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A novel instability is described which can be utilized to amplify helicon waves in a single-component solid-
state plasma. The instability is created by carrier drift at threshold velocities which can be smaller than the
phase velocity of the wave which is being amplified. The instability can be excited in composite structures
made up of two or more layers of solid-state plasma, of different carrier densities with the interface parallel to
an applied static magnetic field. It is intrinsically connected with the presence of a surface wave at the inter-

face between the two media.

I. INTRODUCTION

T is now well established that transverse electro-
magnetic waves can propagate with little attenua-
tion through solid-state plasmas in metals and semicon-
ductors.! Because the phase velocity of these waves
(helicon or Alfven waves) can be made very much
smaller than the speed of light, the idea of amplifying
them has intrigued many workers. The most notable
of the various amplification schemes is that of Bok and
Noziéres.? These authors pointed out that a helicon
wave in a two-component plasma (of unequal electron
and hole concentration) can be unstable when the elec-
trons and holes are made to drift relative to each other.
A necessary, though not sufficient, condition for the
instability to occur is that the drift velocity exceed the
phase velocity of the wave. Although the Bok-Noziéres
scheme has been criticized by some authors,? there is
no question that various instabilities can be induced by
drifts in excess of the phase velocity of the wave. In
gaseous plasmas, a myriad of such instabilities is well
known. In solids, the establishment of large drift is
not easy since it is then accompanied by large heat
dissipation.

In the present paper, we discuss a novel instability
associated with propagation of helicon waves in bounded
composite plasmas (waveguides) which can be excited
with threshold drift velocities smaller than the phase
velocity of the wave. The structure which we consider
is shown in Fig. 1. Media I and IT are dissimilar solid-
state plasmas in the form of thin, infinite slabs. A static
magnetic field B, is oriented parallel to the interfaces
between the two media. As pointed out by Legendy and
by Klozenberg, McNamara, and Thonemann,* in a
finite medium (such as a single slab or a cylinder
oriented parallel to a static magnetic field), the prop-
agation of a helicon wave is accompanied by a surface
wave, which is required to match boundary conditions

1 See, for example, S. J. Buchsbaum, and R. Bowers, in Proceed-
ings of the Symposium on Plasma Effects in Solids, Paris, 1964
(Dunod Cie., Paris, 1965), pp. 3-18, 19-35.

2J. Bok and P. Nozitres, J. Phys. Chem. Solids 24, 709 (1963).

3T. Misawa, Japan J. Appl. Phys. 2, 500 (1963); A. Bers and
A. L. McWhorter, Phys. Rev. Letters 15, 755 (1965); A. Hase-
gawa, J. Phys. Soc. Japan 20, 1072 (1965).

4C. R. Legendy, Phys. Rev. 135, A1713 (1964); J. P. Klozen-
berg, B. McNamara, and P. Thonemann, J. Fluid Mech. 21, 545
(1965).
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at the plasma-vacuum interface. Such a surface wave in
a passive medium contributes to loss. In a preliminary
publication® we pointed out that in a composite struc-
ture of the sort shown in Fig. 1 an instability, which is
associated with the ‘“surface” wave at the interface
between media I and II, can be excited. The instability
is produced by carrier drift at a threshold drift velocity
which can be made much smaller than the helicon-wave
velocity in the guiding structure. At threshold, the loss
associated with the wave at the interface vanishes, and
at velocities exceeding threshold, the loss turns into gain.

The purpose of this paper is to derive the conditions
for the instability and to describe its properties in a
detail not possible in Ref. 5. Since the mathematical
complexities associated with the derivation are con-
siderable, we first summarize in words the physics of
the instability.

Let us assume that the two media in Fig. 1 can be
characterized, so far as helicon wave propagation is
considered, by dielectric constants K1 and K,, where

1.1)

Here wpi= (Nig?/mie0)'? is the plasma frequency in
medium 4, w,; is the cyclotron frequency in medium ¢,
and w the frequency of the wave. K; plays the role of
the dielectric constant in the sense that the speed of
helicon waves propagating along a static magnetic field
in medium 4, if it were nfinite in extent, would be
c/A/K;. As we mentioned earlier, in a structure of the
sort depicted in Fig. 1, a “surface” wave must exist at
the interface between the two media in order to match
the boundary conditions there. It is a surface wave in
that, for conditions of interest in the present paper, the

K¢=wpﬁ/wwc,~ .
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5G. A. Baraff and S. J. Buchsbaum, Appl. Phys. Letters 6,
219 (1965).
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strength of the fields associated with the wave decays
exponentially in the direction transverse to the inter-
face. With such a wave is associated loss. The origin
of that loss is similar to that of the plasma-vacuum
surface wave of Legendy. Here, however, the strength
of the surface wave at the interface depends essentially
on the difference in dielectric constant across the inter-
face; it can be made arbitrarily small by making
| K1— K| arbitrarily small.

Now assume that the carriers in one of the two media
comprising the structure possess a steady drift in a
direction parallel to the interface. As we shall show
in Sec. II, the presence of the drift effectively modifies
the dielectric constant in that medium from K; to
K:(1—V4/Vs), where V4 is the drift velocity of the
carriers and Vs is the (as yet undetermined) phase
velocity of the wave propagating in the guide. For the
sake of an example, assume that the carriers in medium
I drift. Then by making

Kl(l—Vd/ch):Kz, (1.2)

the surface wave at the interface between the two media
vanishes, because the two media now have the same
effective dielectric constant; and to the wave, the two
media appear to be identical. The drift velocity given
by Eq. (1.2) is the threshold drift velocity. For drift
velocities larger than the threshold, the surface wave
reappears. But now its phase is reversed with respect
to the phase below threshold. We shall show that it is
this reversal in phase and the interaction between the
surface wave and helicon-like wave in the bulk (the
bulk wave) which leads to gain. It is clear that by
making K; and K, nearly equal, the threshold drift
velocity can be made arbitrarily small, albeit at the
price of low gain. In practice the over-all losses in the
system will, by setting a minimum value of amplifica-
tion needed for net gain, establish the minimum dis-
continuity in dielectric constant, and will determine,
thereby, the threshold drift velocity.

The structure of this paper is as follows: in Sec. II,
we study the effect of drift on propagation in infinite
media. Most of the physics of the model and most of the
approximations are contained in this section. As a
result, it contains most of the steps needed in the
derivations. In Sec. ITI, we derive and discuss the dis-
persion relation for the sandwich structure shown in
Fig. 1, and in particular, the damping or growth con-
stant of the waves near threshold. The derivation and
discussion here allows us to infer what the damping or
growth constant is likely to be for the multilayered
structure shown in Fig. 2. In that section, as in the
fourth section, most of the algebra is relegated to the
appendices. Finally, in Sec. IV, we analyze the in-
stability on the basis of power-flow considerations.

II. INFINITE-MEDIUM SOLUTIONS

The sandwich structure depicted in Fig. 1 is to be
considered as being infinite in the x and z directions.
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Fic. 2. Multilayer
generalization of the
sandwich structure de-
picted in Fig. 1.
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The drift current and magnetic field are parallel, and
will be taken in the z direction. Although our interest
is in waves which propagate along the z direction, the
boundary conditions will force the electromagnetic
fields to depend on the y coordinate as well. There is
no essential reason for any of the fields to depend on x,
and so, for simplicity, we shall be concerned only with
« independent fields and currents.

In this section, we shall calculate the various infinite
medium solutions possible in the helicon regime. By
helicon regime, we mean the conditions

w1, (2.1a)
w/wLl, (2.1b)
K=wg/wu>1. (2.1¢)

We assume that the motion of an average carrier in
the plasma is governed by the transport equation®:

mV+(V-¥)V]=g[E+VXBl—msV. (2.2)

Here V and v=1/7 are the velocity and collision fre-
quency of the carrier; E and B are the total electric
and magnetic fields. The equation is linearized by
writing

V= V0+V,
B=B,+b, (2.3)
E= E0+e.

We drop products of first-order (lower-case) quantities,
and regard the zeroth-order quantities as uniform, time-
independent, externally determined quantities. The re-
sulting equation is treated by postulating an exponential
variation expi(k-r—wf) for all first-order quantities.
Maxwell’s third equation,

vXe=—b, (2.4)

is then used to eliminate b, leaving the following vector

S L. Spitzer, Physics of Fully Ionized Gases (Interscience Pub-
lishers, Inc., New York, 1962). Deleting the pressure tensor y
and the gravitational potential ¢ from Eq. (6.16) of this reference
leads essentially to (2.2). The neglect of the pressure tensor means
in effect that we are neglecting the random or thermal motion of
the carriers, an approximation which is justified when kvrr<1.
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equation relating the velocity v to the electric field e:

(1—n-U+dy)v+iBXv

= —a?(weo/iNog)[e+UX (nXe)], (2.5a)
P=wg/w’=No/ (mew?), (2.5b)
B=w./w=gBy/ (mv), (2.5¢)
y=v/w, (2.5d)
U=V/c, (2.5¢)
n=ck/w. (2.5¢)

The index-of-refraction vector n is not to be confused
with the scalar » which emerges when we linearize the
density by writing

N=N0+n.

The solution to (2.5) may be expressed in matrix
form as

(iNog/wer)v=M-e, (2.6a)
where
¢t e 0 1—Un, O 0
/¢
= —iBc 2 0 0 1-Un, Un,|,
B—5)

0 0 el o 0o 1
(2.6b)
¢=1-Un,+1vy, (2.6¢)
B=B| Xsigg, (2.6d)
U=|U]|. (2.6¢)

In obtaining Egs. (2.6), we have used the fact that
U and B are parallel to z and that n has no x com-
ponent. Thus, we are here restricting our solutions to be
independent of x. Having obtained the velocity, we
calculate the particle current G=NV and concentrate
our attention on the first-order part

g=Nov+nVo. 2.7

From the continuity equation

v-g+n=0,
or
k' (Nov+nVo)—wn=0,

we can solve for # and, with that solution, eliminate 7
from (2.7):
g=Ny[v+U(-v)/(1—n-U)] (2.8)

The dependence of the electric current J=gg on the
electric field e now follows by combining (2.6) and

G. A. BARAFF AND S. J.
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(2.8):
(t/we)i=S-e, (2.92)
Ag/B id iB
a6 )
B A &
—iB §B/B  ($*—BH42B%)/sBA
(2.9b)
A =1- Unz ) (2.9C)
B=Un,. (2.9)

This current acts as a source of the magnetic field b
via the fourth Maxwell equation

V Xb=pqg+uoeé.

Using (2.4) to eliminate b and (2.9a) to eliminate j
converts this to an equation for e alone:

K-e+nX(nXe)=0,

K=14S.
It is now appropriate to make the helicon approxima-
tion in (2.10). For simplicity, we also assume that the

frequency is well below the scattering frequency so that
y=1/(w7) is much larger than unity. Thus

(2.10a)
(2.10b)

$=1y, (2.11)

because even at the largest drift currents, Uz, will be
comparable to unity. Now the ratio {/8 becomes

¢/B=1y/B=i/w,r. (2.12)

The first approximation is that w,r is large enough that
(1/wer)? is negligible compared to unity. (It will soon
be evident why we cannot drop terms of order 1/w,r.)
This approximation gives

@/ (B =)=t /B=0,Yuw =K.

The second helicon approximation (2.1c) allows us to
neglect the unit tensor in (2.10b). With these approxi-
mations, Eq. (2.10) determining the electric field is

(2.13)

S—nl—n? 1X i¥n, ez
—1X S—n? (GZ+n)n,| |ey| =0,
—i¥n, (iZ4+n)n, P+Qn2 |le.
(2.14a)
S=iK(1—Un,)/w.r, (2.14b)
X=K(1—U=n,), . (2.14¢)
Y=KU, (2.144)
Z=KU/w., (2.14¢)
P=iKw,s/(1—Un,), (2.14f)
iKU?/(1—Un,)
_— 1. (2.14g)

W,T
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The vanishing of the determinant in (2.14a) gives a
quadratic equation for »,?2:

anyt+bn2+c=0,
a=—SQ+2in.Z— 72>+ (14+Q)n.?,

b= (X+n.Y)+ (n2—S) (P+S— 224 2in.Z)
—SY242iXV Z+ (Q+1)[— X2+ (n2—S)*], (2.15¢)

c=P[S*+n2(n2—25)—X%], (2.15d)

(2.152)
(2.15b)

and a relation for the components transverse to the
magnetic field, ¢, and ¢,, in terms of e,, the component
along the magnetic field:

De,= —in [V (S—n2)—iX (Z—in,)]e., (2.16a)
Dey= —in,[ (S—n2—n2)(Z—in,)+iXV Je., (2.16b)
D=52—S2un24n2)+n2(ni+n2)— X2, (2.16¢)

Here, some simplification of the coefficients is possible
because of the definitions (2.14b)-(2.14f) which give us

(X+n,Y):=K2=—PS, (2.17a)
SY=iXZ. (2.17b)

We now regard w.r as large and expand a, b, and ¢ in
terms of inverse powers of this parameter. To do this,
however, we must first assign an (w.7) dependence to ..
Since our idea is that the whole structure should prop-
agate helicon-like (i.e., infinite-medium-like) waves in
the z direction, it is easily shown that we should regard
7. as being of order (w,r)°.

We shall now consistently retain only the lowest
order terms in (1/w.7). This approximation, passage to
the high w7 limit, discards all dissipative effects, except
those which result from the presence of a surface wave.
The lowest order terms in (2.15) are

a=S+2iZn,+ 1+Q)n.? (2.18a)
= iK/[wcT (1 - U”z)] ’

b=Pn}?, (2.18b)

c=Pnrt—X?%). (2.18¢c)

In the formal solution to (2.15a),
nl=[—b= (B2—4ac)'?]/2a,

we find from (2.18) and (2.14) that 4ac/8? is of order
(w.r)~2. Thus the leading term here may be obtained
by expanding the square root to lowest order, so that
the two roots for #,? are n,2= —¢/b and n,2=—b/a. In
the second solution, we shall always write

N,=in,, (2.19)

so that the two roots are
nft=—c/b=X*/nlt—ng2, (2.202)
Np=tb/a=ni(oa). (2.20b)

We shall designate the two forms of electric field which
result when Eqgs. (2.16) are evaluated using Egs. (2.20)
by superscripts b (for the bulk wave) and s (for the
surface wave), referring to (2.20a) and (2.20b), re-
spectively. Making use of (2.17) to simplify forms, and
retaining only the lowest terms in (w,7)~%, the results
of substituting Egs. (2.20) into Eq. (2.15) are’

Dbe,>=in,n.Ke,”, (2.21a)
Dbe,>= (n,XK/n.)e., (2.21b)
Db=+4-Sn?, (2.21¢)
and
Dsez = NynzKezs ) (2.223,)
Dreys =N *n.e.°, (2.22b)
P= —nlN,r. (2.22¢)

Each type of electric field generates a magnetic field
b=kX e/w=nX e/c. Hence using (2.19), (2.20), (2.21),
and (2.22), we have?

b,P=— (XK/cSny)e,?, (2.23a)
b,>=~+ (in2K/n,cS)e.?, (2.23b)
b.>=— (in.K/cS)e.>, (2.23¢)
b2=[iN,(S+iZn.)/ (cn.2) e, (2.24a)
b= (N,K/cnl e, (2.24b)
b= (—iK/cn.)e.*. (2.24c)

It is clear from (2.20a), (2.21) and (2.23) that if the
type-b solution is normalized so that Ke,P is some con-
stant, then for a given #,, the field components e,?,
e,®, b?, and the transverse propagation constant #, are
functions only of X=K (1—Un,) and S=1X/w,r. Thus,
except for e,, which is one order of the w,7 smaller than
the other e components and therefore negligible, the
effect of a drift current on all aspects of the bulk solution
is completely described by the replacement of K by X.
For this reason, the quantity X can be called the
effective dielectric constant.

7 Some care is required in obtaining (2.21c) because straight-
forward substitution of (2.20a) into (2.16c) leads to a complete
cancellation of terms of order (w,r)°. It is therefore necessary that
the root #,2=—c/b be correct to order (w.r)~* before substituting
into (2.16c). Hence the proper procedure is to retain the two
lowest powers of (w.7)™! in (2.15c), (2.16c), and (2.15d). This

leads to
b= (X4+n.Y)+P(n2—S)=Pns2-2S),
¢c=P[n2(nr-25)—X2],
1l =X* (n2—2S)— n?,
and thence to (2.21c).
8 Again some care is required to obtain (2.24a) because the
lowest order terms in (w.r)~? cancel. This time, it is necessary to

retain an extra order of (wer)™! in passing from (2.16b) and
(2.16¢) to (2.22). These give

Deep=iN 2 (n,~+iZ)ep
Ds=N2(S—n2?)
and now, (2.24a) follows immediately.
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TasiE I. Solution types. A zero indicates that the entry is one
order of w.r smaller than the other entries in the same row.

Typej ei= ef= b= b=
7=1 E;'sin(ky) 0 B,!sin(ky) B! cos(ky)
2 0 E2cosh(ky) B,*sinh(xy) B cosh(xy)
3 E.cos(ky) 0 B3 cos(ky) B} sin(ky)
4 0 Eptsinh(ky) Bs*cosh(xy) B.sinh(xy)
5 0 E.5 exp(ky) B,5 exp(xy) B, exp(xy)
6 0 E.Sexp(—xy) B.Sexp(—«y) B.%exp(—«y)

There are four tangential field components, e, ¢,
bgy bsy in each solution. In type-b, the component e,b
is one order of w.r smaller than the other three tangen-
tial fields, while in type s, it is e,® that is one order of
w,r smaller than the other three tangential fields.
Therefore, when boundary conditions are set up, these
two small components can be taken equal to zero and
the results will still be correct to lowest order in
(w.r)~t. This same conclusion can be obtained, more
convincingly but also more laboriously, be retaining one
extra power of (w.7)~! throughout the entire calculation.

Equations (2.20) for #,? and N,? allow both signs for
ny and N,. It is convenient to combine the two solutions
corresponding to the two possible signs so as to obtain
solutions with definite y symmetry. Specifically, we take
half the sum of the two type-b solutions and designate
that as type 1, half the sum of the two type-s solutions
and designate that as type 2; (i/2) times the difference
of the two type-b solutions we designate as type 3;
half the difference of the two type-s solutions will be
type 4, and finally the two type-s solutions themselves
we now denote as types 5 and 6. The six solutions are
exhibited in tabular form as Tables I and II, in which
we have written

(2.25a)
(2.25b)

k=wny/c,

k=wlN,/c.

1. THE DISPERSION RELATION AND
PROPAGATION CONSTANT

The actual fields in regions I and II of Fig. 1, will
be sums of solutions of the types tabulated in Tables I
and I, each solution in the sum being multiplied by an
arbitrary constant. The arbitrary constant must be so
adjusted that boundary conditions are satisfied. We

TaBre II. Solution constants.

Type j B, Ej cB.i/i cBi/i
j=1 —n.K/Sny —XK/Sny —n.K/S
2 1 Ny(S+iZn,)/n2 —K/n.
3 Epl=Ejr=—n.K/Sn, B2#=B,! =—B
4 1 =B,? =B2
5 1 =B,? =B2
6 1 =—B,? =B2

G. A. BARAFF AND S. J.
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take for boundary conditions the continuity of the
tangential electric and magnetic fields at y=--r and
the vanishing of the tangential electric field at y==+R.
(We assume that the slab is coated by a perfect con-
ductor at y==R.) It turns out that there is one more
boundary condition than there are arbitrary constants
with which to satisfy them?® and that consequently, a
condition on the solutions tabulated in Tables I and IT
must also be satisfied. This condition provides the dis-
persion relation for the structure.

Note added in proof. The results and conclusions of
this paper rest heavily on the assumption that the tan-
gential component of the total magnetic field of the
wave is continuous across the interface, i.e., that there
is no surface current localized strictly to the interface
driven by the drifting carriers. If such a current is
introduced into the model, many of the present results
will have to be modified. The consequence of such a
current under various conditions of surface recombina-
tion and mobility will be discussed elsewhere.

The derivation of the dispersion relation is a straight-
forward but tedious task. We relegate it to Appendix A
where we show that the dispersion relation is

12 cotke(r— R) =n, cot(ky—+nmr/2)
1,(K1"‘K2) (Xl‘“ X2)

, (3.1a)
(K1+K2)nz
where
X1~=K¢(1—Umz), (Slb)
ki=wni/c, (3.1¢)
ni=X2&/nlrt—np. (3.1d)

In Egs. (3.1), =0 for modes in which the fields e,
and b, are symmetric about y=0, and n=1 for modes
in which e, and b, are antisymmetric about y=0. This
form is valid provided the surface wave excited at any
boundary damps out before reaching the next boundary.

We now study the dispersion relation for those
values of (normalized) drift velocity U near the
threshold value U°. At threshold, the wave changes from
attenuating to growing and, hence, #, must be purely
real. Finding that value of U° which leads to a real #,
is therefore the first problem.

If n, is real, then Egs. (3.1b) and (3.1d) yield a real
n#. It follows that the first two terms in (3.1a) are also
real. Therefore, at threshold, the last term in (3.1a)
must vanish. That is,

B (K1—K3)(X1—X3)
(K1+K2)nz

8 We regard one of the arbitrary constants as being fixed by the
over-all normalization of the fields. Otherwise, there are as many
arbitrary constants as there are boundary conditions and we are
led to a set of homogeneous equations whose compatibility de-
mands that the determinant of coefficients be annulled. The
equation resulting is the same.
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must vanish at threshold. This can happen only because
K=K, or because X1=X,. The first possibility gives
n, real at all values of U. The second possibility is the
interesting one. From it, we have the threshold condi-
tion X=X, or

K](l-" U1°n,°)= K, (1— Uzon,") . (32)
One of U¢ and U can, of course, be equal to zero
provided that the other satisfies (3.2). It is clear from
(3.1b)-(3.1d) that the threshold condition X;=X,
yields k1= ke, which common value we designate by Z,.
At threshold, then, Eq. (3.1a) reduces to

cotko(r— R)=cot(kor+1m/2) (3.3a)
whose solution is
ko=mm/2R m=1,2,3,--. (3.3b)

The integer m is even for n=0 (symmetric 2 fields) and
odd for n=1 (antisymmetric z fields). The condition
(3.3b) says that the transverse wavelength at threshold
is determined geometrically, with an even or odd num-
ber of half-wavelengths spanning the full thickness 2R
of the sandwich. The reason this occurs is that at
X;=X,, the two media have the same effective di-
electric constants and thus the bulk wave is unaware
of any interface or difference between the media. One
would suspect (and indeed we shall show in the next
section) that, at threshold, the surface wave is not
needed to satisfy boundary conditions at the interface.

Having found ko, one can solve (3.1d) for #.. The
solution is easiest if one of the currents, Uy, say, is zero,
for then the solution is

(ny= (Ko/ QLA+ T = T7], (34a)
T= Cko/w\/Kz. (34b)

With #, determined and UL=0, the threshold drift
velocity U9=u, follows simply from (3.2).

We now solve for %, when Uy is in the neighborhood
of u,. To do this, we expand all quantities to first order
in U1—u,. The details of the expansion and the resulting
solution are presented in Appendix B. Of particular
interest is the imaginary part of #., since this deter-
mines growth or attenuation. Writing

M= ”50[1"*" (Ul_ui)aj ’

we find that for K and K nearly equal, the imaginary
part of #, follows from

(3.5a)

(1=5¢(n)
mé= , (3.5b)
4(wR/c) (14 T4/4)12
where
t¢=Ki/K;, (3.5¢)
o(r)=sin[[(mr/2)(1—r/R)]. (3.5d)

271

We observe that the y dependence of any of the bulk-
wave transverse field components, e, e,°, b, b,P, is
¢(y). Therefore, the imaginary part of #, is propor-
tional to the square of the transverse bulk-wave field
evaluated at the interface position. This dependence is
a consequence of the physical mechanism for the in-
stability, as will be verified in the next section. The
mechanism involves the interaction between the surface
wave and the bulk wave. The surface wave exists only
at the interface, and only for the purpose of satisfying
boundary conditions which the bulk wave cannot quite
do. Clearly then, the amplitude of the surface wave
will be proportional to the amplitude of the bulk wave
at the interface.® Therefore eack of the interacting
fields is proportional to ¢(r). Since the power gain or
loss is quadratic in the fields, the imaginary part of the
propagation constant, which is proportional to the
power gain or loss, exhibits a ¢?(r) dependence.

The implication of this mechanism is that Im#, will
be half as large for a one-interface structure as for the
corresponding two-interface structure. Since the even
m modes of the sandwich have all tangential e fields
vanishing at y=0, the y>0 half of the sandwich struc-
ture reproduces, for even m, all possible modes of the
single interface structure of thickness R. The dispersion
relation for the one-interface structure of width 2R,
the width of the sandwich, then follows by replacing R
by 2R in Egs. (3.3), (3.4), and (3.5). It is evident that
the one-interface structure indeed supports a wave
which grows or attenuates half as fast as does the wave
in the corresponding two-interface sandwich structure.
These observations suggest that it should be possible
to obtain Im#n, for a multilayered structure such as
shown in Fig. 2 by summing an expression of the form
(3.5) over all values of 7;, the position of the ith inter-
face. Although this is a reasonable conjecture, its proof
will have to await the completion of our studies of the
multilayered structure. [Note added in proof. It has
been shown recently that the gain in multilayered struc-
tures, indeed, is additive. See L. M. Saunders and G. A.
Baraff (to be published).]

IV. CURRENTS, FIELDS, AND POWER LOSS

In order to bring out the physical nature of the in-
stability, consider the power loss per unit length of
slab:

W=%Re/e-j*da. 4.1)

The integration is over the cross-sectional area of the
sandwich structure. Since the electric field (e= eb+e®)
and the current (j=j®+j°) are each composed of the
fields and currents of the bulk and surface waves, the

0Tt turns out that the longitudinal components of the bulk
wave can be matched without the surface wave and therefore that
the surface wave is proportional to the transverse bulk wave com-

ponents. One expects in general that factors proportional to the
amplitude of the longitudinal components could enter Ims..
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power loss W is composed of three terms:

W= Wbb+ Wbs_l' Wss ) (4’2)

where
Wbbz% Re/(eb-jb*)da, (4’-23)
Wi=}Re f (e>-i*+eiP¥)da,  (4.2b)
Wes=1% Re/ (es3%%)da. (4.2¢)

The term Wiy, resulting from bulk-bulk interaction,
vanishes in the high-w,r limit. (See Appendix C.) The
other two loss terms, Wys and W, are of interest to us
here. We show in Appendix C that only the terms
(ez*7.7") and (e,*j,**) contribute to Wy, in the high
w,r limit and that only (e,%j,*"+e¢.%7.%) contributes to
Wes. Each of these terms has the ¢*(r) dependence
mentioned earlier.

It is not difficult to show (See Appendix C) that the
amplitude of the surface wave is proportional to
(X1—X>) so that the surface wave vanishes at threshold.
At drift velocities greater than threshold, where
(X1—X>) has the opposite sign from (X1—X5) below
threshold, the surface wave reappears with its phase
reversed relative to the phase it had below threshold.
This behavior is reflected in the vanishing of W, and
Wes at threshold, and in a reversal of the sign of Wy,
(but not of W) as the drift velocity crosses threshold.
The calculation in Appendix C shows that for (w.7)—

_QQ*(X1—X2)[(K1—~X1)- (K2a—Xo)]
bs— H

Ki+Ko

(4.3)

and
_QQ*(XI—'X2)2

5= (4.4)
Ki+K:

Here, Q is the arbitrary constant multiplying the bulk-
wave solution so that QQ* is a constant proportional to
the energy contained in a unit length of the sandwich.
We see that Wy is positive, but that it vanishes at
threshold. That is, the surface wave interacting with
itself always gives rise to a power loss except when that
wave disappears. The gain can arise only from Wy, the
surface-bulk interaction term which changes sign at
threshold, when the surface field reverses phase.! Thus,
the mechanism of the instability is that the surface
wave, which is needed to satisfy boundary conditions
at an interface across which the effective dielectric
constant changes, can be made to reverse phase by

11 Note that this term vanishes when there is no drift, (X;=K;),
as it must because the surface wave and bulk wave are orthogonal
to each other. The presence of drift in either medium removes the
orthogonality and renders Wy finite.
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using carrier drift to reverse the sense of the relative
effective dielectric mismatch. The reversal causes the
bulk-wave-surface-wave interaction to change loss to
gain sufficient to overcome the surface-surface losses.
That the loss is overcome may be seen by noting that

(Wbs+Wss)_ (XI_X2)(K1_K2)
QQ* Ki+K,

which changes sign at threshold. Note that the net
power loss divided by the energy density is essentially
the imaginary term M in the dispersion relation (3.1a)
whose presence led to an imaginary part of #.. Our
analysis suggests that if (Wyst+Wpb) can be made
sufficiently negative to overcome collisional loss (which
has here been neglected by passage to the infinite wer
limit) net gain can be achieved. The problem of extend-
ing these results to the next order in (w.r)™ is being
pursued.
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APPENDIX A

As stated in Sec. III, the actual fields in region I and
region IT are sums of solutions of the types tabulated
in Tables I and II, each solution in the sum being
multiplied by an arbitrary constant. These arbitrary
constants are adjusted so that boundary conditions are
satisfied. It is useful to designate each solution by an
alphabetic superscript which will denote both the type
of solution and the region in which it is to be used. We
shall use the capital letter corresponding to the super-
script to represent the arbitrary constant which multi-
plies that solution. Using the nomenclature of Table

Tasire IIL. Solution nomenclature.

Super- To be multi-
script Region Type plied by

n I 3 —N

P I 4 —P

q I 1 -Q

r I 2 —R

s II 1 S

¢ II 3 T

% II 5 U

v I 6 14
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II1, the x component of the magnetic field in region II is
b= Sb*+Tb,'+ Ub,*+ Vb,”
and the x component of electric field in region I is
e,= —Qe,2— Ne,".

The minus signs appear here because the multiplier for
the ¢ and #» solutions are, by our choice, —Q and —N;
the constants P and R fail to appear because the x com-
ponent of electric field in these solutions is of order
(w,7)~! smaller than the other field components.

Because of the y <> —y symmetry of the sandwich,
the complete solutions can be classified as being of one
or the other of two types, which we designate as even
or odd depending on whether b,(y)==5.(—%). In the
even mode b,(y)=-+b.(—y) and therefore, solutions
and p do not appear because they have the wrong sym-
metry. (There is no corresponding restriction on the
solutions used in the outer region II, because here the
symmetry may be maintained by having the arbitrary
constants in one of the two outer regions either equal or
opposite to the arbitrary constants in the other.) Simi-
larly, solutions ¢ and » will fail to appear in the mode for
which b,(y)=—b,(—7y). We first show how the bound-
ary conditions lead to the dispersion equation, k.,
versus w, for the even mode.

It is convenient to let a field component evaluated at
y=r temporarily be denoted by a lower case letter and
temporarily, to use a capital letter to denote a field
component evaluated at y= R. Having chosen the sym-
metry, we need no longer be concerned with what
happens at y= —r and at y= — R. Thus, there are six
boundary conditions, four expressing the continuity of
tangential electric and magnetic field components at
y=r and two expressing the vanishing of the tangential
electric-field components at y=R.

Qe+ Se,*+ Te,t =0, (Ala)
Re,+ Ue,*+ Ve,’=0, (Alb)
Qb2+ Rb, ™+ Sb*+ Th,'+ Ub*+ Vb.2=0, (Alc)
Qb.24-Rb, 4+ Sb.+ To,+ Ub,*+ Vb,=0, (Ald)
SE,+TE,! =0, (Ale)
UEMVEp=0. (Alf)

The condition that this set of six homogeneous equa-
tions for the six arbitrary constants Q, R, ---, V has a
nontrivial solution is that the determinant of the co-
efficients vanish. Annulling the six-by-six determinant
leads, in fact, to the dispersion equation. It is somewhat
easier, however, to reduce the size of the determinant
by solving some of the equations first. This task is
greatly simplified when we note that if solution v
plays a reasonable role at y=r, then it will be completely
negligible at y= R, while, if solution # plays a reason-
able role at y=R, it will be completely negligible at

y=r. This comes about because each of these solutions
is reduced by a factor exp(x| R—r|) in crossing region
II. Since « is, by (2.20b) and (2.25b), proportional to
w,, this reduction is severe. Hence, we should set

et=bt=b,"=0, (A2a)
E»=0. (A2b)

Now, Eq. (A1f) is satisfied by taking U=0, and inde-
pendently of this, (Ale) is satisfied by taking

=—SE.*/E.*. (A3)

Consider now the combinations of S and T solutions
which appear in (Ala), (Alc), and (Ald). Using (A3),
we may express these combinations as

Ses+ Te,t= (S/E,) (e,*Et—e,'Es) =We,», (Ada)
Sbos+Tbt= (S/E,Y) (b, °E,t— b, E,*)=Wb,», (Adb)
S+ Th,t= (S/E.%) (b.°E,'—b,'E,*) =Wh,». (Adc)

Thus, the four equations (Ala)-(Ald), which are still
to be solved, have, by the definition (A4), been re-
duced to the form

Qe+ We,» =0, (AS5a)

Re,+ Ves=0, (ASh)
b9+ Rb, ™+ Wb,o+ V=0, (A5c)
Qb9+ Rb, "+ Wb,»+ Vb.*=0; (A5d)

i.e., four homogeneous equations for the four arbitrary
constants Q, R, W, V.

The functional form of the type-w solution follows
from the defining Eq. (A4) and the various definitions
and nomenclatures presented in Tables I and III. For
example,

€= Bl —e 't = e, (y=71)e,' (y=R)
—et(y=r)e'(y=R)
=[E}sin(kr)E,? cos(kR)— E,? cos(kr) Elsin (ER) Jur
=[EMES sin(k(r—R))Ju.

The bracket and subscript I denote that the quantities
bracketed are to be computed using medium-IT pa-
rameters. The same information can be conveyed by
putting a subscript 2 on the £ and changing the super-
scripts 1 and 3 back to s and ¢ The other forms needed
follow in much the same way. The only difference is
that we use the relation E,')=E,% B,}=B,3 and B}
= —B,?, evident from Table II. We have then

e*=E;'E,;*sin[ks (r—R)], (A6a)
= E,B,* sin[k: (r—R)], (A6b)
b,=E,'B,* cos[k: (r—R)]. (Aé6c)

There is no further need for functions evaluated at
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y=R. Hence, from now on, the capital-letter field
component will always be used to designate the y-
independent constant, as in Egs. (A6). With this

QE;Q Sil’l(kﬂ’)—'—
RE." cosh (k1)

QB4 sin(kw)+ RB," sinh (k) + SB,* sin[ky(r— R) ]+ VB, ¢=0,
OB, cos(kyr)+ RB," cosh (k17)+SB.* cos[ks(r— R) ]+ VB,"y=0,
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understood, and with the further observation that the
combination WE.! is just the arbitrary constant S, we
write Egs. (AS) as

SE.* sin[k:(r—R)] =0, (A7a)
VE =0, (A7b)

(A7¢)

(A74d)

y=exp(—«o).

It is evident that none of the manipulations to this
point has involved the Q and R solutions at all. Hence,
in calculating the dispersion equation for the odd modes,
one can start at Eqs. (A7), merely replacing the Q and
R solutions and constants by P and N solutions and
constants.

In order that (A7) have a nontrivial solution, the
determinant of coefficients must vanish. Factoring
sin(k17) out of the first column of that determinant,
cosh (x17) out of the second, etc., and using the fact that
E,=E,’=1 leaves us with

E1 0 E,® 0
0 1 0 1]_ 0
B:cq (er st B:c” ’
B.2cot(ky) B, B, cot[k:(r—R)] B,
(A8a)
where
®,"= B," tanh (ky). (A8b)
Expanding,
Aj cot(ky)+As cot[ke(r—R) ]+ A;=0, (A9a)
41= (B>—®.")B.E.*, (A9b)
Ay=— (B,>—®,")B.*E.*, (A9c)
Az= (B,/— B.”) (B,°E,*— B,*E.9). (A9d)
It is useful to rewrite this equation as
cot[k2(r—R)]=C1 cot(ky)+Co, (A10a)
C1=B.,%E,*/B,*E,*, (A10b)

Bzr_Bzv Ba:sEa:q—Ba:an;s
am(Z72)( ). o
(er_ Bx” stEa:q

To evaluate C; and Cq, we refer to information in Tables
IT and III. For instance, Table III indicates that both
q and s are type-1 solutions, while Table IT shows that
in a type-1 solution, the ratio B./E, is essentially the
n, of the medium. Hence, we have

(Al1a)
(A11b)
(Allc)

Cx= nl/nz 5
= (n,)1,

Ne= (ny)II .

In a similar fashion, we can express C; in the form
(Ky— K1) (X2— X1)/ne
(®a— Bo*)n? )

C2=

In evaluating the denominator of Cs,, it is useful to
combine (2.20b) with (2.14b)-(2.14f) to obtain
N2=n2(wer)?, N (S+iZn,)=iKn,.

When the denominator of C; is evaluated using Tables
IT and III, we have
12 (B — ®,")=N1(S1+iZm.) tanh (kyr)
+N2(Sz+izmz) )
Ni=(Ny)s,
No=(Ny)m.
Putting these last few results together, and, for con-
venience, rewriting Egs. (2.13), (2.14), (2.20), and

(2.25), gives us the system of equations which serves
as the dispersion equation for the even modes:

1(K1"‘K2) (Xl— Xz)
N, (Kl tanhx1r+K2)

12 cotks(r— R) =mn, cothyr— , (A12a)

Xi=K¢(1—Uiﬂz), (A12b)
nE=X2&/n2—nt, (A12¢)
k,-=am,- c. (AlZd)

The dispersion equation for the odd modes arises, as we
mentioned, by replacing solution type g by solution
type # and solution type r by type p, in (A7). This
will, in Egs. (A8), replace cot(ky) by tan(kw) and
tanh (k1) by cothky, and, in Egs. (A9), replace the
superscripts ¢ and 7 by # and p. However, this replace-
ment will, as reference to Tables II and III, and Egs.
(A10) shows, replace C; by its negative and (neglecting
the coth— tanh replacement) leave C: unchanged.
Thus, the essential change is to replace

cot (k1) ——tan (k) =cot(ky+m/2).

For the large «1 (proportional to w.7), the tanh is equal
to the coth, both being equal to 1, depending on the
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sign of the real part of x;. Hence, the dispersion equation
for the odd modes is

71y cot[ka(r— R) ]=n, cot (kyr~+w/2)
'L(Kl—Kz) (Xl—Xz)
nz(Kl COth(Klf)—I-Kz)'

We suppress the tanh and coth in (A12) and (A13),
since they are effectively unity and the result is Eq.
(3.1) of the text.

(A13)

APPENDIX B

Here we wish to study how 7, depends on U near
threshold. For simplicity, we put Uz=0 and from (3.2)
and (3.5c) obtain

U=ULl=(§—1)/tn0. (B1)

We expand all quantities in (3.1) to first order in
U—U, about their threshold values:

U=U;+}v, (B2a)
n=nl+yv, (B2b)
= no+yw, (B2c)
ne=1no+7y2v, (B2d)

where
1= cko/w.

Since the last term in (3.1a) vanishes at threshold, its
expansion must start with a linear term in » which can
be evaluated, using (B1), (B2), and (3.1):

(K1—Ky) (Xl—Xz)/nz~K2(1—£)£(n20+'yU,)v
Ki+K, ’ﬂzo(l'l'é)

(B3a)

=Kuv. (B3b)

Insert (B2) and (B3) into (3.1) and differentiate with
respect to v at v=0. The resulting equations are

yal cot(ko(r—R))—ko(r—R) csc?(ko(r—R))]
=1L cot(kor+nm/2)—ker csc? (kor+nm/2)]—iK ,

(B4a)
2ngys=— a [K22 +(%z°)2], (B4b)
(n )L (n.0)?
2nyi= _27[ K (nzoy}_zgm, (B4c)
(n )L (n0)* n
Using (3.3b) in (B4a) gives
(va—71) cotZ— (cs?Z)[ (ve—vy1)ksr—v2koR]
=—3K, (BSa)
Z=ko(r—R). (B5b)

Using (B3), (B4b), and (B4c) in (BS5a) gives a linear
equation for vy whose solution is

£K 3 (cotZ— ko csZ) it (1— E)ndno/ (14-£)
B akoR csc2Z+(1—§)J
T=e(cotZ— ko csZ)—itUmo/ (14-8),
a=et+1/e, e=Ks/(n).

Finally, letting £ approach 1, we find that the imaginary
part of (B6) becomes

’

v
(B6)

nL(1—§) sin?Z
Imy=—— 7
20wR/c

(B7)
Using (3.4a) and (B5b) here reduces (B7) to Eq. (3.5)
of the text.

APPENDIX C

The currents associated with the magnetic field are
given by
3= (1/mo)ikXb= (iw/uo)nXb,

in this low-frequency regime where neglect of displace-
ment current is justified. It is easiest for our purposes
to evaluate j for the type-b and type-s solutions (2.21),
(2.24) and then later to combine these into type 1-6
solutions. Before doing this, however, we will change
the normalization of these solutions, using a type-b
solution S#,/K times larger than that of (2.21) and
(2.23), and using a type-s solution —#, times larger
than (2.2) and (2.24). The coefficients for the type-b
and type-s electric fields, magnetic fields, and electric
currents are given in Table IV. Also indicated in Table
IV is the power of (w.r) to which the entry is propor-
tional in the high —w.r limit. Constant factors of c,
w, and o have been deleted.

The boundary conditions which brought the type-s
fields into the problem were essentially continuity of b
tangential. The normalization of the solutions in Table

TasBLE IV. (w.r) Dependence of solution constants.

Type b Type s
(wer)™ (wer)™

Coefficient m= Coefficient m=
e ", 0 K/N, -1
ey X/n, 0 iNy +1
€ Sny/K —1 —n, 0
b, -X 0 +K»a 0
by ng? 0 Kn,/n, -1
b, — Ny, 0 K 0
J= (nl2+n2)n, 0 iN,KP® +1
T —in.x 0 +2Kn,® 0
Jz nyx 0 FNK e +1

a The term +K arises as it did at the end of Appendix A, namely,
multiplied by a tanh or a coth of large argument. As a result, the == sign
must be taken to agree with the sign of Ny.

b We have written (N2 —#:%)/Ny=Ny.
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TasLE V. Effective power of w,r in e j;fda.

G. A. BARAFF AND S. J.

- (a)ﬂ)
ex-j° (b,b) (b,s) (s,b) (s,s)
%78 0 0 -2 -1
i 0 -1 0 0
€:%7:P -1 —1 -1 0

IV has been so chosen that all tangential b fields in
both b and s solutions have coefficients with the same
power of (w,7). This choice will insure that the arbitrary
constants corresponding to (Q,R,- - -,V) of Appendix A
will be of order (w,7)°.

The evaluation of W [Eq. (4.1)] involves evaluating
an integral of products of solutions, electric fields and
currents, of the various types. In carrying out this
integral, one should recall that the s-type solutions fall
off rapidly with distance from the interface, essentially
as exp(—«|y—r|), with « being proportional to w,r.
Thus, the distance over which the solution is important
is proportional to 1/w.r and we may treat the b-type
solution as being constant over this range. The integral
of a bXs product is then proportional to 1/k~ (1/w.7)
and the integral of the sXs product is proportional to
1/2k~ (1/w,r). This means that integration has the
effect of decreasing by one the (w,r) power of all e-j
products except e”-j*. The effective, or lowered, order
of the various ¢,%/; integrals is as given in Table V.

Table V shows that in the high w.r limit, the only
terms which contribute to W are (e,*7.*"+e,27,%),
e:*7.5, e,57,", and (e,7,%+¢.%7.°"). Since bulk helicons
are known to propagate. without loss in an infinite
medium (in this limit), the (b,b) term vanishes. The
reader may verify directly that the real part of this
term is proportional to ImUn,, and thus, assuming #.
is real, this term contributes nothing. The terms (b,s)
and (s,s) are not difficult to evaluate in the limit in
which 7, is taken real, and they do contribute.

We take the b fields to be constant near the inter-
face and write the actual fields and currents in the two
media as follows: In medium I,

e,=—(Qe,, Jo=—0Q7."—Rj."Y;
ey=—Qe—Re, Y, j,=—0Q7,*—Rj,¥; (C1)
€= —Re,Y, j.=—0QJ.—Rj.Y;

y=explri(y—7)].
In medium IT,
e.=We,¥, Jo=Wi+ Vi e;
ey=We,+Ve, o, 5y=Wi+ViSe;
Jo=Wi*+Vi.%p;
p=exp[—k(y—7)].

(C2)

€= Ve.? @y

BUCHSBAUM 144

[The coefficients Q and W here would be equal to
Q sin(ky) and W sin[ks(r—R)] of Appendix A; there
are also constant factors relating R and V of this section
to those of Appendix A, and 7.9, 7,* and differ from
corresponding entries in Table V by factors of tan (k)
and tan(k2(r—R)).] The power loss from the two
(b,s) terms is then

Py= f ay[Qe. (Rj0) -+ Rey ¥(Q4,9)*]

+ f BT (Vi o)+ Ve o (W]

= (QR*/k1*)e. %™+ (RQ*/Kl)eurqu*
+Q—->W,R—>V,1-2).

Since we shall be taking the real part of Py, we substi-
tute for the second term of Py, its complex conjugate,
and write

Pre= (QR*/x1*)es %"+ (RQ*/k1)ey j, 7"
+Q@—->W,R—>V,1—-2). (C3)

In a similar way, the power loss from the (s,s) term is

Py=[RR*/ (k1tx1*) ILe,"7," +e."5.""]
+(R—-V,1-2). (C4)

The field and current components appearing in (C3)
and (C4) are easily evaluated using Table IV and re-
calling that ¢ and w are type-b solutions,  and v are
the 4+N, and —N, forms of type-s solutions. Finally,
using (NV,/k)=c/w, we obtain

Prs= (cn,/w)[QR*(K1— X1)—WV*(K2— X3) ],
Py= (cn./w)[RR*K 1+ VV*K,].

In arriving at (CS) we have taken %, as real.

The coefficients R, W, and V may be expressed in
terms of Q by using three interface continuity condi-
tions. For instance,

(C5a)
(C5b)

Qe +We,»=0,
Re,;” +Ve,» =0,
Qb2+ Rb,+Wb,*+Ve,» =0.

(The fourth condition, on continuity of ., is redundant,
being satisfied automatically as a consequence of the
dispersion relationships.) Solving (C6) and evaluating
using Table IV gives

W= "Q;
V=—R,
R=Q(X1—X,)/ (K1t K>),

which, inserted in (C5) and ignoring the constant
cny/w, gives Egs. (4.3) and (4.4).

(Co6)

(&)



