=EU/oo, r,
P =iKpi, r/(1 Uoo,), —

(2.14b)

(2.14c)

(2.14d)

(2.14e)

(2.14f)

The dependence of the electric current J=qg on the
electric field e now follows by combining (2.6) and

iXU'/(1 Un,)—
(2.14g)
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The vanishing of the determinant in (2.14a) gives a
quadratic equation for e„'.

an„'+bn„'+c=0, (2.15a)

a= —SQ+2in, Z —Z'+ (1+Q)n.' (2.15b)

b = (X+n.Y)'+ (n,' S)—(P+S Z'—+2in, Z)
S—Y'+2iXYZ+ (Q+1)L

—X'+ (n,'—S)'], (2.15c)

c=P/S'+n. '(n.' 2S)—X']— (2.15d)

and a relation for the components transverse to the
magnetic Geld, e and e„,in terms of e„the component
along the magnetic field:

De, = —in„[Y(S—n, ') —iX (Z—in, )]e„(2.16a)

De„=—in„L(S—n ' n'—) (Z—in,)+iXY]e„(2.16b)

D= S' S(2ng'+—n ')+ng'(ng'+ n„')—X'. (2.16c)

Here, some simplification of the coefIicients is possible
because of the definitions (2.14b)—(2.14f) which give us

Dbe b =AsymgEezb )

Dbe„"=(n„XK/n.)e,b,

Db=+Sn„',

(2.21a)

(2.21b)

(2.21c)

D'e, '= E„e,Ke,',
D'e„'=i%„'n,e,',

D'= —e,~X„'.

(2.22a)

(2.22b)

(2.22c)

Each type of electric Geld generates a magnetic field
1=kX e/~= nX e/c. Hence using (2.19), (2.20), (2.21),
and (2.22), we have~

We shall designate the two forms of electric Geld which
result when Eqs. (2.16) are evaluated using Eqs. (2.20)
by superscripts b (for the bulk wave) and s {for the
surface wave), referring to (2.20a) and (2.20b), re-
spectively. Making use of (2.17) to simplify forms, and
retaining only the lowest terms in (a&,r) ', the results
of substituting Eqs. (2.20) into Eq. (2.15) are'

(X+n.Y)'=E'= PS, —
5V=iXZ.

(2.17a)

(2.17b)

b,b = —(XE/cSn„)e,b, (2.23a)

b„b=+ (in,sE/n„cS)e,", (2.23b)

a=S+2iZn, + (1+Q)n,'
= iE/[(u, r (1 Un, )], —

b= En,',
c=P(n, '—X') .

In the formal solution to (2.15a),

n„'=[ ba (b' 4ac—)"']/2a—

(2.18a)

(2.18b)

(2.18c)

we find from (2.18) and (2.14) that 4ac/b' is of order
(io,r) '. Thus the leading term here may be obtained
by expanding the square root to lowest order, so that
the two roots for n„'are n„'= c/b and n„s=—b/a. In-
the second solution, we shall alw'ays write

Ey=ie„,
so that the two roots are

(2.19)

n„'= c/b =X'/n, s —n, ', —
N„'=+b/a = n.'((u, r)s.

(2.20a)

(2.20b)

We now regard cv,7 as large and expand a, b, and c in
terms of inverse powers of this parameter. To do this,
however, we must first assign an (cu,r) dependence to n, .
Since our idea is that the whole structure should prop-
agate helicon-like (i.e., infinite-medium —like) waves in
the s direction, it is easily shown that we should regard
n, as being of order (ar, r)'

%e shall now consistently retain only the lowest
order terms in (1/co, r). This approximation, passage to
the high co,v. limit, discards all dissipative e6ects, except
those which result from the presence of a surface wave.
The lowest order terms in (2.15) are

b b (;n K/cS)e (2.23c)

b; =PiN„(S+.izn. )/(cn, ')]e,', (2.24a)

b„'=(N„K/cn,s)e,',
b '= ( iE/cn, ,)—e '.

(2.24b)

(2.24c)

It is clear from (2.20a), (2.21) and (2.23) that if the
type-b solution is normalized so that Ee, is some con-
stant, then for a given n„the Geld components e
e„",bb, and the transverse propagation constant n„are
functions only of X=E(1—Un, ) and S=iX/ra, r. Thus,
except for e„which is one order of the co,v smaller than
the other e components and therefore negligible, the
e6ect of a drift current on all aspects of the bulk solution
is completely described by the replacement of E by X.
For this reason, the quantity X can be called the
e6ective dielectric constant.

7 Some care is required in obtaining (2.21c) because straight-
forward substitution of {2.20a) into (2.16c) leads to a complete
cancellation of terms of order (60,7.)'. It is therefore necessary that
the root e„'=—c/b be correct to order (a&,r) ' before substituting
into (2.16c}.Hence the proper procedure is to retain the two
lowest powers of (co,7.} ' in (2.15c), (2.Mc), and (2.1Sd}. This
leads to

b= (X+n, F)'+P(n, '—S) =P(n, '—25),
c PPng'(e, ' =2S) X'j, — —

e„'=X'/(nP —25) —eP,
and thence to (2.21c).

8 Again some care is required to obtain (2.24a) because the
lowest order terms in {or,r) ' cancel. This time, it is necessary to
retain an extra order of {co,r) & in passing from {2.16b) and
(2.16c) to (2.22). These give

D e„=~X„3(n,+zZ) e,
O'= E„'{S—nP)

and now, (2.24a) follows immediately.
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TABLE I. Solution types. A zero indicates that the entry is one
order of co,~ smaller than the other entries in the same row.

Type j e,

j= 1 E,' sin(ky)
2 0
3 z,' cos ikyl
4 0
5 0
6 0

g 7

0
E,' cosh(ay)

0
E.4 sinh(. y)
E,' exp(sty)
E,' exp (—scy)

8,' sin(ky)
8 ' sinh(gy)
8,' cos(ky)
8,' cosh( y}
8,' exp( y)
8 6 exp( Ity)

8, cos(ky)
8,' cosh(ay)
8,' sin(ky)
8,4 sinh(ay)
8,' exp(Ity)
8,' exp( —~y)

k—=cue„/c,

~=a)$„/c.
(2.25a)

(2.25b)

III. THE DISPERSION RELATION AND
PROPAGATION CONSTANT

The actual 6elds in regions I and II of Fig. 1, will
be sums of solutions of the types tabulated in Tables I
and II, each solution in the sum being multiplied by an
arbitrary constant. The arbitrary constant must be so
adjusted that boundary conditions are satisfied. We

TABLE II. Solution constants.

There are four tangential 6eld components, e„e„b„b„in each solution. In type-b, the component e,~

is one order of co,v smaller than the other three tangen-
tial fields, while in type s, it is e ' that is one order of
or,r smaller than the other three tangential 6elds.
Therefore, when boundary conditions are set up, these
two small components can be taken equal to zero and
the results will still be correct to lowest order in
(~,r) '. This same conclusion can be obtained, more
convincingly but also more laboriously, be retaining one
extra power of (co,r) ' throughout the entire calculation.

Equations (2.20) for e„'and E„'allow both signs for
m„and E„.It is convenient to combine the two solutions
corresponding to the two possible signs so as to obtain
solutions with definite y symmetry. Speci6cally, we take
half the sum of the two type-b solutions and designate
that as type 1, half the sum of the two type-s solutions
and designate that as type 2; (i/2) times the difference
of the two type-b solutions we designate as type 3;
half the difference of the two type-s solutions will be
type 4, and 6nally the two type-s solutions themselves
we now denote as types 5 and 6. The six solutions are
exhibited in tabular form as Tables I and II, in which
we have written

take for boundary conditions the continuity of the
tangential electric and magnetic 6elds at y=~r and
the vanishing of the tangential electric field at y= &E..
(We assume that the slab is coated by a perfect con-
ductor at y= &R.) It turns out that there is one more
boundary condition than there are arbitrary constants
with which to satisfy them' and that consequently, a
condition on the solutions tabulated in Tables I and II
must also be satished. This condition provides the dis-
persion relation for the structure.

Eofe added ie proof The r. esults and conclusions of
this paper rest heavily on the assumption that the tan-
gential component of the total magnetic field of the
wave is continuous across the interface, i.e., that there
is no surface current localized strictly to the interface
driven by the drifting carriers. If such a current is
introduced into the model, many of the present results
will have to be modi6ed. The consequence of such a
current under various conditions of surface recombina-
tion and mobility will be discussed elsewhere.

The derivation of the dispersion relation is a straight-
forward but tedious task. We relegate it to Appendix A
where we show that the dispersion relation is

X;=E,(1 U,e,), —

k;=(oe,/c,
nP= XP/e, '

(3.1b)

(3.1c)

(3.1d)

In Eqs. (3.1), rj=O for modes in which the 6elds e,
and b, are symmetric about y=0, and p=1 for modes
in which e, and b, are antisymmetric about y=0. This
form is valid provided the surface wave excited at any
boundary damps out before reaching the next boundary.

We now study the dispersion relation for those
values of (normalized) drift velocity U near the
threshold value O'. At threshold, the wave changes from
attenuating to growing and, hence, e, must be purely
real. Finding that value of U' which leads to a real e,
is therefore the 6rst problem.

If e, is real, then Eqs. (3.1b) and (3.1d) yield a real
n,2 It follow. s that the 6rst two terms in (3.1a) are also
real. Therefore, at threshold, the last term in (3.1a)
must vanish. That is,

m2 cotk2(r —2|.') =as' cot(kgr+gs/2)

i(E'g —E'g) (Xg—Xg)
(3.1a)

(Eg+E2)e,

Type j
j=1

2
3 E,'=E '= —n,E'/Sn„

5
6

c8 &/i

—XE/Smy
1 $„(S+iZe,)/n, '

83—8 1

1 =8~
1 =8'

2

cB,&%

—~,x'/s
—E/n.
= —Bg
—Bg
=8,'
—8 2

9 e regard one of the arbitrary constants as being fIxed by the
over-all normalization of the Gelds. Otherwise, there are as many
arbitrary constants as there are boundary conditions and vie are
led to a set of homogeneous equations vrhose compatibility de-
mands that the determinant of coefficients be annulled. The
equation resulting is the same.
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must vanish at threshold. This can happen only because
K~=K2 or because X~= X~. The Grst possibility gives
e, real at all values of U. The second possibility is the
interesting one. Prom it, we have the threshold condi-
tion X~= X2 or

Ki (1—Ui'u, ') =K2 (1—Um'e, ') . (3.2)

whose solution is

ko ——m~/2R m=1, 2, 3, (3.3b)

The integer m is even for g= 0 (symmetric s 6elds) and
odd for g=1 (antisymmetric s 6elds). The condition
(3.3b) says that the transverse wavelength at threshold
is determined geometrically, with an even or odd num-
ber of half-wavelengths spanning the full thickness 2R
of the sandwich. The reason this occurs is that at
X~=X2, the two media have the same effective di-
electric constants and thus the bulk wave is unaware
of any interface or difference between the media. One
would suspect (and indeed we shall show in the next
section) that, at threshold, the surface wave is not
needed to satisfy boundary conditions at the =interface.

Having found ko, one can solve (3.1d) for N. . The
solution is easiest if one of the currents, U2, say, is zero,
for then the solution is

(ng')'= (E2/2) D4+ T')'~' T')—
2'= cko/(a+F2.

(3.4a)

(3.4b)

Kith n, determined and U~'=0, the threshold drift
velocity Uio=—u, follows simply from (3.2).

We now solve for e, when U~ is in the neighborhood
of u&. To do this, we expand all quantities to first order
in U~—u~. The details of the expansion and the resulting
solution are presented in Appendix B. Of particular
interest is the imaginary part of n„since this deter-
mines growth or attenuation. Writing

One of U|' and U2' can, of course, be equal to zero
provided that the other satisfies (3.2). It is clear from
(3.1b)—(3.1d) that the threshold condition Xi——X2
yields k&= k2, which common va]ue we designate by ko.
At threshold, then, Eq. (3.1a) reduces to

cotk, (r—2)=cot(kor+gir/2) (3.3a)

We observe that the y dependence of any of the bulk-
wave transverse Geld components, e,~, e„,b, b„,is
y(y). Therefore, the imaginary part of n, is propor-
tional to the square of the transverse bulk-wave Geld

evaluated at the interface position. This dependence is
a consequence of the physical Inechanism for the in-
stability, as will be verified in the next section. The
mechanism involves the interaction between the surface
wave and the bulk wave. The surface wave exists only
at the interface, and only for the purpose of satisfying
boundary conditions which the bulk wave cannot quite
do. Clearly then, the amplitude of the surface wave
will be proportional to the amplitude of the bulk wave
at the interface. " Therefore each of the interacting
6elds is proportional to y(r). Since the power gain or
loss is quadratic in the fields, the imaginary part of the
propagation constant, which is proportional to the
power gain or loss, exhibits a p'(r) dependence.

The implication of this mechanism is that Ime, will
be half as large for a one-interface structure as for the
corresponding two-interface structure. Since the even
m modes of the sandwich have all tangential e Gelds
vanishing at y=0, the y) 0 half of the sandwich struc-
ture reproduces, for even m, all possible modes of the
single interface structure of thickness R. The dispersion
relation for the one-interface structure of width 2R,
the width of the sandwich, then follows by replacing R
by 2R in Eqs. (3.3), (3.4), and (3.5). It is evident that
the one-interface structure indeed supports a wave
which grows or attenuates half as fast as does the wave
in the corresponding two-interface sandwich structure.
These observations suggest that it should be possible
to obtain Ime, for a multilayered structure such as
shown in Pig. 2 by summing an expression of the form
(3.5) over all values of r, , the position of the ith inter-
face. Although this is a reasonable conjecture, its proof
will have to await the completion of our studies of the
multilayered structure. $1Vote added in proof It has.
been shown recently that the gain in multilayered struc-
tures, indeed, is additive. See L. M. Saunders and G. A.
Baraff (to be published). )

IV. CURRENTS, FIELDS, AND POWER LOSS

In order to bring out the physical nature of the in-
stability, consider the power loss per unit length of
slab:

(3.5a)
lV=& R.e e j*da. (4 1)

(3.5b)

where

$= Ki/Z2, (3.5c)

y(r) = sin[ (mar/2) (1—r/R)$. (3.5d)

we Gnd that for E& and E2 nearly equal, the imaginary
part of n, follows from The integration is over the cross-sectional area of the

sandwich structure. Since the electric 6eld (e= ei'+ es)
and the current (j=j~+j') are each composed of the
fields and currents of the bulk and surface waves, the

'Oft turns out that the longitudinal components of the bulk
wave can be matched without the surface wave and therefore that
the surface wave is proportional to the transverse bulk wave com-
ponents. One expects in general that factors proportional to the
amplitude of the longitudinal components could enter Imm, .
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power loss 8' is composed of three terms'

W= Wbb+Wb, +W„,

Wbb ——-', Re (eb jb*)da,

(4.2)

(4.2a)

using carrier drift to reverse the sense of the relative
eBective dielectric mismatch. The reversal causes the
bulk-wave —surface-wave interaction to change loss to
gain sufBeient to overcome the surface-surface losses.
That the loss is overcome may be seen by noting that

(Wb.+W,.) (Xg—X2) (Kg —Z2)

(eb. jA+ es. jbk)gg

W„=-', Re (e' j'*)du. (4.2c)

QQ*(Xg—Xp)'
lV„=

Kg+%2
(4 4)

Here, Q is the arbitrary constant multiplying the bulk-
wave solution so that QQ~ is a constant proportional to
the energy contained in a unit length of the sandwich.
%e see that 8'„is positive, but that it vanishes at
threshoM. That is, the surface wave interacting with
itself always gives rise to a power loss except when that
wave disappears. The gain can arise only from $Vb„the
surface-bu1k interaction term which changes sign at
threshold, when the surface 6eld reverses phase. "Thus,
the mechanism of the instability is that the surface

wave, which is needed to satisfy boundary conditions
at an interface across which the e6ective dielectric
constant changes, can be made to reverse phase by

"Note that this term vanishes when there is no drift, (I,=E;),
as it must because the surface wave and bulk wave are orthogonal
to each other. The presence of drift in either medium removes the
orthogonality and renders g bs 6nite.

The term ebb, resulting from bulk-bulk interaction,
vanishes in the hi gha&, r limit. (See Appendix C.) The
other two loss terms, g b, and S;„areof interest to us
here, Ke show in Appendix C that only the terms
(&z jz ) and (sy gy ) contrrbute to Wbs ln the high
a&,r lnnit and that only (e„'j„"+e,'j,'*) contributes to
W„.Each of these terms has the p'(r) dependence
mentioned earlier.

It is not difficult to show (See Appendix C) that the
amp1itude of the surface wave is proportional to
(Xr—X2) so that the surface wave vanishes at threshold.
At drif t velocities greater than threshold, where
(X~—X~) has the opposite sign from (X~—X2) below
threshold, the surface wave reappears with its phase
reversed relative to the phase it had below threshold.
This behavior is re8ected in the vanishing of 8 b, and
8'„atthreshoM, and in a reversal of the sign of S'b,
(but not of W„)as the drift velocity crosses threshoM.
The calculation in Appendix C shows that for (co,r)

QQ*(Xi—X2)L(%—Xr)—(It2—X2)j
Fb,= (43)

E E
and
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APPENDIX A

As stated in Sec. III, the actual 6elds in region I and

region II are sums of solutions of the types tabulated
in Tables I and II, each solution in the sum being
multiplied by an arbitrary constant. These arbitrary
constants are adjusted so that boundary conditions are
satis6ed. It is useful to designate each solution by an
alphabetic superscript which will denote both the type
of solution and the region in which it is to be used. We
shall use the capital letter corresponding to the super-

script to represent the arbitrary constant which mu1ti-

plies that solution. Using the nomenclature of Table

Tax.E III. Solution nomenclature.

Super-
scilpt Region

I
I
I

II
II
II
II

To be multi-
Type plied by

which changes sign at threshold. Note that the net
power loss divided by the energy density is essentially
the imaginary term M 1n the dispersion relation (3.1a)
whose presence led to an imaginary part of z,. Our
analysis suggests that if (Wb, +Wbb) can be made
sufficiently negative to overcome collisional loss (which
has here been neglected by passage to the in6nite co,r
limit) net gain can be achieved. The problem of extend-

ing these results to the next order in (~.r) ' is being
pursued.
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III, the x component of the magnetic 6eld in region II is

b =Sb,'+Tb, '+Ub "+Vb;

and the x component of electric field in region I is

e,= —Qe, &—Xe,".

Se '+ Te, ' =0, (A1a)

Ue,"+ Ve,'= 0, (A1b)

Qb '+Rb„"+Sb,'+ Tb, '+ Ub, "+ Vb;=0, (A1c)

Qb, ~+Rb,"+ Sb '+ Tb, '+ Ub, "+ Vb;=0, (A1d)

SE;+TE,' =0, (A1e)

UE,"+VE;= 0. (A1f)

The condition that this set of six homogeneous equa-
tions for the six arbitrary constants Q, R, , V has a
nontrivial solution is that the determinant of the co-
eKcients vanish. Annulling the six-by-six determinant
leads, in fact, to the dispersion equation. It is somewhat
easier, however, to reduce the size of the determinant
by solving some of the equations first. This task is
greatly simplified when we note that if solution ~

plays a reasonable role at y = r, then it will be completely
negligible at y=E., while, if solution I plays a reason-
able role at y=E, it will be completely negligible at

The minus signs appear here because the multiplier for
the q and n solutions are, by our choice, —Q and b/;-
the constants I' and R fail to appear because the x com-
ponent of electric 6eld in these solutions is of order
(co,r) ' smaller than the other field components.

Because of the y ~ —y symmetry of the sandwich,
the complete solutions can be classified as being of one
or the other of two types, which we designate as even
or odd depending on whether b, (y) = &b, (—y). In the
even mode b, (y) =+b, (—y) and therefore, solutions e
and p do not appear because they have the wrong sym-
metry. (There is no corresponding restriction on the
solutions used in the outer region II, because here the
symmetry may be maintained by having the arbitrary
constants in one of the two outer regions either equal or
opposite to the arbitrary constants in the other. ) Simi-

larly, solutions q and r will fail to appear in the mode for
which b, (y) = b, ( y). W—e fir—st show how the bound-
ary conditions lead to the dispersion equation,
versus ~, for the even mode.

It is convenient to let a 6eld component evaluated at
y= r temporarily be denoted by a lower case letter and
temporarily, to use a capital letter to denote a field
component evaluated at y= E. Having chosen the sym-
metry, we need no longer be concerned with what
happens at y= —r and at y= —R. Thus, there are six
boundary conditions, four expressing the continuity of
tangential electric and magnetic field components at
y= r and two expressing the vanishing of the tangential
electric-6eld components at y= R.

y= r. This comes about because each of these solutions
is reduced by a factor exp(i~

~

R—r
j ) in crossing region

II. Since i~ is, by (2.20b) and (2.2Sb), proportional to
~.r, this reduction is severe. Hence, we should set

e,"=b "=b "=0

E,"=0.

(A25)

(A2b)

Now, Kq. (A1f) is satisfied by taking U=0, and inde-

pendently of this, (A1e) is satisfied by taking

T= SE '/E—' (A3)

Re,r+

=0
7

Ve, '= 0, (ASb)

Qb, &+Rb,"+Wb,"+Vb; =0,

Qb &+Rb ~+ Wb ~+ Vb ~—0

(ASc)

(ASd)

i.e., four homogeneous equations for the four arbitrary
constants Q, R, W, V.

'The functional form of the type-m solution follows
from the defining Eq. (A4) and the various definitions
and nomenclatures presented in Tables I and III. For
example,

e,"=e 'E '—e 'E '=e, '(y=r)e, '(y=R)
—e.'(y = r)e.'(y =R)

= [E ' sin(kr)E, ~ cos(kR) —E,' cos(kr)E ' sin(kR) jii
= [E,'E,' sin(k(r —R))]ii.

The bracket and subscript II denote that the quantities
bracketed are to be computed using medium-II pa-
rameters. The same information can be conveyed by
putting a subscript 2 on the k and changing the super-
scripts 1 and 3 back to s and t. The other forms needed
follow in much the same way. The only difference is
that we use the relation 8 '=E ' 8 '=8 ', and 8 '
= —8,', evident from Table II. We have then

e,"=E,'E,' sin[k2 (r—R)j,
b "=E 'B ' sin[k, (r—R)7,

b,"=E,'B; cos[k2 (r—R)j.

(A6a)

(A6b)

(A6c)

There is no further need for functions evaluated at

Consider now the combinations of S and T solutions
which appear in (Ala), (A1c), and (A1d). Using (A3),
we may express these combinations as

Se,'+ Te,'= (S/E, ') (e 'E, ' e, 'E ') —=—We," (A4a)

Sb '+ Tb,'= (S/E ') (b 'E,' b, 'E, ')=W—b,", (A—4b)

Sb s+Tb '= (S/E ')(b sE ' b 'E s) =Wb w (A4c)

Thus, the four equations (A1a)—(A1d), which are still
to be solved, have, by the definition (A4), been re-
duced to the form
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y=E. Hence, from now on, the capital-letter field
component will always be used to designate the y-
independent constant, as in Eqs. (A6). With this

understood, and with the further observation that the
combination lVE is just the arbitrary constant S, we
write Eqs. (AS) as

QE.& sin(kir)+

RE," cosh(~ir)

SE ' sin[km(r —R)) =0

VE;/ =0,
QB,' sin(kir)+RB, "sinh(~ir)+SB; sin[k2(r —R))+VB;/=0,
QB,' cos(kir)+RB, "cosh(~ir)+SB, ' cos[k2(r —R))+ VB,"/=0,

P—=exp( —z,r).

(A7a)

(A7b)

(A7c)

(A7d)

It is evident that none of the manipulations to this
point has involved the Q and R solutions at all. Hence,
in calculating the dispersion equation for the odd modes,
one can start at Eqs. (A7), merely replacing the Q and
E solutions and constants by P and N solutions and
constants.

In order that (A7) have a nontrivial solution, the
determinant of coeKcients must vanish. Factoring
sin(kir) out of the first column of that determinant,
cosh(~ir) out of the second, etc., and using the fact that
E,"=E,"=1 leaves us with

In a similar fashion, we can express C2 in the form

(Km —Ki) (X2—Xi)/e2
C2=

(S "—B,")r42

In evaluating the denominator of C2, it is useful to
combine (2.20b) with (2.14b)—(2.14f) to obtain

N„'=r4'(u),r)', N„(S+iZe,)=iKrl,

%hen the denominator of C2 is evaluated using Tables
II and III, we have

E.'
0

Q

B,& cot(kir)

0 E.' 0
0

S," 8 7

B," B;cot[k (r—R)) B;

n.'(S," S;)—=Ni(Si+iZin, ) tanh(~ir)

+N2(S2+iZ2e, ),
Ni—= (N„)i,
N2= (N, )ii.

where
S,"=B;tanh(~ir). (Agb)

Expanding,

Ai cot(kir)+A2 cot[k2(r —R))+AS=0, (A9a)

Putting these last few results together, and, for con-
venience, rewriting Eqs. (2.13), (2.14), (2.20), and

(2.25), gives us the system of equations which serves
as the dispersion equation for the even modes:

Ai ——(B; S;)B,&E;, —
A&= —(B."—S,")B,E.~,

(A9b)

(A9c)

i (Ki—K2) (Xi—X2)
n2 cotk~(r —R) =ei cotkir—,(A12a)

n, (Ki tanhair+K2)

2,= (B " B)(B:E: —8:E.~). (A—9d)

It is useful to rewrite this equation as

cot[k2(r —R)]=Ci cot(kir)+C2

Ci B.'E;/B; E,', ——
(A10a)

(A10b)

pB." B,"~ B;E ' B—'E,'~—
C,=] —

~
/. (A10c)

ke, " B i B;E,—~ i

To evaluate C~ and C2, we refer to information in Tables
II and III. For instance, Table III indicates that both

q and s are type-1 solutions, while Table II shows that
in a type-1 solution, the ratio B,/E, is essentially the

n„ofthe medium. Hence, we have

X,=K;(1—U,n.),
I '= X'/n '—m

'

k;=(um;/c.

(A12b)

(A12c)

(A12d)

The dispersion equation for the odd modes arises, as we

mentioned, by replacing solution type q by solution

type I and solution type r by type p, in (A7). This
will, in Eqs. (A8), replace cot(kir) by tan(kir) and

tanh(~zr) by coth~zr, and, in Eqs. (A9), replace the
superscripts q and r by e and p. However, this replace-
ment will, as reference to Tables II and III, and Eqs.
(A10) shows, replace Ci by its negative and (neglecting
the coth —& tanh replacement) leave C2 unchanged.

Thus, the essential change is to replace

Cl= 81/S2 y

rl,i= (n„)i
rim

——(~„)ii.

(A11a)

(A11b)

(A11c)

cot(kir) ~—tan(kir) = cot(kir+mr/2) .

For the large gi (proportional to ~,r), the tanh is equal

to the coth, both being equal to &1, depending on the
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signoftherealpartofgi. Hence, thedispersionequation Using (83), (84b), and (84c) in (BSa) gives a linear
for the odd modes is equation for p whose solution is

n p cotLkp (r—It.')]=ni cot(k,r+ pr/2)

i (Ki K—p) (Xi X—p)
(A13)

N.(Ei coth(gir)+Et)

&Eg(cotZ —kpr csc'Z)+i&(1 —P)egmp/(1+&)
7=

nkpR csc'Z+(1 —$)I
(86)

I= p(cotZ —kpr csc'Z) —iPUtrtp/(1+ $),

Finally, letting $ approach 1, we find that the imaginary
part of (86) becomes

APPENDIX B

We suppress the tanh and coth in (A12) and (A13), ~ «+1/ K,/(~ p)p

since they are eGectively unity and the result is Eq.
(3.1) of the text.

Here we wish to study how e, depends on U near
threshold. For simplicity, we put Up ——0 and from (3.2)
and (3.5c) obtain

rid(1 —g) sin'Z
Imp =

2n opal/c
(87)

We expand all quantities in (3.1) to first order in
U —U& about their threshold values:

where

U= Ut+p,

ip, = N,p+yp,

NP+ 71&1

Np=rtp+p8',

Np= ckp/&p.

(82a)

(82b)

(82c)

(82d)

Since the last term in (3.1a) vanishes at threshold, its
expansion must start with a linear term in ~ which can
be evaluated, using (81), (82), and (3.1):

(E, E,)(X—, X,)/~—, E,(1 g)~(e—,o+~Ut) p

(83a)
E i+Kg

(83b)

Insert (82) and (83) into (3.1) and diA'erentiate with
respect to ~ at v=0. The resulting equations are

ypLcot(kp(r —8))—kp(r —E) csc'(kp(r —E))$
=pi [cot (kpr+g pr/2) —kpr csc'(kpr+gg /2) j—iK,

Using (3.4a) and (BSb) here reduces (87) to Eq. (3.5)
of the text.

APPENDIX C

The currents associated with the magnetic field are
given by

j= (1/pp)ikXb= (its/iup)nXh,

in this low-frequency regime where neglect of displace-
ment current is justi6ed. It is easiest for our purposes
to evaluate j for the type-b and type-s solutions (2.21),
(2.24) and then later to combine these into type 1—6
solutions. Before doing this, however, we will change
the normalization of these solutions, using a type-b
solution Se„/K times larger than that of (2.21) and
(2.23), and using a type-s solution n, times larger—
than (2.2) and (2.24). The coefficients for the type-b
and type-s electric fields, magnetic fmlds, and electric
currents are given in Table IV. Also indicated in Table
IV is the power of (to,r) to which the entry is propor-
tional in the high —or,r limit. Constant factors of c,
co, and po have been deleted.

The boundary conditions which brought the type-s
fields into the problem were essentially continuity of b
tangential. The normalization of the solutions in Table

TABLE IV. (co,r) Dependence of so1ution constants.

(84a) Type b
(~ ~)ris

Type s
(o),7)

CoefBcient m =
27 E22

2tppvp = — — + (it,P)'
(e.') (ip.')'

(84b) CoefBcient

—1
+1

0
0—1
0

+1
0

+1

0
0—1
0
0
0
0
0
0

E/S„iS„
+a

Eng/ny
iE

iS„Eb
~'E ..

S1I~a

e,.
e„
e,
b~
5g
b,
J.*
Jv
Jg

sng
X/n,

Sn„/E—X
in22

tngny
(n„2+n2)n,—ingg

fax

—2~
—

gK,' -
2PKpg

2epyi= + (rid)'
("*')—(&*')'

(84c)

Using (3.3b) in (84a) gives

(+2 Yl) cotZ (csc Z)t. (r2 vl)kpr YpkpEj

iE, (85a)—
Z= kp(r —E) .

a The term &K arises as it did at the end of Appendix A, namely,
multiplied by a tanh or a eoth of large argument. As a result, the & sign

(
must be taken to agree with the sign of its.

b We have written (Ng2-ng2)/N~ =N~.



276 G. A. BARAFF AND S. J. BUCHSBAUM

ea. jp

e jJ'e„j
e,aj.&

(b,b)

0
0—1

(,a)
(»s) (s,b)

0—1—1

—2
0—1

TAzxz V. Effective power of e,v in J'e;a jt'da.

(s,s)

—1
0
0

[The coefncients Q and W here would be equal to
Q sin(kir) and W sin[k2(r —R)] of Appendix A; there
are also constant factors relating R and V of this section
to those of Appendix A, and j,', j," and diGer from
corresponding entries in Table V by factors of tan(kir)
and tan(k2(r —R)).] The power loss from the two
(b,s) terms is then

e,= —Qe, ', j.= Qi *' Ri.V;--

IV has been so chosen that all tangential b fields in
both b and s solutions have coefficients with the same
power of (co,r). This choice will insure that the arbitrary
constants corresponding to (Q,R, , V) of Appendix A
will be of order (M,r)'.

The evaluation of W [Eq. (4.1)] involves evaluating
an integral of products of solutions, electric fieMs and
currents, of the various types. In carrying out this
integral, one should recall that the s-type solutions fall
off rapidly with distance from the interface, essentially
as exp( —~~y —r~), with i~ being proportional to co.r.
Thus, the distance over which the solution is important
is proportional to 1/id. r and we may treat the b-type
solution as being constant over this range. The integral
of a bXs product is then proportional to 1/ii (1/&O, r)
and the integral of the sos product is proportional to
1/2~ (1/~,r). This means that integration has the
effect of decreasing by one the (io,r) power of all e.j
products except c jb. The effective, or lowered, order
of the various e; j,& integrals is as given in Table V.

Table V shows that in the high co,v limit, the only
terms which contribute to W are (e,"j b"+e„"jp*),
e,bj;*, e„'j„b*,and (e„j'„'"+e,j';").Since bulk helicons
are known to propagate. without loss in an infinite
medium (in this limit), the (b,b) term vanishes. The
reader may verify directly that the real part of this
term is proportional to ImUe„and thus, assuming e,
is real, this term contributes nothing. The terms (b,s)
and (s,s) are not difficult to evaluate in the limit in
which n, is taken real, and they do contribute.

%e take the b Q.elds to be constant near the inter-
face and write the actual fields and currents in the two
media as follows: In medium I,

dy LQe'(Rj *V)*+«."'0 (Qj:)*]

+ dy[We, "(Vj "p)*+Ve„p(Wj„")*]

I'„=(ce,/&u) [RR*Ki+VV"K~]. (C5b)

In arriving at (CS) we have taken r4 as real.
The coeKcients E, H/, and V may be expressed in

terms of Q by using three interface continuity condi-
tions. For instance,

Qe, & +We,"=0,
Re," +Ve,' =0,

Qb, '+Rb,"+Wb, +Ve.' =0.
(C6)

= (QR*/iii*) e,'j,"*+(RQ*/~i) e„'j„*
+(Q —+W, R~ V, 1 —+2).

Since we shall be taking the real part of I'b„we substi-
tute for the second term of I'b, its complex conjugate,
and write

I'b.= (QR*/ i*i~) 'ej."*+(RQ*/iii)e, "j,'"
+ (Q ~ W, R —+ V, 1 —& 2) . (C3)

In a similar way, the power loss from the (s,s) term is

P„=[ RR* /(~ +ra i)][ „e"j„"*+ej,""]
+(R—+ V, 1 —+2). (C4)

The field and current components appearing in (C3)
and (C4) are easily evaluated using Table IV and re-
calling that q and z are type-b solutions, r and e are
the +X„and—iV„forms of type-s solutions. Finally,
using (iV „/z)=c/co, we obtain

Pb, (cr4/(o)[QR*(Ki ———Xi)—WV*(K2 Xp)], (CSa)

e,= H/'e, ", j.=Wi*"+Vj *"v

e„=Weg+Ve„"y,jy=Wj„"+Vj„'p',

e„= Qe„Red%—j.=—Qj ' Rj y—'—
Re,'f, j.= —Qj—,' Rj,"f;—

g =exp[.i(y —r)].
In medium II,

(C1)

(C2)

8'=—
V= —R,
R= Q (Xi—Xs)/(Ki+ K2),

(C7)

(The fourth condition, on continuity of b„is redundant,
being satisfied automatically as a consequence of the
dispersion relationships. ) Solving (C6) and evaluating
using Table IV gives

e,= Ve, 'y, j,=Wj,"+Vj,"q,
q
= exp[—~, (y—r)].

which, inserted in (CS) and ignoring the constant
ce,/&o, gives Eqs. (4.3) and (4.4).


