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reflect the ratio of Knight shifts in In and Te, and
together these cGects indicate that the s part of the
conduction-electron wave function ln InTe II has a
probability density at the In nucleus which is at least
an order of magnitude larger than that at the Te site.
Since this condition can be predicted on the basis of a
NaCl-type lattice containing In'+ and Te'—ions with a
conduction band formed from one electron per In atom
and a resulting electronic wave function which is
centered on the In'+ ion, we feel that the proposed model
for the electronic structure of the metaljic phase of

InTe is justified. In addition, it is believed that the
internal consistency of the experimental Knight shifts
and hnewidths and the agreement of these results with
theory overs conclusive evidence that indirect exchange
plays a major role in the NMR of the InTe II system.
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The mean spherical model for Ising spin systems of Lewis and VVannier replaces the condition that each
spin variable 0;=~) by the weaker condition that X&0; )= ~Q, where 0=number of lattice sites. This
model has the same properties, in the thermodynamic limit 0 ~ ~, as the spherical model of Berlin and Kac,
and is immediately applicable, by a well-known isomorphism, to lattice gases with an interparticle potential
s(r) of the form s(r) = ~ for r= 0 (no multiple occupancy of the same lattice site), o(r) finite for r&0. We
have now extended this model to more general lattice gases where v (r}= ~ for r in some domain D, i.e., lattice
gases of particles with extended hard cores. This permits extension of the model to continuum systems. %'e
find, for this model, that the direct correlation function of Ornstein and Zernike is equal to —po(r) (p the
reciprocal temperature) for r not in D, and is determined for r in D by the requirement that the two-particle
distribution functions es(r&, rs) vanish for ri, s in D. All higher order (modified) Ursell functions (spin semi-
invariants) vanish for the model. The model thus yields the same pair distribution function as the Percus-
Yevick integral equation for the case when e(r) =0 for r not in D, giving also, incidentally, an upper bound
to the density for which solutions of this equation exist. The thermodynamic properties of this model are also
discussed and it is shown that the partition function becomes singular in the continuum limit.

I. THE LATTICE GAS

E consider a system of partides whose positions

~~ ~~ ~~

~~

~~

~~

~~ ~~

are con6ned to a regular lattice —a lattice
oas'' —interacting via a pair potential u(r —r ) and
under an external potential N(r, ). In a grand canonical
cnscmblc to which wc liIQit oui attcntlon spccldcd by
fugacity s and reciprocal temperature p= (kT) ', the
external 6eld I occurs only in the combination'

p(r) = lns pN(r)—

Herc, the particle positions are chosen from the Q
lattice sites, the 1th of which is at a position we denote
by xg. The probability distribution function of the sys-
tem for unspecified particle order, ttst (rt, ,rir, y,p,Q),
may bc obtalIlcd by minimizing thc gland canonical
potential G,

1
pG = Z 2 —

Lt ~ int ~+ lpt ~ 2 s(r;—r,)
Ã OrI, ~ ~ ~,r~gy. i'

*Supported by the U. S. Air Force OfBce of Scientific Research,
Grant No. 508-64 and by the Atomic Energy Commission, Con-
tract No. AT(30-1)-1480.' T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).

~ T.L. Hill, Statistical 3IIechawics (Mcoraw-Hill Book Company,
New York, 1956).

3 J.L.Lebowitz and J.K. Percus, J.Math. Phys. 4, 1495 (1963);
4, 116 (1963);4, 248 (1963).

subject to the normalization

1
Z —Z
ar g~,

—w Z v(r')3, (1 2)
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This yields

g ~==. 'expL —2pZ o(r' —r )+Z v(r')7,

takes on the values +-'„and the interaction Hamiltonian
JI attains the form appropriate for such a system in an

(1 3) external Inagnetic Geld h(xg)

where is the grand partition function which serves to
normalize p

expl: —2p Z o(r' —r,)
g~ rI ~ ~ -rJggr, st

+Z v(«)7=o " (14)

If the system is uniform, N(r) =0, then

F(P,s) = lim(1/PQ) ln

is the thermodynamic pressure.
The particle representation is only one of several ways

of specifying the configuration of a lattice gas. It will be
more convenient to use an occupation number repre-
sentation obtained by introducing the microscopic
density function

J2g=-,' p o{xg—xg )o (xg)o (xg )—p h(xg )o.(xg), {1.10)

with
k (xg) =p-'

f 7(xg) —p gg (xg)7.
x)&0

The identification (1.9) leads to a number of relations
between expectations in the lattice gas and in the spin
system which will prove useful. Ke de6ne the usual Quid

distribution functions3

~,(x, " x,)
=( p |l(xg,r; )5g(X2,r;,) 8(X2,r;2)) (1.11)

&IW ~ ~W&is

for k distinct particles, as well as the modi6ed dis-

tributions

pg
——p(xg) =g S(xg,r;), 1.6

for k not necessarily distinct particles. These are related
to each other by'

where 5 is the Kronecker delta function. p ~, as a variable,
is clearly restricted to non-negative integer values. The
probability distribution over the permissible domain of
the pg will be designated as gg({pg); y,P,Q) and (1.2)
readily transcribes to

pP p+~p 2 ( —x )p Lp
—&(i,i')7

—Z7(xg)pgl~f, (1 &)

where dy is the 0-dimensional Stieltjes measure which

confines the {pg) to their permissible domain. Similarly,
one finds

gg= -—' exp[——',p Q gg(xg —xp)pg[pp —ig(l, l')7

+Z V(xg)pgl,

exp[——',P Q o(xg —xg.)pgLpp
—lg(i, l')7

+Z v(xg)pglds

gtlg(x) =ggg(xl),

g4(xgx2) =N2(xg, x2)+I I(xl)lg (xg, x2) . . (1.13)

Corresponding relations hold for the Ursell functions
F2(xg, ,x2) and F2(xg, ,x2) de6ned in terms of the
s' and '8 for J= 1 ' ' k ln the usual way

Fl(xl) =ggg(xg),

F2(xl)X2) = N2{X1)X2) 221(xl)N1(X2)q ' ' '

Fg (xg) =81(xg),

F,(xl,x,)=8g (xl,x2)—dg (xl)81(x2)

=(l:p(»)—(p(»))7I p(») —( (»))7), "
Substituting (1.9) yields the Ising-model equivalents

Fl(») = 2+(~(»))
F.(",")=(L (")-(.("))7

y t o(X2)—(o(X2))7), ",
from which the remaining distributions follow; the FI,
are identical with the spin correlation functions.

When the interparticle potential gg(r) is in6nite for
1=0, no more than one particle can occupy a single
lattice site. Thus p~ is restricted to the values zero and
unity. If furthermore gg(r) is finite for all r/0 the lattice
gas is equivalent to a system of Ising spins located at
each lattice site, in a canonical ensemble. This is
obtained by going over to the spin representation in

which

II. THE MEAN SPHEMCAL MODEL FOR SPIN
SYSTEMS AND EQUIVALEET

LATTICE ',GASES

If we regard tile pg 111 (1.7) as val'ylIlg coI1'tllluollsly

and uniformly from —~ to + ~, the measure dg must
be expressed by means of a weight factor or generalized
transformation Jacobian:

«=o(xg) =p(») —
2 (I 9) dy= 7+7 +go dpg.
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It is clear to start with that Jgp] must contain the
factor Q" s&'(pr —tl), 5' the Dirac delta function,
summed over the non-negative integers, for each /. In
addition, a set of occupation numbers (p~) gives rise to
(g p~)!/g p~! configurations. Including the weighting
1/E!=1/(Q p~)! of (1.2-1.4) for unspecified particle
we conclude that4

(2.2)

For zveak interactions at very high density, p& is large
and its variation is slow; then Q 8'(pr —srs) may be
replaced by its average of unity, and p&. by its Stirling
approximation. Thus

f t p3-expL —Z(p~ »pi —pi)] (2.3)

~Lpj= II L&'(pr)+&'(p~ —1)j, (2.4)

for weak interactions at high density. On the other
hand, for the systems which we will be concerned with,
infinite contact potential, with p~ restricted to 0 or 4,
(2.2) reduces simply to

(m.s.m.). If (2.7) is expressed in the form

&Z ~ E( («)—&o(xr)))'+ (&o(x~))+s)'
—(a(»)+-')j)=&2 pL'p~ —13)=o

then according to (1.13)—(1.15), it says in particle
language that

g ) Ns(xg, x))=0. (2.8)

For a uniform system, u(r) =0, and if periodic boundary
conditions are used, sss(x~, x~) is independent of /, and
(2.8) simply expresses the requirement that the two-
particle distribution functions vanish when the two
positions coincide. In the presence of nonuniformity,
however, (2.8) is not equivalent to the "local mean
spherical model" condition that Ns(x~, x~) =0 for each /.

In order to obtain the grand canonical distribution
for the mean spherical model of the lattice gas iso-
morphic to the Ising spin system we have to carry out
the minimization of (1.7), /excluding however the term
l=l'; corresponding to s(0), there], taking dy=g dp~,
and expressing the constraint (2.7) by means of a
Lagrange parameter: XJ'pLP (pP —pr)$ g dpr 0 Thi——s.
yields' a probability distribution p. defined over the
@hole 0-dimensional Euclidian space; —~&p~& ~,

or in spin language, to p= -—' expt' ——', g ( (. C(x) x).)p((p p —b(l l'))—
JLo3= II t:&'(~r+s)+&'(~r —s)j. (2.5)

p, .~s(x,)=-,'O. (2.6)

A still weaker restriction used by Lewis and %annier' is
that

'( ))=-'fl (2.7)

with the average taken over the spin distribution func-
tion; we shall call this the "mean spherical model"

J.K. Percus, The ErJsN'lebrersse Theory of Classeea/ Figeds, edited
by H. L. Frisch and J. L. Lebowitz (W. A, Benjamin, Inc. , New
York, 1964), pp. 11-115.

'F. Stillinger, Phys. Rev. 135, A1646 {1964); 138, A1174
(1965);G. F. Newell and E.W, Montroll, Rev. Mod. Phys. 25, 353
(1953).' T. Berlin and M. Kac, Phys. Rev. 86, 821 (1952);Y. Berlin, L.
Witten, and H. A. Gersch, ibid. 92, 189 (1953) where a cell-model
theory of a Quid is considered whose partition function is related
to that of the lattice gas considered here.

7 H. W. Lewis and G. H. Wannier, Phys. Rev. SS, 682 (1952);
C. C. Yan and G. H. Wannier, J. Math. Phys. 6, 1833 (1965).

A number of approximation methods may be charac-
terized by the fashion in which (2.4), or (2.5), is ap-
proximated preceding minimization of PG of (1.7). In
one of the most sophisticated methods, Stillinger' repre-
sents each factor 5'(o+-,')+5'(o —s') by an increasingly
refined combination of Hermite functions. Stillinger's
zeroth-order case, a Gaussian representation, is equiva-
lent to the older spherical model of Berlin and Kac' for
an Ising spin system, in which the individual spins are
not restricted to ~2', but instead lie on the shell

exp) —-', P(, p C(x)—xp)p)(p(. —b(l, P))

+P y(x))p(j P dp). (2.10)

Here

ze is the noninfinite part of v, vanishing at zero argu-
ment; X is determined to satisfy the condition (2.8), and
the normalization integral ™gives the model pressure
for a uniform system according to (1.5). The net effect
has been to construct a model system with a continuum
p& whose contact potential is so adjusted that the
contact pair distribution vanishes on the average. LIt is
interesting to note that direct use of (2.3) expanded
about the uniform mean density p yields the form (2.9)
as well. ' ' In this case, ) is replaced by p ' and y receives
an additive constant. This corresponds to the Gaussian
model for Ising spin systems. ']

It should be pointed out here that the m. s.m. is a
well-defined mathematical model of a system with a set
of variables p~, having a range —00&p~& ~, and having

An extended discussion of the m.s.m. (and its relation to vari-
ous graphical methods) for lattice gases isomorphic to spin systems
is given by J. L. Lebowitz, G. Stell, S. Sacr, and W. Theumann,
J. Math. Phys. !to be published). The self-consistent methods
discussed there which yield the m.s.m. P2(x) as a erst approxima-
tion can also be generalized to the cases discussed here.
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a well-de6ned distribution function from which all
properties (microscopic and macroscopic) can be com-
puted. It is however rot a model of a system of particles
but may be used as an approximation, with varying
degrees of success, for such a system (see Sec. IV).

w(x) =0, for x&D,
=e(x), for xfD, (3.1)

while the internal exclusion is accounted for by the
restriction

P, , , &„[p,.—b(l, l') j)=0,
summed over x~—x~ ——x, for each x+D. (3.2)

When (3.2) is combined with (2.8), it yields

u2(x~, xp) =0 for x+D. (3.3)

If the permissible range of the p ~ is restricted in no other
way, (3.1) and (3.3) de6ne our generalized mean
spherical model for lattice gases with extended-hard. -core
potentials. Minimization of G subject to (3.3) and
normalization J'p II dp~= 1 now requires a set of
Lagrange multipliers ), (x) for x&D, but otherwise
proceeds as in (2.9), resulting in a p of the same form,
but with

C(x)=X(x), x&D
=pe(x), xfD. (3.4)

The X (x) for x&D must be determined by (3.3) for each
x+D, so that precisely the right number of conditions
are available.

To find u2(x~, x~), and so get the "self-consistent"
evaluation of X(x), it is simplest to work with our model

partition function,

exp[——', P C(x(—x).)p((p(.—8(l,l'))

+2 v(xi)pij IIdp~ (3 5)

We make use of the fact that for any model, such as
(3.5), which is exact except for the measure in (p~}

' These lattice gases have no Ising spin analogy as the corre-
sponding pair interaction potential cannot be made symmetric
with respect to reversal of the spin directions. The situation in
which D includes in addition to x=o also the nearest-neighbor
lattice sites has been investigated extensively recently; see Ref. 4,
also B. Jancovici, Physica 31, 1017 (1965). D. S. Gaunt and M.
Fisher (unpublished report) and references quoted there.

III. GENERALIZATION TO LATTICE GASES
WITH EXTENDED HARD CORES

Suppose that the interparticle potential e(x) is infinite
not only for x=o, but also for a whole range of values
of x, x+D, e.g., if we think of the particles as having a
rigid spherical core of diameter u, D would be the set

~

x
~

&a. The obvious generalization of the mean spheri-
cal model condition (2.8) is then that e(x) is replaced by
its outside part

space, we have'
8'In (x)

F~(xi,".)xa) =
by(xi) 8y(xg)

(3.6)

C(xt —xp) = (1/p)8(l, l') —C(xt —xp) . (3.9)

Hence the extended mean spherical model is equivalent
to the pair of conditions in which the fugacity s= e& has
been eliminated in favor of the density p.

C(x) = —Pe(x), for xfED,

F~(x) =p[b(x,0)—pj or u~(x) =0, for x+D. (3.10)

We now introduce the lattice Fourier transform,
(appropriate, e.g. , to using periodic boundary condi-
tions in a box of equal length in each direction)

C(k) =P~ e"*'C(x~)

=Pw(k)+ P e'" *'C(x ) =Pw(k)+X(k), (3.11)
Xl gD

k extending over one Brillouin zone of the reciprocal
lattice. The inverse relationship between [F2J and [Cj,
Eq. (3.8), implies that

F2(k)C(k)=1
or

F~(x) = (1/Q)gq e'~'*/[Pw(k)+ X(k)g. (3.12)

The unknown constants appearing in X(k), correspond-
ing to the unknown values of C(x), x&D, are now
determined from the second equation of (3.10)

pic X1
=p[8(x,0)—p$, for x&D. (3.13)

Q Pw(k)+ X(k)

the variational derivatives being taken with C(x) held
fixed. Now (3.5) is a standard Gaussian integral, and
yields on evaluation

»=-=-'.2 &-'(x —xt ) I v(x~)+2&(0))b(»)+2&(0)3
—-', ln Det[Cj+-', Q 1n2ir, (3.7)

where C '(x~—xp) indicates the (x~,x~ ) element of the
matrix inverse of C(x~—xp), when x~ and x p are treated
as matrix indices. By writing C—' as a function of the
di6erences of its arguments, we have tacitly assumed
either periodic boundary conditions or passage to the
limit Q —+~ [but not necessarily the absence of an
external potential u(x) j.We then find, using (3.7), that

F,(x,)=u, (x,)=g C- (x,—»,)[&(x,)+-,'C(0)$,
F2(xi,x2) =C—'(xi —x2), (3 8)

Fg(xi, ,xg) =0, k) 2.

Consider now a uniform system, y(x&) =y, u&(x&) =p,
the average density. Equation (3.8) shows that
P(x~—x~ ) is the matrix inverse of F2, so that it may be
related immediately to the direct correlation function' 4

C(r) introduced by Ornstein and Zernike':
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LThe number of unknowns in $, (k), and the correspond-
ing number of equations in (3.13), is generally less than
the number of lattice sites in D when the symmetry of
the lattice is taken into account, e.g., for a simple cubic
lattice of spacing d in v dimensions where D includes all
IlcRlcst-llclgllbol' sites ' X(k)=As+2~1+a 1 coslNay ~0
and XI being, respectively, the values of 0(x) at x=0
and at the nearest-neighbor site.$

Pair Distribution of the m.s.m.

The solution of (3.13), to be acceptable, must be such
that the Put(k)+X(k) = C(k) is positive. Otherwise the
integral determining the grand partition function of
the m.s.m. , (3.5), does not converge. Such a solution
will always exist, s for 6nite 0, when D is condned to the
point x=0 and 0&p&1. It seems likely that this will
also be true when D is an extended domain for 0&p
&p,„, (p, , the maximum density permissible in the
m.s.m. will be given in the next section). The situation
may change however as we go to the thermodynamic
limit 0 —+~. %'e may then 6nd that there is a region 8,
in the P,p plane (i.c., inside the strip 0&P&~,
0&p& p „)in which (writing out explicitly the depend-
ence of 0 on Q) C(k; Q) is of 0(1/Q), for some value of
k= ~K, i e., C(K; Q) =b

—'/Q inside (it with b remaining
finite (a function of P and p) as Q ~~.When this occurs
the passage to the limit Q-+~ in (3.14) and (3.13)
must be done with care obtaining, in the thermodynamic
Bout,

e dk
Fs(x)=b cosK x+

(2s-) "Vs Pe(k)+ X(k)

( =pLb(x, 0)—p), for x&D}, (3.14)

where the integral is over one Brillouin zone —x &k &m
and t/'O=d" for simple cubic lattices in v-dimensional
space. The constant b which "measures" the amount of
Es(k) concentrated at K will vanish outside the region
61, and be determined inside Gt by adding to (3.l.4) the
condltlon

C(K)=pro(K)+)I(K) =0 in (R:

in the limit Q ~ae . (3.15)

In order for this set of equations to have solutions, the
integral in (3.14) must exist. Now if the potential rt (r)
is well behaved (i.e., its second moment is finite) then
expanding 0(k) about k= K yields

O'Pw(k)+ (k))

X(k—K)+ ", (3.16)

P, (k) bring always well behaved since X (r) extends only
over a finite range). Hence the integral in (3.14) will be
finite in three (and higher) dimensions but not in one or

@D. Levesque and L. Verlet, Phys. Letters ll, 36 (1964).

two dimensions. s (The situation here is entirely analo-
gous mathematically to that occurring in the conden-
sation of an ideal Bose-Einstein gas. ') Hence the
existence of a region 61, in which Ps(x) is long range, and
tllc lmphcd pllRsc tl RIISIt1011 call exist 111 t11c m.s.m. Dol'
well behaved w(r)) only for I &3. (When the second
moment of w(r) does not exist, a region IR can exist also
in one and two dimensions. ")

When the first term in Eq. (3.14) is omitted the re-
sulting cquatlon ls ldcntlcal with thc Pcrcus-Vcvlck
integral equation for the two-particle distribution func-
tiOn4 Whee IS(X)=0, i.e., S(X)=De fOr X+D, S(X)=0
otherwise. This integral equation, and others like it, are
always derived for an infinite system Lthereby elimi-
nating terms of 0(Q ') in C(k,Q), leading thus to the
omission of the first term in (3.14)).It is then found in
attempting to solve (3.14), without the first term, that
there exists, in three dimensions, a region R in which the
equation has no solution. '»" One can then supply, "in an
ad IIoc way, the extra term on the right side of (3.14),
(see Sec. IV).

Thermodynamic Proyerties of the m.s.m.

Once C(k) is known we may then find the thermo-
dynamic properties of the m.s.m. (which coincide, as
mentioned earlier, with those obtained from the spheri-
cal model), from (3.7)-(3.8), which give in the limit
Q —&De the following expressions for the chemical)po-
tential and the pressure,

y=lns= LPIII(0)+$.(0))p—-', X(0),

N'(p, Q) = sp'D)~(0)+~(0))

(3.17)

dk inlaw(k)+)I(k)), (3.18)

dI' dy dX(0) A(0)=p =pC(o)+—p' sp-
dp dp dp dp

dX(0)=.D -(0)+~(0))+p(p--;)-
dp

» G. S. Joyce (to be published).

+!p—E Z )( )). (319)
dp xt+D;*tko

We note from (3.19) that the compressibility of the
mean spherical model is not given by the Ornstein-
Zernike fluctuation integrap

P(dI/dp)=p g F(xI)=pC(0), for real gases. (3.20)

This is due to the fact, (discussed extensively in Ref. 8),
that the "CGective" interparticle potential appearing in
the distribution p in (2.9) depends on y (or p) so that the
variational derivatives in (3.6), Lon which (3.20) is
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based), have to be taken, for k&1, with C(x) fixed.
)The reason for the failure of the compressibility
fluctuation relation, (3.20), for the spherical model is
more subtle arising from an improper interchange of the
sum over 0 and limQ ~co, i.e., where

8IJ I pc (1—~)& 31(1)=o.5o5 (4.5)

with Xo to be determined from (3.13)-(3.14), in the
density range 0&p&l. The region (R which is sym-
metrical about the line p= ~, is specified by the relation

P(dJ'/dp)= limp P 0(xg, 0)+p P limO(x, Q)

in the spherical model, see Ref. 8.]
The failure of (3.20) for the m.s.m. means that the

relationship between the thermodynamic properties and
the pair correlation function will not be the same in the
m.s.m. as in a real gas; with the distribution functions
being generally more close to that of a real gas I

see
Eqs. (4.2)—(4.3)$. This suggests that it might be useful
sometimes to use the I2 obtained from the m.s.m.
together with {3.20) to obtain an approximation for the
thermodynamic properties of real-particle systems (see
Ref. 8 and Sec. IV).

IV. ILLUSTRATIVE EXAMPLES AND
DISCUSSION

To make our discussion more concrete we summarize
here brieQy some results of the m.s.m. for a three-
dimensional simple cubic lattice of unit spacing with
nearest-neighbor interactions,

e(x)= ~, x=0
= —4J, x= (&1,0, 0), (O„a1,0), (0, 0, +1).

(4.1)
%e consider four cases:

Case (1). J=O, this is an "ideal lattice gas" iso-
morphic to an Ising spin system with no interactions.
From (3.14)—(3.19)

~~(x) =v(1—~)&(x 0) '

C(x) = Q(1—p)gib(x, 0) ' 0&p&1' (4.2)

v=hs=i -k/n(1 —~),
N'= 2~/(1 —u)+k»l:2~~(1 —n)j; (4 3)

Eq. (4.2) for P2 and C is in agreement with the results
for the physical lattice gas, pq=O, 1; Eq. (4.3) is not.
The reason for the discrepancy is the invalidity of (3.20)
for the m.s.m.

CQ$8$ (Z) CNd (3). 0&J& 00, or (0&J&—~) this

lattice gas is isomorphic to an Ising spin system with
nearest-neighbor ferromagnetic" (antiferromagnetic")
interactions. We then have8

C(k)=4—8J P cosk,

~ The lattice gas analogy of these thermod'ynumic properties of
the spherical Inodel for this case is described by%'. Pressman and
J. B. Keller, Phys. Rev. 120, 22 (1960); however, they took the
limit 0 ~~ without picking out the special condensate fraction.

"The lattice gas analogy of this is given by R. M. Ma~o, J.
Chem. Phys. 39, 2196 (1963).

. .(4.6)
1—splcosky+ cosk2+ coskg]

The vector K, appearing in (3.14), is given by

K= (0,0,0); for J&0 (ferromagnet) (4.7)

= (s,7r,s ); for J&0 (antiferromagnet) . (4.8)

Also,

x,=24pI JI,
b=

I 3Pp{1—p) —I(1)/8P I
J

I j, inside 8, . (4.9)

The isothermal compressibility inside (R is found from
(3.19)

=0, for J&0

=—48Jp, for J&0. (4.10)

C(k)=XO+2Xq P cosk, (4.11)

with Xo and lj, q to be determined from (3.13)-(3.14).
Setting x equal to one of the nearest-neighbor points in

(3.13) yields for C(k) &0,

haik x

=c (1—u), (4.12)
0 ~ X{k) 0 ~ X(k)

the last equality following from setting x=0 in (3.13).
Equation (4.12) shows that 0&p(-', in the m. s.m. , p= —',

corresponding to the correct maximum density for this

system, /for more general hard cores see (4.17)).

'4I. Langer, Phys. Rev. 137, A153i (1965) has pointed out
however that for the spherical model the system does not actually
"exist" in two phases although its thermodynamic properties are
linear combinations of those in the two phases.

When J&0, the region (R corresponds to a "tvro-phase"
gas-liquid coexistence region with the lattice gas under-

going a 6rst-order phase transition. '4 When J&0, (3.14)
represents an ordered system inside R and the system
undergoes a second-order transition" on the boundary
of (R. The critical temperature obtained from (4.15) is
2kT, —1.98I JI; numerical computations for a particle
system give 2kT, =2.25

I
JI.

Case (4). J= —~; the particles behave like hard
spheres and there is no spin analogy. Equation (3.14),
vrith b=o, is now identical with the Percus-Yevick
equation w'hich was solved for this case by I evesque and
Verlet '0 (who also added the term k in an ad koc way).
We now have,
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The region I, is now found to be given by, '

p) p, = [I(1)—1]/[2I(1)—1]=0.251 (4.13)

independent of P (which disappears for this case). The K
appearing in (3.14) is given as in case (3) by K= (~p-,~)
indicating an ordered state' inside R. Also, in (R

X0=6Xi=1/p(1 —2p); b=p(p —p,)[2I(1)—1], (4.14)

dP 2 1 (4p —1)'
-+—,for p& p, (4.15)

dp 1 2p 2 p(1—2p)'

with the first term on the right corresponding to the
Ornstein-Zernike compressibility relation (3.20).

We note here that the m.s.m. pressure has a diver-
gence of the form 1/(p —p,„)as p ~p,„in contrast to
the "correct" logarithmic divergence. (The same hap-
pens also in the previous cases where p,„=1.) It should
also be noted here that the present case caerIot be ob-
tained from case (3) by going there to the limit
J~ —00 ~

In one and two dimensions the m.s.m. will not show
any transition for these cases for reasons given in Sec.
III, [see Eq. (3.16)]. This is in agreement with the
"correct" results in one dimension but not in two
dimensions ' '

Discussion

The m.s.m. we have been discussing is of some in-
trinsic mathematical interest in itself. In particular, it
shows explicitly how a phase transition may develop in
the limit 0 —+~ for a well-defined system. Its primary
interest, for us, lies however in the relation of its
properties, which are "relatively" easy to compute, to
those of a real-particle system. These are: the form of
F2(x) for a given p, Eq. (3.14), and the equations of
state, (3.17)—(3.18).As we have seen from the examples
there is at least "some" relation between these prop-
erties of the m.s.m. and those of real-particle systems.
[The property (3.8) of the m. s.m. that Fq ——0 for k & 2,
which gives superposition type expressions for the higher
order distribution functions, depends entirely on the
Gaussian nature of the ensemble distribution (2.9) and
appears to be entirely wrong for real-particle systems;
it shows however why certain graphical approximations
lead to the m.s.m. ']

As was pointed out at the end of Sec. II however the
extension for the m.s.m. of the domain of the p~ to
negative values precludes its use as a model of particle
system. It will also give rise to some results for the
m.s.m. which are "absurd" for real-particle systems. It
would actually appear on first sight that the average
density p of the m.s.m. , p=(p&), could be negative for a
given fugacity s. This is however prevented by the mean

~4~ 1Vote added ie proof. A very interesting discussion of this
system in which the transition is investigated from the point of
view of the one-particle density in the presence of a very weak
external 6eld was given recently by B.Tancovici (to be published).

where X„ is the number of lattice sites in co'. the last
equality following from (3.3) for a uniform system.
This yields

0&p &p,„&1/X„, (4.17)

p, being the actual maximum density for which the
m. s.m. has solutions with C(k))0. For the lattice gases
isomorphic to spin systems and for the case of infinite
repulsion at the nearest-neighbor sites only, p, coin-
cides with 1/E„which in turn coincides here with the
physical close packing density of particles p,„ inter-
acting with this potential; p, =1 and p =~, re-
spectively. For larger domains D however 1/S„will in
general be larger than p,„.The e8ect of permitting the p ~

to take on negative values may then show up by having
p, )p, ~ (see Sec. IV where this is verified explicitly for
continuum systems). For densities p) p, ~ there is clearly
no relation between the m.s.m. and real-particle
systems.

A more serious deficiency of the m.s.m. is the be-
havior of its pressure at very small densities corre-
sponding to —7 being very large. We see from (4.3) for
an ideal lattice gas, and this behavior persists in general,
that PP ~ —~ as p -+ 0 in the m.s.m. in contrast to the
situation for real gases where PI' is always positive
approaching p as p —+0. Also as p —& p, the m.s.m.
pressure rises much faster than the corresponding
particle system. These eftects of the continuous nature
of the p~ appearing as the fundamental variable in the
m.s.m. appear to rule out any quantitative comparison
between the m. s.m. pressure and that of real-particle
systems.

The pair distribution function or F2(x) of the m. s.m.
does not however appear to be so greatly affected by the
change in the domain of the p~, coinciding in fact with
the real gas F2 for case (1) and having generally the
correct low-density behavior for Pw(x)((1. This sug-
gests that the best practical use of the m.s.m. for ap-
proximating real systems may lie in using the P2(x)
obtained from the m.s.m. in some rigorous relations,
such as the compressibility relation (3.20), (with the
correct boundary conditions at p= 0), to obtain thermo-
dynamic results (for other relations, see Ref. 8). An
important advantage of using C(0) of the m.s.m. in
(3.20) is the assurance that it yields a dI'/dp) 0 as is
necessary for real systems, with C(0)=0 in (R corre-
sponding then to a first-order phase transition. [It
should be noted from (3.19) that for D extending beyond
x= 0,C(0)=0 does not imply dP/dp= 0 for the m.s.m.]
There is one serious shortcoming however in the m.s.m.
pair distribution function (p~p p): It can be negative even
for pC p,„.

spherical condition (3.3) as may be seen by choosing a
maximum domain ~ such that x~—xp&D whenever x~

and x~ are in or. We then have

0&([ P p(x()]')—[( P p(x())]'=plV„—p'1V„', (4.16)
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p= p'~f" I'=P'd" F (x) =Fu'(x)d'"

0(x)=C'(x), C'(k)= C(k)d", etc., (5.1)

where the primed quantities refer to the continuum
system. Going to the limit d —+ 0 with p' fixed. Equation
(3.14) then goes over immediately to

e
—"*dk"1

F2'(x) =
(2~)" Pw'(k)+X'(k)

=—p"+pY(x), for x&D', (5.2)

integrated over all k. Here 8'(x) is the Dirac 5-function,
D' is the region in v-dimensional space for which the
interparticle potential e(x) = ~, e.g. , for particles with
hard cores of diameter a, x+D' corresponds to

~
x~ &a,

and w'(k) and P(k) are the continuum Fourier trans-
forms of the finite part of the potential v(x) for xfD'
and of C'(x) for x+D,

w'(k) = e"*e(x)dx,

(5.3)

V(k) = C'(x) e'" *dx.

It follows from (5.2) that limi J '(k) = 1/p', so that
C'(x) may be written in the form, [see Eq. (3.9)],

V. PASSAGE TO CONTINUUM FLUID

The lattice gas we have been considering may be
thought of as an approximation (or discretization) of a
continuum Quid. If we wish to go over from the lattice
gas to a continuum Quid, we must let the lattice spacing
d —+0. In a cubical lattice of v dimensions, which we
now consider, the volume per lattice site is d" so that
the volume V=Od", and

difierent methods. ") The thermodynamic quantities of
the m.s.m. on the other hand do not have a proper liInit
as d and hence p= p'd" ~ 0, with P'=Pd" given in
(3.18) approaching —~ in this limit for the reasons
discussed in the last section.

When

e(r)= ~ for (r~ (a and vanishes for ~r()a,
then Eq. (5.2) corresponds to the Percus-Yevick equa-
tion for a hard-sphere Quid' which is exact in one
dimension and has been solved exactly in three dimen-
sions by Wertheim and Thiele. "The maximum density
p', »me 0(E d") ', obtained from (4.17) corresponds in
three dimensions to

p'& 1/[-', ~ (-', a)'] =6/~a', (5.5)

coinciding with that found by Wertheim and Thiele.
This maximum is well beyond the physical close packing
density v2/a'. (The pair distribution function however
assumes negative values for p'(p, ~'.) For hard cubes,
squares, or rods on the other hand, the maximum den-
sity obtained from (4.17) coincies with physical close
packing density.

For two-dimensional hard circles (X„d') ' ~ 4 (~a')—'
which coincides with the maximum density obtained
from the scaled-particle theory of Reiss, Frisch, and
Lebowitz. "This theory gives the same pressure as the
Percus- Yevick equation in one and three but not in two
dimensions. Presumably however the maximum density
of the Percus-Yevick equation for this system will also
be 4(~a2) ' which is beyond the close packing density
2(v3a') —'.

We note here also that while the Percus-Yevick
equation indicates a phase transition for a three-dimen-
sional hard-spheres lattice gas when the cores extend
over nearest-neighbor sites [case (4) of Sec. IV] corre-
sponding to a/v3 (d(a, it does not indicate a transition
for the continuum Quid" d —&0. It is amusing to
speculate on how the transition disappears as d —+0
with the sphere diameter a remaining axed.

C'(x) = (1/p) 5'(x) —C'(x), (5.4)
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where C'(x), the direct correlation function, is not
singular, is equal to —Pe(x) for xfD' and is determined
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distribution function e&'(x) vanish for x+D'. This
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