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Divergent Transport CoefBcients and, the Binary-Collision Expansion*
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The binary-collision expansion for the viscosity of a two-dimensional gas of hard disks is discussed. A
divergence appears in gI, the 6rst correction to the Boltzmann-equation result. The calculations presented
here are exact and explicitly demonstrate the dynamical origin of the divergence indicated by Kawasaki
and Oppenheim. The coefhcient of the divergence is computed and found to be precisely the same as that
found by Sengers by an entirely difkrent method. The origin of the divergence is shown to be exactly the
same as that found by Dorfman and Cohen.

INTRODUCTION

ECEXTLV, several authors' ' have discovered
that a divergence exists in the cocf6cicnts of the

virial expansion for the transport coeKcients for
moderately dense gases. The divergence exists regardless
of whether one starts from the generalized Boltzmann
equation and evaluates the transport cocKcients via a
Chapman —Enskog-like method, or alternatively, one
evaluates the time correlation function by means of a
virial expansion in powers of the density, g.

One finds by such methods that the l—1 coeKcient
in the virial expansion of the viscosity, say, is deter-
mined by dynamical events of / particles. 4 The contri-
bution of genuine l-tuple collisions is well behaved. ' ~

However, one also 6nds contributions from certain
sequences of binary, triple, , (l—1)-tuple collisions,
the precise characterization of which has been given by
Green and Piccirelli. ' The divergence is caused by the
failure of the phase-space volume to remain bounded,
for such scqucnccs of cvcnts, as thc time bctwccn
successive collisions becomes large. In two dimensions
the divergence appears in the three-body term. In three
dimensions the divergence appears in the four-body
term. '

Recently Kawasaki, and Oppenheim' have given a
discussion of the divergence from the point of view of
the binary-collision expansion in the formalism of
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Zwanzig. ' They have eRected a partial resummation of
the most divergent terms and found a term proportional
to lne in the virial expansion for the self-diRusion
coeKcicnt. The discussion of the divergence given by
Kawasaki does not consider the dynamical events
among three particles in an explicit way. This has lead to
some confusion in the literature. ' Furthermore, since an
evaluation of the resumrned expression for the viscosity
given by Oppenheim and Kawasaki will certainly
involve careful discussion of the dynamics of three or
more particles, it is valuable to provide an example for
a relatively simple case.

The purpose of this paper is to make the connection
of the existence of the divergence in the binary-collision
expansion with the dynamics of a system of a few
particles. We consider a two-dimensional system of hard
disks and consider q&, the 6rst density correction to the
kinetic part of the shear viscosity. We show that q~
diverges; that the origin of this divergence is the same
as that found by Dorfman and Cohen from phase-space
arguments; and that the coeKcient of the divergent
part is precisely the same as that found by Sengcrs
from the Bogoliubov theory.

Section 1 is devoted to summarizing the pertinent
results from the binary-collision expansion. In Sec. 2
we give an explicit evaluation of a general binary-
collision operator (T) matrix element for hard disks. In
Sec. 3 we list the sequences of T's which contribute
to g~, and in Sec. 4 we give the explicit integral expres-
sions for these contributions. Section 5 is devoted to a
discussion of the general form of the integrals that
appear. In Sec. 6 we evaluate the integral expression
for one sequence of T's (the recollision term). In Sec. l
we evaluate completely the numerical coefIicient of the
(divergent) recollision term for the viscosity. This
enables us to compare our result with the work of
Sengers' who has recently computed the same number
by an entirely diferent method.

I. MNARY-COLLISION EXPANSION

We use the binary-collision expansion (BCE) in the
formalism developed by Zwanzig. ~ The reader is referred

' R. Zwsusig, Phys. Rev. 129, 486 (1963).
s J. Stecki, phys. Letters 19, 123 (1965), who erroneously con-

cluded that a divergence does not exist.
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where the sums are over all distinct pairs (Greek sub-
scripts) and are so restricted that no two consecutive
T's refer to the same pair. The operator T satis6es

T = iL—, +iL GpT . (1 7)
FIG. 1. Coordinate

system for evaluation
of (2.8).

(4) The Fourier transform (matrix element) of an
operator, say G, in position space is given by

(k~lGlk)= dRe ik~ -RGegk R

and the normalization is chosen so that

and
iL= iLo+iL, (1.2)

to his paper for the details of the theory and for the
notation, which we adopt in this paper. For formal
details concerning the extension of the BCE to com-
putation of the shear viscosity, the reader is referred to
the paper of Kawasaki and Oppenheim. '

We now summarize a few results from the BCE:

(1) The time-displacement operator exp(itL) has the
property

exp(itL)gx(R, p) =gx(R(t), p(t)) (1.1)

acting on a function 0, of the initial phase variables R
and p, where

(k'IGglk"&(k" IGplk) (1 9)
(2pr)"

where d is the number of dimensions. (In the work
below we will consider always the limit S—+ ~,
U-+ ~, EjU-+ go.) We further remark that the matrix
element of Go is diagonal, while the matrix element of
T;; has k +k =k;+k; and is diagonal in all other k's.
We adopt the convention that when the k's are ex-
plicitly enumerated, all those not shown are zero.

2. GENERAL BCE MATRIX ELEMENT
FOR HARD DISKS

p~ 8
iLo=E —.

~=i ss BR.
iLg—= P iL;;,

1&i+j

In this section we compute, for hard disks of diameter
(1.3) gg, the general BCE matrix element"

with Mg„=(kg, ~,k; s,kg,k„l—Tg~Gplkg, ,k; p,kg', k„')
(2.1)BU(R;;) f 8 8q

BR; tap; cgp I
(1 4)$ & ~U—

Tg = Go '$G—(lm) -Go]Go —', (2.2)

with kg+k~=kg'+k„', acting on a function of the

and where U is the interaction potential. particle momenta, F(pg, pp, ). We 6rst observe from

(2) The I.aplace transforms of exp(itL) and exp(itLp) (1 7) that Tg~ can be written as

are denoted by

dt e "egg~=—G=(e—iL) ',

dt e "e"~'= Gp
—

(e—i—Lp)
——'—.

where

G(lm) = [e—i(Lo+Lg„)]—'—= [e—iL(lm)] —' (2.3)

(1.5) Since

G(lm) —Gp=
(3) The BCE for G is given by

G=Gp Q GpT Gp+Q GpT GpTpGo ', (1.6)—
a, P we have

dt e "(expl itL(lm)] —exp(itLp)),

(2 4)

f z j—2

gVg~ ——
l

o——g k„p„l dRg .dR; sdRgdR expL —i/ k„R„—i(kg Rg+k„R„)]
m g 1

j—2

&( dt e Ig(exp[itL(lm)] —exp(itLp)} expl i+ k, R,+i(kg' Rg+k ' R )]. (2.5)

' K. Kawasaki and I.Oppenheim, Phys. Rev. 136,A1519 (1964).
"Strictly speaking (2.1) does not exist as written for an infinite system because it contains delta functions of the k's conserved

by T& . Thus we should compute
ikg, ,k; p, kg, k

~

—Tg Gp
~
k, ', .~,k, ,',kg', k~'l

and keep track of the resulting delta functions. To avoid this insignificant but cumbersome difliculty, we will compute (2.1) for
a finite system with unit volume. The results are the same.
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In order to evaluate (2.5), we notice that it is sufficient to consider Lo only for the jparticles in question, which
we write as 10(&). Further, we may factor out the motion of all particles except the pair tm so that

exp[itL(tm) j—exp(itL()) = {exp[it&2&(lr&t))—exp(itLO(~&)} exp(itLo(t &), (2.6)

where L('& (tm) =Lo("+Lq . Introducing the two-body coordinates

Ri„=-',(R&+R ); r&„=r)—r„
Ptm= yt+ym, ' y&m= g (y& pm) (2 '0

i
Ww(p, p, )=( —Z&, p, l

&r& ~xpL' —,'k& (t,—k )]
SPY

X dt exp t —e+—Pk„y,+ (k&+k ) P&
0 m & 2m

X{exp[itL('&(tm)j—exp(itLO('&)} exp[-,'ir&„(k&'—k '))&(y),P2, . ). (2.g)

We choose a coordinate system for the initial relative position r~, as shown in Fig. 1. Then

r )m = f)p 4a)+ y p) m ~ (2.9)
Since the operator exp[itL("(tm) J—exp(itLO( & is zero unless a collision occurs in time t, it is clear that the con-

tribution to M) comes when
e&b&u —ao4y( —y ]+4 f,C oo (2.10)

(2.11)

(In making this argument we neglect the contributions from initial positions inside the interaction disk. This
contribution leads to a well behaved result as e —& 0.) By using the properties of the time-displacement operators
and the expressions for the relative position r~

' and momentum y~
' after collision

»-'= bp(-.—vp(-+ (2/~) (t—t*)y(-', yi-'= —(1—2b'/o') y(-+ (2f/~) (1—f'/~')'y(-. ,

one may perform the t and y integrations in (2.8) to 6nd

(2.12)

~( P(yi, y2, )= (tb exp[i(«' —k&) yi (b)][a(y(' p ')—a(y~, y )3, (2.13)

j—9

g(y&, y-) = ~—Z k. y.+k&' y&+k ' y- &(yi y~, " ) (2 14)

ylm(t ) t&p)m). Vplna i (2.15)

lim lim 69 8
o+ x,v 4kTnz'V

N/V-+ I

and the momenta after collision, y~'and y ', are given by

y( y(m +2P&mi pm Pter +gp(m (2 ~ 16)~

3. THREE-COI I.ISION FIRST DENSITY
CORRECTION TO THE VISCOSITY

In two dimensions, the kinetic contribution to the
shcax' vlscoslty g ls given by

where the average is taken over the canonical
ensemble.

It has been shown elsewhere' that the three-collision
contributions to g glvc x'lsc to a dlvcx'gcncc px'opo1410nal
to lnT~ where T* is the time between the first and last
collisions. Since e is the time variable in the Laplace-
transformed theory, we expect to 6nd a corresponding
divergence proportional to ln~ by examining the three-
collision terms in the BCE. To discuss the divergence
it is suflicient to consider the contribution to g when
initial particle correlations are neglected (U=O in the.
canonical distribution). ' We write

'9 ')&0+'gl+ ' ' '
y (3 2)

"J.A. McLt".nIIan, Phys. Fluids 3, 493 (1960).
where we consider only the 6rst Knskog approximation.
Bere go is the Boltzmann equation viscosity, and the
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three-collision contribution q1 is given by

where

and

with

@go 3

Vl= II dpP(P')plpl 3 Q 2 (pjpj 21Pi )
4m2(&T)3 3=1

4 (P) = (P/n. )e»'; P = (2mk T) '

1 2 3 4)

(3.3)

(3.4)

(3.5)

Ql = —(0 [ GoT»GoT13GoT»Go
( 0),

Q2 ——(0 j GoT12GOT23GOTI'2Gp [ 0),
Q3= (0 ( GpT12GOT13GOT23Gp j 0) y

Q,= —(0IG,T„G,T GoT GoI0)
(3.6)

Now it follows from (2.13) and (2.14) that, say, Ql acting on a function which is conserved during a (1,2)
collision gives zero. In particular P», P» and po are such quantities. Using (2.7), we find

Ql Q (p;p; ——21p, ) =2Q,p„y„. (3.7)

Further, under interchange of particles one and two we see that Q2 —+ Q, and Q4 —& Q3. If we write

'gl/'gp= &14+&HC—,
we then have

S'go
tTR = &PP(p, )[4plop12+P12P12]: 3'Qlploplo,

4m2(kT)3 4=1

(3 g)

Ego
tTaC= II dpA'(p4)[4P12P12+P12P12] ~ 3 Qop23P23 ~

4m2 ($T)3 4=1
(3.9)

4. EVALUATION OF Ql

In this section we discuss Ql and Q, for hard disks. Writing out Ql and Q3, we have

3'Q,J(P12)= 3 (0[—T,2Go
i k, —k)(k, —k( —T13Go

i k, —k)(k, —k
i

—T12Go
i 0)J(P12),

(22r)2
(4 1)

'Qd(p )= (0I —T &oIk,—k)(» —kI —T GoI0, —k,k)&0,—k,kl —T GoI0&~(p )
(22r)2

(4.2)

some function f2(pl, p2), where

fl(P4P2&P3)=(k, —kI —T13Golk, —k&f2(pl, p2). (46)

Here we have

where J(p12) is some function of the relative momentum,

Say P12P12.
We now use (2.13) to evaluate (4.1). Working from

left to right, we have first to consider (0
~

—T12Gp
~
k, —k)

operating on some function fl(yl, po, p3). For this case,
we have E=1, m =3) kg ——kg' ——k; k~= k~'=0) k2 ———k;

all other k's zero; (4.7)
l=1, m=2; kl=k =0; kl'= —k„'=k;

all other k's zero; (4.3)
so that

g2(P1 P3) I
3 (23/m)k' P12] f2(P1 P2) (4 g)so that

and
12

and

g, (p, ,p,)= [3—(2i/m)k p12]-'fl(pl, po, y3) (4.4) pl3
f1(P1 P2 P3) = db

m Q

(0 I
—T12Go I k, —k&f1(PHP2~P3) = XLg2(pl", P3")—g3(pl, pp)] (4.9)

Finally we compute the final matrix element acting
Xexp[ik P12(fl)][gl(P1 p2 ) gl(pl, p2)] (4.5) o~ n J(p ) .

Next we consider the middle matrix element acting on f2(plyp2) (k k~ T12G0~0)J(p12). (4.10)



S) ~e therefore definenoninteracting tc™c have

[SS(IS)+IS(IS)
(2s)'

+SI(IS)+II(IÃ)]& (4 14)(4.12)
so that

g, (y, y,)= e
—'J(y»)

n that wc jnclu(IC both "hewhere, by (IS)&
h fi l (1 2) collision. Eachand I contribu

t d schematically. As
tions f«m the

f these four terms
SI(IS) m Fgg,

s can bc ln 1ca c
e indicate thc ™example we

h f r contrjbutj onsl' 'tly, we 6n(I for t e ou
e QtJ(y») '

anQ
p»

f (ys y2) db» „p[—zk yi2(b )]

4.13)x[g.(y'" y'")-g (y "'
2Q,J(y, ) gives rise to a

(4.15)
/2p»)' t'2p&3) . (b),,(b")]}(e—(»/db

EFFICIENTSDlvERGFNT TRA N SPORT

db"
I ~ (

exp{ik [y»
~2/2p&3)

(b) &(b&&)]}(&—(2j/m)k' yl9) (4.16)

II(IS)=

t'/
2pn) 2pisl

)

/Em&

)k &&)—lgJ (4.18)» (b«)]}(e—(2i/m)k ' y» )Xexp{ik [yn b

db

&&)—lgJ (4.1 7)

—6

»r «]}(&—(2g/m)k'y12)yexp{ik [yn(b)
I/t'2p») t2p»)

drill

b evaluated by wntingand I2 can e evaHot
th integrals over k, andk=dk, dk„and computing e i

l . A semicircular contourin the comp, l . semlex k and ky planes. sem' '

is used~ closcd above or e ow a
0 ~

intcg1'al exists. Kvavaluation o t e in
by choosing a coordinate system w ere

Ii= (2s)'8(—~wBu)b(~. ) I ~wl Bu 'e'"""",

(2~)' t A.~ t A„C.—A.C„y

/C.B„fI C,) 4 B„C,

where
'")—J(y ") (4 19)~J=J(y»'" — y»

momeeta are always to be competed fromand the premed momeeta are a wa rom

the contributions to e'Q, y23 ana o
through (4.18).

5. THE k INTEGRAL

er to discuss the four terms (4.15) through

t a
'

and (4.16) both havethat the integrals of (4.15) and . o
form

(A, A„C,—A.C„)-
Xexp ei

—+
EC, C By

I~= dk[exp(ik A)](e—ik B)-'

the

5 x is the Dirac delta function and5x ist e irac ' ex isthe
unit step function whic is zero o(") "-*.- '-

and (4.18) both have thewhile the integrals of (4.17) an
foIT11

I =— dk exp ik A)](e—ik B) '(e —ik C) '. (5.2)2=

hat all four terms of e'QEJ(y&3)It can also be shown t a a
have the form (5.2).

I n. 2. Schematic
i11ustration of the
term gI{IlV). At
the b" vertex the
solid {dashed) lines
correspond to I(g).
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FIG. 3. Geometry of
the second collision. Pro. 4. Geometry of

the last collision.

By using the appropriate A and 8 from (4.15) and,
(4.16) one can see after some calculation that the 8
function and 8 function in (5.4) give rise to a vanishing
region of integration over the impact variables. Thus

6. THE RECOLLISION TERM

The recollision contribution comes from

dk NN(IN)= dk IN(IN) =0. (5.5) "QII(y») =
dk dk

NI(IN)+ II(IN). (6.1)
(22r)' (22r)'

The result (5.5) is not unexpected since it is impossible
fol' 'tile sequence of colllslolls (1 2) (1 3) (1 2) to occlll'

unless the (1,3) collision physically takes place. Thus
(5.5) merely expresses the fact that contributions come
only from a physically realizable sequence of collisions.
The fact that all four terms contributing to Q2 are of
the form (5.4} is again quite reasonable since the
sequence (1,2) (1,3) (2,3) can occur whether or not the

(1,3) collision actually takes place. In fact, the sequence

(1,2) (1,3) (1,2), where (1,3) takes place, is a "re-
collision" event, while the sequence (1,2) (1,3) (2,3),
where (1,3) does or does not take place, is a "cyclic" or
"hypothetical" event, respectively. ' '

The following two sections are devoted to the
evaluation of the recollision term and its contribution
to the viscosity. The evaluation of the cyclic and

hypothetical terms is quite similar.

We 6rst use (4.17) and (5.4) to evaluate the k integral
of Nl(IN) with

~—~P121 7 (~)$12 0 P»i +7(~ )P12

B= (2/212) y,2,
.

C= (2/212) y»".

We clloose tile posi'tive g axis in the direction of p21,
define p as the angle between f21 and p2I, and 5 as the
angle between @21 and p»" (see Figs. 3 and 4). If we

change the variables of integration in (4.17) from b

top, 6 toX~andb top vis,

b=8 lsunni 6 =Csin(lP —X)~ 5 =Oslngh (63)

where

NI(IN) = dP cos&II2I(y», y12, P),
(22r)'

(6.4)

4p p g2 rfi+w /2

III2 (yI2, yI2; 4) = — — dX cos(X—p}
iP—m j2

dQ" cosp"

with

C ) A.y ( A„C.—A.c„~ — (A. A„C.—C„A.—

Iexp 21
—+ ~I (65)

lc.a„l & c.i 4 a„c. ) &c. C.a„
A.= —ILLslnk+sln(4" —~)j i A2= Gtcosk+cos(4" —~)j i

8 =0. 8„= (2/212) P12, —
C,= (2pl2/222) cos(X—p) sinX; C„=(2PI2/20) cos(X—p) cosX 2p»/212, — (6 6)

and where 5 is given as a function of X by
pl2 cos(X—g) sinX

cosh= C„/C; tanb =
p12 cos(X—lp) cosX—p»

(6 7)
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The integral (6.5) can be simplified greatly by using a transformation first introduced by Sengers. We change
variables from p" to r, where physically r is essentially the time between the first and second collisions (see Fig. 4).
Explicitly, we use

If we rewrite (6.8) as
[2p12r/(ma)] tan5= sing"/cos5+sinp.

sinlI'I+sin(P" —5) = tan5[2P12r/(ma) —cos(P"—5)]

(6.8)

(6.9)

and assemble our results, we find

2 ~w/2

HN (P12Ip18 j Ip) 4p12p18
mj

ifX Cos(X lP) dr

&exp
2p12

Xsgn(sin5) 8(2P12r/(ma)+ cosp) 8([2P12r/(ma) —cos ($ —5)][Pi8 cos (X—lP) cosX—P12))

ena p18 COS(X—ip) COSX[COSQ+2p12r/(ma)] —p12[COSQ+COS($"—5)]
AJ, (6.10)

p18 cos(X—lp) cosX—p12

where

2p12(tan5) r+/(ma) = &1/cos5+sin@
(divergent) part of HN as 8-+ 0:

(6.11)
HN (P121p18 j $) 4p12p13

and sgnx is the sign of x.
If 8 is set equal to zero in (6.10), one recovers the

divergent phase-space integral of Cohen and Dorfman. '
However, for e&0 the integral exists, and furthermore
it can be verified that its value is independent of the
order of the v and X integration. Since the evaluation
of (6.10) is considerably simpler when the X integral is
performed first, we observe that

/a )2
dr dX cos(X—lP) 8(r T)—

km/

X8(2r/2 —
i
X—

lpga) 8(p18 cos(X—lp) cosX—p12)

X8(1—
i
2 p12r sin5/(ma) —cos5 sinltl

i )

P18 cos(X—lP) cosX
Xexp er — — 5J. (6.15)

p18 cos (X lp) cosX—p12

dX dr sgn(sin5) Now the first, third, and fourth 8 functions imply that 6 is
small, while the third 8 function and (6.7) imply that
X is small. tA'e then find

dr dX 8(2r/2
I
X O'I ) HN(P12IP18j ltI) = 4pi2pi8 cosipi —

iIm)

X8(1—
i 2p„rsin5/(ma) —cos5 sing i). (6.12) X8(Pi8 COS1P—P12) dr e-"i" dXM', (6.16)

(6.17)

Now the 6rst 8 function in (6;10) assures us that r is
bounded from below. Therefore, the r integral goes from
some finite lower limit ri to ~. Furthermore, we see X~= (vma/2P12r) (&1+Sinlt ) .
that the coefficient of e in the exponential of (6.10) is

ounded provided r is finite. If we fix Z' such that Mal'ng a final change of ariable from X to a via

ri((T( ~; 2p12T/(ma)&&1 (6 13) we fnd
X= (u+Siny) vma/(2P12r), (6.18)

and consider the region

vI&v &T ('6.14)

HN(P12IP18j 4) ( 2a /m) (p18 coslp p12)

co d~ ]

X8(P18 coslP —P12) —e—'"i" dnhJ (6.19).
T T -I

(6.20)
Since

then the r integral in the region (6.14) is bounded by T J I III'l JI II)
and exists for c=0. Therefore, any. divergence as ~ —+ 0
must come from r& T, and hence we 6nd for the we must write out pi2"' and pi2" in terms of the vari-
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ables of integration of (6.19). We 6nd

p12.
"'——2 (p18 cosp —p»)a(1 —u') & j

p123 2(p13 COSlp p12) (e8 2) j

pl„" ma/(pllr) ~0;
P123 P13 COS'IP P12 (6.21)

f
"dr " dt' ( eQ—e r=——Eil )

v)
(6.22)

where we have computed (6.21) in the approximation
needed for (6.19).

Ke now observe that:

(1) H~=0 unless p13 cosf) p12 (or unless the second
collision is such that particle one can catch up to
particle two to make the last collision).

(2) The variables of integration in (6.19) imply that
contributions to Hir come from (a) all initial impact
variables —lr/2&p&2r/2, (b) long times r, (c) values
of n (or better X) such that the last collision occurs
for large r.

(3) Equations (6.21) are independent of r. Thus, we

may do the r integral to find

where

p12 2 (p18 ' p12 p12)

XL(~'—2)p12+~(1—~') *p».7,
P12 (P18 'P12 P12)P12 ~ (6.25)

Thus we have shown that H& diverges as in& for any
function J(P12) if and only if the collision sequence
(1,2) (1,3) (1,2) occurs physically.

A quite similar argument can be made for the k
integral of II(IN). Defining Hr by

f
dk

II(IN) =
(22r)2

m'/2

-x/2
dy costi(p, 2', P,8',.y), (6.26)

one finds for the divergent part of Hz as e ~0:

HI(P12 yp13 j 4) HN(P12 )p18 j 4) ~ (6.27)

Finally, we remark that if H& and Hz are computed in
three dimensions for a gas of hard spheres, there is no
divergence since the e dependence is given by aine
as e —+0.

and as &~0,
—Ei(—8T/v) ~ ln(v/8T) —& ln(1/8T). (6.23)

Summarizing our results, we have

28
H&(»2»8' &)= 0"(1/'T)~(»8'p» p»)

m

and writing
qp

——(1/2a) (mkT/2r) &, (7 1)

T. RECOLLISION CONTRIBUTION TO
THE VISCOSITY

To obtain the recollision contribution to the viscosity
we recall the 6rst equation of (3.9). Using the value
of go for hard disks as computed by Sengers'

X8(p13'p12 p12) d88LJ(P12 ) I(P12 )j & (6 24)
we Gnd

&s=&s +&a (7.2)

n/2

—x/2

dQ COSQL4P12P12+P12P12j: Hir(P12qp13 j $) 1 (7.3)

n m
p'"— dpi'C (pl') dp2 c'(p2 ) dppc (p3

(22r) & a

)r/2

-m/2
d4 cost(4P12P12+P12 P12 j Hr(pip yp18 j 4) ~ (7 4)

In writing (7.4) we have transformed to the momentum variables after the 6rst collision and used

1l(plyp2)/8l(pl yp2 ) 1 j c'(pl)c'(p2) =c'(pl )c (p2 ) i P12 P12 ~

We now express p12 in (7.4) as a function of p12' by

py2= —cos2&yi2' —sin2&py2&'.

If we now use (6.27) and relabel the dummy variables pl' and p2' in (7.4) as pl and p2, we 6nd

4n m
as= O'"—ll dpP(p')~(p», p»)

(22r)& a 8=1

where

(7.5)

(7.6)

(7 7)

ir /2

F(pip, p18) = dQ cospLsin'2Q (plpp12 —p»lp»l) —cos2$ sin2$ (p»p»1+p121P12) j: Hir(p12 p13 p). (7.&)
-m'/2



~

(6 24) for &N tlr't
J'(yu) = y»yu i

p.1O)2))( 2 1)(p»pui+P&2~~~2 i2—12&

* )'8(yes'P»(g,~/m) piP(yi~ &'2F (y»iy&&)

2p
.
n2y(j»A~ +&"'~"Xin- L

-s /2

p= pi+ yu+y»

SP
2 .Pi~) p(yam y»)13

64~p'" ~(
dp„y,'--~i ~y» ""'"P

9 (2~)' & ~

-1

„contribution e 6ndor;n tIt and gi&e "oThe P„pu,+Pu P e' ',
(y .pu —P )'8(y 'P"32/15)&(o' m uE(y»~y»

ng p ~here7 7 to yu&y»& s;„tgratio»srisbi ' '

P =16/9.

~„o~cl sng«""ntegr '
. 8,y„y,)/&(y»i»» (7.»)

p.14)

sng using (7 11) '

(gp/3) (pin+I»~~p„.(s .-& )"'P
(32)

i dp p»
(15)2 V3x

ent ~it e
~

h th resuj t Qbtainedcompiete ~g~~~

Sengers. '
g, axis ««he»'cho n Pi~ . '

po/ar cQQ dintegration and ~
Me ~e 6ndh ange Qf vari anates.

T —1L24~3/(25 )j " ( )

8. SUMM&R&

(7.15)

00

xdx d ( )3 elf —(x'+y+ "y)j'
0

)ar coordinates1 K can be evaluated in po aThe integral can
After the radial integration,

(7.17)
sin 8

dg
(2+sin8)4

The substitution

x= (sin8)/(2+sin8) (7.1g)
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(7.20)
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