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The binary-collision expansion for the viscosity of a two-dimensional gas of hard disks is discussed. A
divergence appears in #;, the first correction to the Boltzmann-equation result. The calculations presented
here are exact and explicitly demonstrate the dynamical origin of the divergence indicated by Kawasaki
and Oppenheim. The coefficient of the divergence is computed and found to be precisely the same as that
found by Sengers by an entirely different method. The origin of the divergence is shown to be exactly the

same as that found by Dorfman and Cohen.

INTRODUCTION

ECENTLY, several authors'™ have discovered
that a divergence exists in the coefficients of the
virial expansion for the transport coefficients for
moderately dense gases. The divergence exists regardless
of whether one starts from the generalized Boltzmann
equation and evaluates the transport coefficients via a
Chapman-Enskog-like method, or alternatively, one
evaluates the time correlation function by means of a
virial expansion in powers of the density, n.!

One finds by such methods that the I—1 coefficient
in the virial expansion of the viscosity, say, is deter-
mined by dynamical events of / particles.* The contri-
bution of genuine I-tuple collisions is well behaved.!:?
However, one also finds contributions from certain
sequences of binary, triple, - -+, (J—1)-tuple collisions,
the precise characterization of which has been given by
Green and Piccirelli.5 The divergence is caused by the
failure of the phase-space volume to remain bounded,
for such sequences of events, as the time between
successive collisions becomes large. In two dimensions
the divergence appears in the three-body term. In three
dimensions the divergence appears in the four-body
term.!

Recently Kawasaki, and Oppenheim® have given a
discussion of the divergence from the point of view of
the binary-collision expansion in the formalism of
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Zwanzig.” They have effected a partial resummation of
the most divergent terms and found a term proportional
to Inz in the virial expansion for the self-diffusion
coefficient. The discussion of the divergence given by
Kawasaki does not consider the dynamical events
among three particles in an explicit way. This has lead to
some confusion in the literature.® Furthermore, since an
evaluation of the resummed expression for the viscosity
given by Oppenheim and Kawasaki will certainly
involve careful discussion of the dynamics of three or
more particles, it is valuable to provide an example for
a relatively simple case.

The purpose of this paper is to make the connection
of the existence of the divergence in the binary-collision
expansion with the dynamics of a system of a few
particles. We consider a two-dimensional system of hard
disks and consider 7y, the first density correction to the
kinetic part of the shear viscosity. We show that n§;
diverges; that the origin of this divergence is the same
as that found by Dorfman and Cohen from phase-space
arguments; and that the coefficient of the divergent
part is precisely the same as that found by Sengers
from the Bogoliubov theory.

Section 1 is devoted to summarizing the pertinent
results from the binary-collision expansion. In Sec. 2
we give an explicit evaluation of a general binary-
collision operator (7)) matrix element for hard disks. In
Sec. 3 we list the sequences of 7’s which contribute
to 71, and in Sec. 4 we give the explicit integral expres-
sions for these contributions. Section 5 is devoted to a
discussion of the general form of the integrals that
appear. In Sec. 6 we evaluate the integral expression
for one sequence of 7”s (the recollision term). In Sec. 7
we evaluate completely the numerical coefficient of the
(divergent) recollision term for the viscosity. This
enables us to compare our result with the work of
Sengers? who has recently computed the same number
by an entirely different method.

1. BINARY-COLLISION EXPANSION

We use the binary-collision expansion (BCE) in the
formalism developed by Zwanzig.” The reader is referred
7R. Zwanzig, Phys. Rev. 129, 486 (1963).

8 J. Stecki, Phys. Letters 19, 123 (1965), who erroneously con-
cluded that a divergence does not exist.
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to his paper for the details of the theory and for the
notation, which we adopt in this paper. For formal
details concerning the extension of the BCE to com-
putation of the shear viscosity, the reader is referred to
the paper of Kawasaki and Oppenheim.®

We now summarize a few results from the BCE:

(1) The time-displacement operator exp(itL) has the
property
exp (itL)a(R,p) =a(R(1),p(®)) (1.1)

acting on a function « of the initial phase variables R
and p, where

iL=1Lo+iL, (1.2)
and
. p 9 .
'LLO=Z - ; ili= Z 1,L,'j, (13)
~=tm OR; 1<i<i
with
OURy) 0 9
1Lij=— . (—-—————) (1.4)
oR; \dp:; 9p;

and where U is the interaction potential.
(2) The Laplace transforms of exp(i¢L) and exp (/L)
are denoted by

/ dt ecteitb=G= (e—1iL)™;
0

/ dt e—-eteitLOEGo= (e——iLo)_l . (1.5)
0

(3) The BCE for G is given by
G=G0—'Z G[]TaGO"’Z, GOTaGOTﬁGO_ ) (1'6)
a a,B
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where the sums are over all distinct pairs (Greek sub-
scripts) and are so restricted that no two consecutive
T’s refer to the same pair. The operator T, satisfies

«=—1Lo+1LGoT . .7
(4) The Fourier transform (matrix element) of an

operator, say G, in position space is given by

(K'|G|k)= / dReikrRGeik R (1.8)

and the normalization is chosen so that

dk/l
WIGGW)= [ = WIGIKNGII, (1)

(

where d is the number of dimensions. (In the work
below we will consider always the limit N — o,
V — «, N/V — n.) We further remark that the matrix
element of Gy is diagonal, while the matrix element of
T:; has k/+k;/=k;+k; and is diagonal in all other k’s.
We adopt the convention that when the k’s are ex-
plicitly enumerated, all those not shown are zero.

2. GENERAL BCE MATRIX ELEMENT
FOR HARD DISKS

In this section we compute, for hard disks of diameter
a, the general BCE matrix element!

M= <k1’ Tt 7kj—27klrkm| —T'inGo l kl’ e 7ki-—2)kl,’km,>
2.1)

with ki+k,=k/+k,’, acting on a function of the
particle momenta, F (py,ps,- - +). We first observe from
(1.7) that T, can be written as

Tin=—Gi ' [G(m)—GoJGi?, (2.2)

where

Gm)=[e—i(LotLim) '=[e—iL(m) 1. (2.3)

Since

G(m)—Go= / i dt e=<*{exp[itL(Im)]—exp(itLo)} ,

(2.4)

we have

1§ —2
Mlm= (e-—--—— ‘V]_: k,.- p,>/dR1' . 'de_ngldRm exp[—i Z k,-' R,-"”l:(kl' Rl'l"km' Rm)]
1

m 1

X / dt e=<*{exp[itL(Im)]—exp(itLo)} expl:ijfk,-R,+i(k;’-Rz+km"Rm)]. (2.5)
0 1

9 K. Kawasaki and I. Oppenheim, Phys. Rev. 136, A1519 (1964).

10 Strictly speaking (2.1) does not exist as written for an infinite system because it contains delta functions of the k’s conserved

(kly e :ki—21kl;kml - TlmGO l kl’,' . ,kj-z’,kl',kml>
and keep track of the resulting delta functions. To avoid this insignificant but cumbersome difficulty, we will compute (2.1) for

by T'im. Thus we should compute

a finite system with unit volume. The results are the same.
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In order to evaluate (2.5), we notice that it is sufficient to consider L, only for the j particles in question, which
we write as Lo@. Further, we may factor out the motion of all particles except the pair Iz so that

where L® (im)= Ly®+ L;. Introducing the two-body coordinates

Rin=3(Ri+R,);

le= Pl+ Pn;
we find

MunF (p1,ps,*-) = <€—

§ls.

i
Lk p,) f dtim exp[—%itim: (ki—kn)]
1

We choose a coordinate system for the initial relative position 1., as shown in Fig. 1. Then

exp[itL (Im) ]— exp (1tLo) = { exp[itL® (Im) ]— exp (12Lo®) } exp (s#LoG—), (2.6)

Im=I1—Tn
Pin=%(Di—Pn) 2.7)

© 7 -2 7
X/ dt exp{t[— e+— ke p—(ki+-kn) - le]}
0 m 1 2m

X {exp[itL® (im) ]—exp(itLo®)} exp[Fitim' (k'—k,')JF (p1,p,-+). (2.8)
Iim= bﬁlml"l"yﬁlm- (29)

Since the operator exp[#L® (Im)]— exp(itLo® is zero unless a collision occurs in time ¢, it is clear that the con-

tribution to M, comes when
—albla;
where

v=(=0); t*=—(y+v)m/(2pm).

— 0o<{y<—7v;

#<i< 0, (2.10)

(2.11)

(In making this argument we neglect the contributions from initial positions inside the interaction disk. This
contribution leads to a well behaved result as e — 0.) By using the properties of the time-displacement operators
and the expressions for the relative position ry," and momentum pu,” after collision

Fin' = pumi— v Bt /1) (=)D, pial=— (1= 26/ @) piact QB/0) (1= /@) gy, (2.12)
one may perform the ¢ and y integrations in (2.8) to find
2le e
MuwF (py,p2,- - )=——[ dbexp[i(k/—1k)- 01m(d) I g(p/, ") — g (D1, 0m) ], (2.13)
m J—a
where
3 -2 -1
g(ps,pm) = {e-——[ 2 ke pt-k  prt-ky pm}} F(py,ps,- ) (2.14)
mbL 1
and where the average is taken over the canonical

le(b)=bﬁlml—7ﬁlm; (215)
and the momenta after collision, p//and p.., are given by

pl,= plm’_l_%le; pm,= - plm' %le. (216)
3. THREE-COLLISION FIRST DENSITY
CORRECTION TO THE VISCOSITY

In two dimensions, the kinetic contribution to the
shear viscosity 7 is given byl

7= lim  lim / dt e~
e>0+4+ N,V o 4ETmiV Jq
N/V->n
N N
(S o ST a3, G1)
=1 j=1

11 J. A. McLennan, Phys. Fluids 3, 493 (1960).

ensemble.

It has been shown elsewhere? that the three-collision
contributions to » give rise to a divergence proportional
to InT* where T* is the time between the first and last
collisions. Since ¢! is the time variable in the Laplace-
transformed theory, we expect to find a corresponding
divergence proportional to Ine by examining the three-
collision terms in the BCE. To discuss the divergence
it is sufficient to consider the contribution to 7 when
initial particle correlations are neglected (=0 in the
canonical distribution).® We write

n=notmt---, (3.2)

where we consider only the first Enskog approximation.
Here 7o is the Boltzmann equation viscosity, and the
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three-collision contribution 7, is given by
1T [apap) > (o3l
dp®(pi)pip1: € pi—31p?), 3.3
4m2(kT)3 ot b29) 21 S Qj=1 (pspi—31p7) 3.3)
where
®(p)=(8/m)e*; p=(2mkT)™ (34
and
Q=010+ 0s+0Q4; 3.5)
with
Q1=—(0| GoT12GoT13GoT12Go|0), 5= — (0| GoT12GoT15GoT95Go| 0) (3.6)

Q2= — (0| GoT'15GoT 23GoT12Go | 0),

Q4= — (0] GoT'19GoT23G0T13Go| 0).

Now it follows from (2.13) and (2.14) that, say, Q: acting on a function which is conserved during a (1,2)
collision gives zero. In particular Pyo, p12 and ps are such quantities. Using (2.7), we find

3
012 (pipi—31p2)=201p12p12. 3.7
i=1
Further, under interchange of particles one and two we see that Q; — Qy and Qs — Qs. If we write
m/m0=0r+0oxuc, (3.8)
we then have
mz(kT)3 H dpl‘I)(Pi)[4p12pl2+P12P12]3 €Q1p12P12,
ny
oHc= H Ap®(p;)[4p1eprat+PioP1o]:  €Qspaspos. (3.9)
dm? (kT)? =1
4. EVALUATION OF 0,
In this section we discuss Q1 and Q3 for hard disks. Writing out Q; and (s, we have
dk
€01 (p12)= 6,/ B )Z(Ol — T12Go| k,— k)(k,— k| — T'15Go| k,—k)(k,— k| — T'15Go| 0)J (p12) , 4.1)
T
dk
€037 (pes) = e/zz—‘);«)' —T15Go| k,— k)(k,— k| — T13Go| 0,— k,k)(0,— b k| — T'5;Go| 0) (p2s) , (4.2)
T
where J (py2) is some function of the relative momentum, some function f>(ps,p2), where
say Piz2Pi2. _
We now use (2.13) to evaluate (4.1). Working from f1(p1,2,00) = (b, — k| = T1sGo [k, ~ k) o (01, 02) . (4:6)

left to right, we have first to consider (0| — 7'12Go| k,—k)
operating on some function f1(ps,pe,ps). For this case,
we have

I= 1: m=27 kl:km=0; kl,= _km,:’k;

all other k’s zero; (4.3)

so that

g1(p1,p2)=[e— (2i/m)k- p1a 17 f1(P1, P2, 05) (4.4)
and

2p12 [°
(0] = T1Go| k,—k) f1(p1,p2,p3) =— | db
m

—a

Xexp[ik- 012(0) Jg1(py,p2") — &1 (p,p2)]. (4.5)

Next we consider the middle matrix element acting on

Here we have

I=1,m=3; k=k/=k; k,=k,=0; k=-—k;
all other K’s zero; (4.7)
so that
g2 (Dl,Ps) = [E— (Zi/m)k Plz]‘lfz (pl,D2) 4.8)
and
2p13 @ ,
Sf1(py,p2,ps)=— / db
m J_—a
X[g2(p:”,ps")—g2(p1,p2)].  (4.9)

Finally we compute the final matrix element acting
on J (pi2):

f2(l)1,l)2) = (k,—'kl —_ T12Golo>](l’12) . (4.10)
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We have
I=1,m=2; k=—kn=k; k'=k./=0;

all other K’s zero; (4.11)

so that

g3(p1,p2) =€ (P12) (4.12)
and

2pa @ )
folprp) = / ab" expl—ik- o12(6")]
m J_a
X[ga(pt”,ps""")—gs(py,p2)].  (4.13)

We notice that each of the three contributions to
€01J (p12) gives rise to an interacting term (/) and a

a a a 2 2
NNIN)=| db / v’ / db"<—@>
—a —a —a m

m

a a a 2 19 2 2 13’
IN(IN)=— / db f av’ / db”(——P—) ( ? )exp{ik-[glg(b)—pn’(b")]}(e—-(Zi/m)k-pm’)‘2A],
—a —a —a m

m

a a a 2 ) Voo
NI(IN)=—/ db/ db'/ db"(fifxﬁ‘i‘)( P”)
—a —a —a m m m

a a a 2 2 7, 2 1N
HIN)=| / db’ / db”(—@f)( piz )( dad )
—a —a —a m m m
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(—) explik- [oua(b)— ern(6")]} (e— (2i/m)k- puyAJ ,
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noninteracting term (). We therefore define
20 (0= [ pIN LIV a)
e +NIIN)+II(IN)], (4.14)

where, by (IN), we mean that we include both the N
and 7 contributions from the final (1,2) collision. Each
of these four terms can be indicated schematically. As
an example we indicate the term NI(/N) in Fig. 2.
Explicitly, we find for the four contributions to
€017 (pr2) :

(4.15)
(4.16)
Xexp{ik-[012(0) — 12" (") I} (e— (2i/m)k- pro)~'(e— 2i/m)k- pd’)'AT, (4.17)
Xexp{ik-[012(8) — g1 (") I} (e— (2i/m)k- p1a') (e~ (2i/m)k- pa")'AT,  (4.18)

where
AT=J(pre"")—J (pre"") (4.19)

and the primed momenta are always to be computed from
the appropriate impact variable and initial momenta
which can be read off from the diagrams.

An exactly similar argument can be made to obtain
the contributions to €QsJ(p.s) analogous to (4.15)
through (4.18).

5. THE k INTEGRAL

In order to discuss the four terms (4.15) through
(4.18) of €Q1J (p12) and the corresponding four terms
of Qs (p2s) we must perform the k integral. We see
that the integrals of (4.15) and (4.16) both have the
form

L= / dk[exp(ik-A)J(e—ik-B)2  (5.1)

while the integrals of (4.17) and (4.18) both have the
form

I= / dk[exp(ik-A)](e— k- B)-1(e—ik-C)~t.  (5.2)

It can also be shown that all four terms of €Q3J (p23)
have the form (5.2).

Both I; and I, can be evaluated by writing
dk=dk.dk, and computing the integrals over &, and %,
in the complex %, and %, planes. A semicircular contour
is used, closed above or below always so that the
integral exists. Evaluation of the integrals is simplified
by choosing a coordinate system where B,=0. One finds

Ii= (2m)%0(—A,B,)3(4 )| A, | B 2e*4/By
(2r)

AN / A,Co—ACy
A
C. B,C.

2=
[C:B,|
A, A,C.—A,Cy
XexPl:6<—+———)] , (5.4
C. C.B,

(5.3)

where 8(x) is the Dirac delta function and 6(x) is the
unit step function which is zero for x negative and one
for  positive.

F16. 2. Schematic
illustration of the
term NI(IN). At
the b” vertex the
solid (dashed) lines
correspond to I(N).
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y y
B, By
x iy
B, F1c. 3. Geometry of
- x the second collision. ¢’ Fic. 4. Geometry of
v b 2 the last collision.
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By using the appropriate A and B from (4.15) and,
(4.16) one can see after some calculation that the 6
function and & function in (5.4) give rise to a vanishing
region of integration over the impact variables. Thus

/ dk NN (IN)= / dk IN(IN)=0.  (5.5)

The result (5.5) is not unexpected since it is impossible
for the sequence of collisions (1,2) (1,3) (1,2) to occur
unless the (1,3) collision physically takes place. Thus
(5.5) merely expresses the fact that contributions come
only from a physically realizable sequence of collisions.
The fact that all four terms contributing to Qs are of
the form (5.4) is again quite reasonable since the
sequence (1,2) (1,3) (2,3) can occur whether or not the
(1,3) collision actually takes place. In fact, the sequence
(1,2) (1,3) (1,2), where (1,3) takes place, is a ‘“re-
collision” event, while the sequence (1,2) (1,3) (2,3),
where (1,3) does or does not take place, is a “cyclic” or
“hypothetical” event, respectively.!*

The following two sections are devoted to the

ﬁ2|.l.
X

6. THE RECOLLISION TERM
The recollision contribution comes from
20 o)~ | v+ / w6
2y (2m)?

We first use (4.17) and (5.4) to evaluate the k integral
of NI(IN) with

A=0p1oi—v(B)pro—b"Prat/ +v (012" ;

B=(2/m)p12;

C=(2/m)ps2” .
We choose the positive y axis in the direction of e,
define ¥ as the angle between pz and ps, and § as the
angle between p» and p1” (see Figs. 3 and 4). If we

change the variables of integration in (4.17) from &
to ¢, b’ to X, and 8" to ¢"’ via

(6.2)

evaluation of the recollision term and its contribution b=asing; b =asin(y—X); b'=asing” (6.3)
to the viscosity. The evaluation of the cyclic and
hypothetical terms is quite similar. we find
dk w2
/—"‘N I(IN)= de cospHw (p12,P13; 9) » (6.4)
(27I')2 —7/2
where
4?12?1303 Yiw/2 w2
Hy(pio,p13; ¢)=— / d@x cos(X—y) de¢'"’ cosg’’
m? v—m/2 —7/2
C A4, 4,C,—A.Cy A, ALCo—Cyd.
(LAY [ (12 OO
[C.By| \ C B,Ca C. C.B,
with

A ,=—a[sing+sin (¢”"—8)1;

B,=0; B,=
Co= (2p13/m) cos(X—y) sinX; C,= (2p13/m) cos(X—y) cosX— 2p1a/m,

and where 8 is given as a function of X by

p13 cos(X—¢) sinX

Ay=afcosp+cos(¢'—8) ];
— (2/m)p1a;

(6.6)

(6.7)

cosd=C,/C; tand=

P13 c0S(X—) COSX— p1s
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The integral (6.5) can be simplified greatly by using a transformation first introduced by Sengers.? We change
variables from ¢’ to 7, where physically r is essentially the time between the first and second collisions (see Fig. 4).

Explicitly, we use

If we rewrite (6.8) as

and assemble our results, we find

m.

a 2 pyYtw/2 T4
Hy(p1o,p13; 9)= —4P12P13<—> / ax COS(X“/’)/. dr

Y—r/2

Xexp{——

where
2p12(tand) 1,/ (ma) = ==1/cosé+sing

and sgnx is the sign of w.

If € is set equal to zero in (6.10), one recovers the
divergent phase-space integral of Cohen and Dorfman.!
However, for ¢>0 the integral exists, and furthermore
it can be verified that its value is independent of the
order of the r and X integration. Since the evaluation
of (6.10) is considerably simpler when the X integral is
performed first, we observe that

[2p127/ (ma)] tand=sing’’/cosé-+sing. (6.8)
sing+sin (¢”'—8) = tand[ 2p1a7/ (ma)— cos(¢p"'—9) ] (6.9)
X sgn (sind)0(2p127/ (ma)4-cose)0([2p1a7/ (ma)—cos(¢”' — 8) I p13 cos (X—y) cosX— p12])
ema P13 cos(X—y) cosX[cosp+2p1a7/ (ma) ]— pro[ cos+cos (¢ — 6)] AT, (6.10)
P13 cos(X—y) cosX—p1s
(divergent) part of Hy as e— 0:
(6.11)
Hy (piz,P135 ) =—4p12p13
X(a—> /df/dx cos(X—y) 0(r—T)
m ,
X0(w/2—|X—y|) 0(p13 cos (X—y) cosX— p12)
XO0(1— | 2p1o7 sind/ (ma)— cosd sing| )
P13 cos (X—y) cosX
XCXP{—EI }A]. (6.15)
P13 cos(X—y¥)cosX— p1a

Y+m/2 T4
/ ax / dr sgn(sind)
—7[2 T

=-/d1-/dX0(7r/2—lx—‘l/|)

XO(1— | 2p1or sind/ (ma)—cosd sing|). (6.12)
Now the first 6 function in (6.10) assures us that 7 is
bounded from below. Therefore, the 7 integral goes from
some finite lower limit 7; to c. Furthermore, we see
that the coefficient of e in the exponential of (6.10) is
bounded provided r is finite. If we fix T such that

1&KT< 0 ; 2p1T/(ma)>1 (6.13)
and consider the region
n<r<T

(6.14)

then the 7 integral in the region (6.14) is bounded by T"
and exists for e=0. Therefore, any divergence as e — 0
must come from 7>7, and hence we find for the

Now the first, third,and fourth 6 functions imply that § is
small, while the third 6 function and (6.7) imply that
X is small. We then find

a\?
Hy (p12,P13; $) = —4p1ap1s COS!//(-)
m

i X+
X0(1)13 COS\L—Plz)-/ dr e*"/"f dXA], (616)
T X

where
v= (P13 COSY— p12)/ P13 COSY ;

X, = (vma/2p1a7) (£ 14sing) . 6.17)

Making a final change of variable from X to « via

X= (a+sing)vma/ (2p1e7) , (6.18)
we find
Hy(p13,p13; ¢) = (—2a%/m) (p1s cosy— pr)
00 dT 1
X0(p13 COS![/"‘PH)/ —e‘"/"/ daAJ. (6.19)
T _
Since ! '
AT =T (p"")— T (pd"), (6.20)

we must write out pi’”/ and pyo” in terms of the vari-
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ables of integration of (6.19). We find

P12z =2(p13 cosy— pro)a(l—a?)};

P12y = 2(p13 cosy— p12) (0®—3);

P12z ~ma/ (prar) — 0;

D12y = P13 cosy—pra (6.21)

where we have computed (6.21) in the approximation
needed for (6.19).
We now observe that:

(1) Hy=0 unless p13 cosy> py2 (or unless the second
collision is such that particle one can catch up to
particle two to make the last collision).

(2) The variables of integration in (6.19) imply that
contributions to Hy come from (a) all initial impact
variables —7/2<¢<w/2, (b) long times 7, (c) values
of @ (or better X) such that the last collision occurs
for large 7.

(3) Equations (6.21) are independent of 7. Thus, we
may do the 7 integral to find

® dr

0 dg— €
— —-er/v=/ —_— —?E—El(—l> , (622)
T T ey § v

and as e— 0,
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where
P’ =— 2([’13'@2"?12)
X[(@—5)huta(l—a®)ipra],
P12’ = — (P1s* Pra— p12)Pra. (6.25)

Thus we have shown that Hy diverges as Ine for any
function J(p:2) if and only if the collision sequence
(1,2) (1,3) (1,2) occurs physically.

A quite similar argument can be made for the k
integral of 11 (IN). Defining Hy by

dk /2
/ —II(IN)= d¢ cos¢pH1(pia,p1s’; ¢), (6.26)
(27)? /2
one finds for the divergent part of Hr as e— 0:
Hi(p',pid';0)=—Hn(pe, 15’5 6).  (6.27)

Finally, we remark that if Hy and Hy are computed in
three dimensions for a gas of hard spheres, there is no
divergence since the e dependence is given by elne
as e—0.

7. RECOLLISION CONTRIBUTION TO
THE VISCOSITY

—Ei(—€T/v) > In(v/eT) —> In(1/eT). (6.23)
;s To obtain the recollision contribution to the viscosity
Summarizing our results, we have we recall the first equation of (3.9). Using the value
2q? R of o for hard disks as computed by Sengers?
Hy (p12,p13; $) = ——T[In(1/€T) 1(p1s* Pra— p12)
m n0=(1/2a) (mkT/m)?}, (7.1)
1 and writing
R =gl
XO0(p1s:pra—p12) | da[J(pre"")—J (p12")], (6.24) or=0gl+og", (7.2)
-1 we find
n m 3 /2
orN= B8°2—T1I [ dp2(p:) d¢ cosp[4p12p1at-PioPra]: Hy(piz,pis; ¢), (7.3)
27)}  a = —/2
" m i U / ’ ’
Rz___(z )535/2_ / dp/®(p") / dp/®(p7) / dp:2(ps / dgp cosg[4pr12pratPra’Prd' ] Hi(pid',pis’59).  (7.4)
™ a —-r/2
In writing (7.4) we have transformed to the momentum variables after the first collision and used
(py,p2)/9(p,p)=1; @(pr)®(p2)=2(p1)2(ps); Pr=Py1)'. (7.5)
We now express piz in (7.4) as a function of pi2’ by
Pr2=—c0S2¢ 12’ — sin2¢pu.”. (7.6)
If we now use (6.27) and relabel the dummy variables py’ and py’ in (7.4) as p; and ps, we find
4n m 3
OR= B2—T1I | dp®(p)F (P12,p13) 7.7)
2r)} @ =
where R
F(p1g,p15) = dep cosp[sin?2¢ (ProPra— PrauPizs) —C052¢ sin2¢ (preProstpPrzaPrz) )1 Hu(prz,pis; ). (7.8)

—x/2
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Using (6.24) for Hy with
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J(p12) = przpie, (7.9
we find
F (p12,p13) = — (863 /m) 122 (P13* Pro— P12)%0 (P13* Pr2— p12)
1 /2
X 111—1: de cosp[sin?2¢ (Prop1a— Pr21P121) — c052¢ sin2¢ (Proprost ProsPr2) 1:
€ —7/2
1
/ da[ (o —a?) (Propra—Praipran) +a(1— o) (e?—3) (Proprastprapia)].  (7.10)
-1
The prapiai+Praiprs terms in (7.10) are odd in @ or in ¢ and give no contribution. We find
F(p12,p13) = (32/15)%(a*/m) p12* (P13 Pr2— $12)°0 (P13 P1a— p12) In(eT) 1. (7.11)
We now change the integration variables in (7.7) to p1s,p13, and P, where
P=pi+pstps; 9(p1,p2,05)/9 (P12, p13,P) =16/9. (7.12)
Then
64 1852 m/B\? 8 38
OR=—" “—([—i> /dP eXp(-—P2>/dpxz/dp13 exp[-———(p122+p132—-pu-plg)]F(pm,pla) (713)
9 2r)ta\r 3 3
and using (7.11):
(323 ma28t 1 o
"= sy van e s dP”M/ dp1ay(Prsy—pro)* exp[— (86/3) (1 +p1ss — puopas) ], (7.14)

p12

where we have chosen py; as the y axis for the pys
integration and the py, integral is done in polar coordi-
nates. By a change of variable, we find

or=[24V3/(257)JKna? In(eT)~,  (7.15)

where
K= / dw / dy(xy)® exp[— (a®+3*+xy)]. (7.16)
0 0

The integral K can be evaluated in polar coordinates.
After the radial integration, K is

/2 sin%@
K=6[ df——-. (7.17)
o (2+sing)
The substitution
x= (sinf)/ (2+sing) (7.18)
brings the integral to a standard form. We find
K=1—14x/(21V3), (7.19)
so that
m 24V3 14 = 1
oR=— =——(1——~ *)naz In—  (7.20)
Mle 257 27V3 eT

in complete agreement with the result obtained by
Sengers.?
8. SUMMARY

The binary-collision expansion expression for the
viscosity of a two-dimensional gas of hard disks has
been discussed in detail. We have found a divergence
in 71, the first correction to the Boltzmann-equation
result. The physical origin of the divergence is precisely
the same as that found by Dorfman and Cohen from
phase-space estimates and by Sengers from an exact
calculation of 7; using the Choh-Uhlenbeck formalism.
Furthermore, we have demonstrated the precise
numerical agreement of the coefficient of the divergence,
as obtained by us from the binary-collision expansion,
with that obtained by Sengers from the Bogoliubov
theory. It must be concluded, therefore, that a diver-
gence does indeed appear in the density expansion of
transport coefficients.

ACKNOWLEDGMENTS

We wish to thank Dr. J. V. Sengers of the National
Bureau of Standards and Dr. R. Swenson of Temple Uni-
versity for many helpful conversations.



