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Classical and Quantum-Mechanical Turbulence in He II Heat Flow~
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The theory of the He II thermal counterflow process in wide id )10 ' cm) channels is investigated on the
assumption that both the normal and superQuid components make a transition from a laminar to a turbulent

type of Qow. A critical heat current Wo is identified with the superQuid transition. The superQuid turbulent
state is taken to be essentially that described by Vinen in terms of quantized vortex line and has an associated
mutual friction. A second critical heat current lV, is identi6ed with the normal-Quid transition. It is argued
that this transition is essentially of a classical turbulent type, with the added condition that the critical value
of the Reynolds number must depend on the extent of mutual-friction coupling. This interpretation is
shown to be consistent with experimentally observed critical heat currents, as well as with critical-velocity
sects found in other types of Qow. The assumption of two crticial heat currents de6nes three distinct Qow

regions. Xt is shown that these three regions are essentially the same as those found experimentally by Allen,
Gri5.ths, and Osborne. On the basis of some simplifying assumptions regarding the normal-Quid turbulent
state, the temperature and pressure gradients accompanying thermal counterQow are calculated. Comparison
with experiment shows good qualitative and often quantitative agreement. It is also shown that the model
developed can be successfully used to interpret experiments involving flows of a nonthermal counterQow

type.

DTTRODUCTION
'

q ARLY experiments on the heat transfer in He II
~ revealed an anomalously high thermal conduc-

tivity for sufBciently small heat Qow. This is now
understood in terms of a two-Quid model in which heat
is transferred by the Qow of a viscous normal Quid

accompanied by a counterQow of an inviscid superQuid,
Hydrodynamic equations have been developed for
these two Quids, and are consistent with experimental
observation for low heat Qow.

In heat currents greater than some critical value,
nonlinear effects are observed. Vinen' has shown that
for heat currents not too near the critical value, many
experimental results are consistent with a model of
superQuid turbulence involving quantized vortex lines.
Some more recent measurements, however, are more
readily understood in terms of a turbulent normal
Quid. '—' The purpose of this paper is to show that a
model based on turbulence in both the normal and

superQuid components offers a qualitative and often
quantitative agreement with experiment. Not only
does the model offer explanations for several heretofore
unexplained effects, but exhibits in several instances the
similarity between heat conduction and rotation effects.

The discussion wiH generally be restricted to tem-

perature and pressure gradients accompanying thermal
counterflow in wide (d)1D s cm) channels, although
other systems will be considered when there appears
to be some unifying feature. Subcritical heat currents

*This work was supported in part by the National Science
Foundation.

'%. F. Vinen, Proc. Roy. Soc. (London) A240, 114 (1957);
A240, 128 (1957);A242, 493 (1957);A243, 400 {1957).

' C. E. Chase, Phys. Rev. 12?, 361 {1962); 131, 1898 (1963).
' F. A. Staas, K. %. Taconis, and %. M. van Alphen, Physica

27, 893 {1961).' J. T. Tough, %. D. McCormick, and J. G. Dash, Phys. Rev.
140, A1524 {1965).' J. F. Allen, D. J. GrifBths, and D. V. Osborne, Proc. Roy. Soc.
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are considered in Sec. I in order to present the linearized
two-Quid equations. In Sec. II the critical heat currents
corresponding to the two turbulent Qows are considered
in detail. In particular, the eGect of mutual friction on

the normal-Quid transition is shown to be consistent
with experimentally observed critical heat currents. In
Sec. III the effects of turbulence in the two Quids is
considered. The temperature and pressure gradients
arising from normal Quid and superQuid turbulence are

compared with experiment in Sec. IV.

L SUBCRITICAL HEAT CURRENTS

where p„and p, are the normal and superQuid densities,

p is the total fluid density (p= p„+p,), v„and v, are

the normal and superQuid velocities, g„ the normal Quid

viscosity, VE and VT the pressure and temperature
gradients, 5 the entropy per gram, and F,„the mutual

friction force. If we consider only subcritical heat
currents, F,„=O, and we can assume the velocities v„
and v, are small and time-independent. Thus we have

VE=pSV 7 (3)

I.ondon's equation, and

( p lp)VP= p,SVT rt —V'v„. —(4)

' L. D. I.andau and E. M. Lifshitz, Fiuid Mechanics (Addison-

%esley Publishing Company, Inc. , Reading, Massachusetts,
1959).' J. G. Daunt and R. S. Smith, Rev. Mod. Phys. 26, 172 (1954).

i86

There are several developments of the two-Quid

hydrodynamic equations. ' ~ The generally accepted
form ls

p.8v./Bt+ p„(v„V)v„=g„v'v„—(p„/p) VP
p.SVr+F...—(1)

p, 8v, /clt+p, (v, ~ V)v, = ( p, /p)VI +p,SV—T F,„,(2)—
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Combining Eqs. (3) and (4) gives

VI' =g„V'v„ (5)

an equation equivalent to the Poiseulle equation in
classical hydrodynamics. In the case of Qow through a
circular tube of radius a under a constant pressure
gradient, this equation can be solved to give

(v„)= —(a'/Sg„) VP, (6)

II. THE CRITICAL HEAT CURREN'TS

In a series of theoretical and experimental papers, '
Vinen has given a detailed theory of superQuid turbu-
lence. In Vinen's model, the turbulent superfluid is
pictured as containing a "tangled mass of quantized
vortex lines. "The superQuid velocity necessary for the
production of a single vortex line at T=O in a tube of
diameter "d" has been given by Feynman' as

n, = (Ir/md) in(d/2ap), (11)

where ao is the vortex core radius. More detailed
derivations have been given, "—"but most result in an
expression in order of magnitude agreement with

v,d = fi/m. (12)
' D. F. Brewer and D. 0. Edwards, Proc. Roy. Soc. (London)

A251, 247 (1959).
9 R. P. Feynman, Progress in I,ohio TemPerature Physics, edited

by C. J. Gorter (North-Holland Publishing Company, Amster-
dam, 1955), Vol. 1, Chap. II.

1o V. P. Peshkov, in Proceedings of the VIIth International
Conference on I.om Temperature Physics (University of Toronto
Press, Toronto, 1961),p. 555."J.C. Fineman and C. E. Chase, Phys. Rev. 124, 1 (1963)."A. C. Fetter, Phys. Rev. Letters 10, 507 (1963),

where (v ) is the average of v„over the tube cross
section.

In terms of the two-Quid model, the normal Quid
carries the total entropy of the Quid, and a heat current
W (erg/cm' sec) is supported by a flow of the normal
fluid at (v ):

W= pST(v„).

If we also impose a condition of no net mass transfer,
we have

p~vm+ p,v~ =0. (S)

For subcritical heat currents, we then have from Kqs.
(6) and (7):

VP= Srl W/a'pST—. (9)

Combining this with Eq. (3) gives

VT= Srl„W/a'(pS—T)'. (1o)

Equations (9) and (10) have been used to compute g„
from measurements of VI' or VT in thermal counter-
Qow. The viscosity measured by this technique is found
to agree closely with that found by most other methods,
with the exception of the oscillating disc. The experi-
mental evidence, therefore, seems to verify the sub-
stantial validity of Eqs. (9) and (10).

F,„=Ap,p„~v—vs( v; v&vs (15)

which more closely 6ts the experimental data. By con-
sidering the process of vortex annihilation at the channel
walls, Vinen has also shown that a mutual friction
similar to that described by Eq. (15) would arise. In
this expression for F,„we mean by vo the value of
v=v, —v„when v,=v.s or W= Wp. Equation (15) then
assures that no mutual friction appears until vortex
lines are formed in the superQuid. The quantity A in
Eq. (15) is calculated by Vinen, but is generally taken
as an experimental parameter. " It is clear physically
that there must be an initial "build-up" process during
which a "tangled mass of vortex line" is formed, and
F,„papr oaches its equilibrium value in Eq. (15). For
simplicity we shall assume that Eq. (15) is valid for all
v, &v,o and defer further discussion of the "build-up"
process to Sec. IV.

The onset of superQuid turbulence at t/t/'0 provides
one mechanism for nonlinear hydrodynamic behavior.
We shall assume that there is also a transition to
turbulent Qow in the normal Quid at a heat current
8"„where

W,=pSTv„, (16)

and v„, is the critical normal-Quid velocity.
If we were to assume there was no interaction

between the normal fluid and superfluid (that is, if
F,„=O) then we would expect from Eq. (1) that n„,
would be given by a constant value of the Reynolds
number,

+n= ps&serf/'ga (17)

consistent with the channel geometry of characteristic
dimension d. For a critical value of R„of about 2X10'
(typical for tubes of circular cross section), Eq. (17)

"G. W. Rayfield and F. Reif, Phys. Rev. 136, A1194 (1964)."H. E. Hall and W. F. Vinen, Proc. Roy. Soc. (London) A238,
204 (1956);A238, 215 (1956)."H. C. Kramers, Physica 26, 581 (1960).

We shall denote by e,o this critical value of the super-
Quid velocity. The corresponding heat current 8'0 is
then

Wo= (p,/p„) psTn, o (13)

from Eqs. (7) and (S). The presence of vortex lines in
the superQuid provides scattering centers for the ex-
citations composing the normal Quid. "'4 This scattering
results in an eGective mutual friction between the two
fluids, represented in Eqs. (1) and (2) by F,„.By con-
sidering the processes by which vortex line is generated
and decays, Vinen is able to show that F,„ is approxi-
mately of the form

F.„=A p.p. )
v ('v, (14)

where v is the relative velocity v=v, —v„. Vinen's
derivation assumes v,))v, s (so that the distribution of
line may be assumed random) and is thus not incon-
sistent with the form
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gives very large values of v„,. For temperatures larger
than about 1.0'K, the corresponding value of

v, ( v,
= v„,p„/p, ) is many times larger than the critical

value v, o given by Eq. (11).In this case the superfluid
would be turbulent and F, /0, so that the assumption
of no interaction between Quids is no longer valid.

We must therefore consider the transition to turbu-
lent Qow of the normal Quid coupled to the superQuid

by mutual friction. We adopt the technique of
Chandrasekhar and Donnelly" which has proved
successful in He II rotation analysis. These authors
adapt the perturbation stability method of classical
hydrodynamics' ' to the two-Quid system. In order to
illustrate the classical method, we brieQy consider a
Quid described by the Navier-Stokes equation:

where

pDv/Dt= —VP+qv'v, (1g)

Dv/Dt= Bv/Bt+ (v v)v. (19)

One assumes that the transition to turbulent Qow is
characterized by the appearance of small, time-
dependent velocity fields superimposed on the laminar
Qow. We thus wish to consider the stability of a per-
turbation v'(r, t) where

v= V(r)+v'(r, t) (2o)

VP= VP+VP'. (21)

Here V(r) and VP are the velocity and pressure
gradient in jaminar Qow. Assuming that the Quid is
uncompressible, we also have the continuity equation

V v=0. (22)

"V'V—vP=0 (24)

for the laminar values. Equation (23) is a linear
differential equation with constant coeKcients and

thus has solutions of the form

v'(r, t) = f(r) expi(k r—cut), (25)

where cu is in general complex. Substitution of Eq. (25)
into Eq. (23) then leads to an algebraic equation for

co(k,R), where

Substituting Eqs. (20) and (21) into Eq. (18) gives to
first order in v'.

pBv'/Bt+ p(V V)v'+ p(v'. V)V= gv2v' —VP', (23)

where we have used

thus the minimum value of R such that

Im&a(k, R))0. (2&)

For E&R„ then, the perturbation v' will increase in
time. At large values of R these perturbations occur
over a wide range of (real) frequencies and wave
numbers, and the Qow is fully turbulent.

Chandrasekhar and Donnelly" have used this tech-
nique to examine the stability of He II Qow between
rotating cylinders, explicitly introducing a mutual
friction coupling force in the two-Quid equations. They
6nd that there are two critical velocities corresponding
to the superQuid and normal Quid, respectively. The
superQuid instability is of the classical Rayleigh type
for inviscid Quids, and the normal-Quid instability is
of the classical Taylor type for viscous Quids. In the
limit of zero mutual friction coupling, these critical
velocities reduce to their classical values. For nonzero
coupling, however, the effect of the mutual friction is
to modify the stability. That is, in the case of the
normal fluid, the critical Taylor number (analogous to
the critical Reynolds number in parallel Row) becomes
a function of the coupling strength

C=Bd/(uv,

(29)

(30)p,Dv,/Dt= —VP,—F,„,

where 8 is the mutual friction constant for rotation, "
d is the width of the angular gap, or is the rotation
frequency and v=q„/p„. Preliminary experimental
results are in complete agreement with these
calculations. '

In the case of He II thermal counterQow the situation
is somewhat different. Here we assume the mutual
friction is set up by the transition of the superQuid to
turbulent Qow. Thus, only the normal Quid transition
can be affected by the mutual friction. We thus antici-

pate, in analogy to the rotation situation, that the
critical Reynolds number appropriate to the onset of
normal Quid turbulence will be a function of the mutual
friction coupling.

We shall not attempt a perturbation stability calcu-
lation of the coupled two-Quid equations for thermal
counter Qow. Indeed, the calculation of the simple
Xavier-Stokes equation for parallel Qow is quite
formidable. '~ Rather, we shall set up the equations and
show how they can be used to interpret experimental
data. We take for the coupled two-fluid equations (see
Eqs. 1 and 2):

p„Dv„/Dt=q V'v VP„+F,„, —

R= ad/g (26) where we take F,„in the simpli6ed form

is the Reynolds number and d is a characteristic dimen-

sion of the system. The critical Reynolds number is

"S. Cbandrasekhar and R. J. Donnelly, Proc. Roy. Soc.
{London) A241, 9 {1957)."C. C. Lin, The Theory of IIydrodynamic Stabi/ity (Cambridge
University Press, London, 1.955).

and define
F, =Ap.p„ivy'v

VP„= (p„/p) VP+ p,$VT,

vp, = (,/p) vp p,svr, —
"R.J. Donnelly, Phys. Rev. Letters 3, 507 (1959).

(31)

(32)

(33)
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such that
VP= VP„+VP, . (34)

v = (V,—V„)+(v, ' —v„')=V+ v';

VP= VP+ VP'. (38)

Using these expressions in Eqs. (30) and (35) gives to
first order in the perturbations:

p, av. '/at+p, (V, v)v, '+p, (v,
' v)V,

= —VP, Vp, '——Ap, p„~V~ V—Ap, p„~V~'v', (39)

p„av„'/at+ p„(V„V)v„'+p„(v„'.v)V„
+p, av, '/at+p, (V, V)v, '+p, (v, ' V)V,

=rt„VsV„+rt„V'v ' —VP —VP'. (40)

Since V, V„VE' and VE', are assumed to represent
the laminar solutions, we have

0= VP, -Ap, p. i
V—i'V, (41)

0=~„V'2V„—VJ.'.
Thus Eqs. (39) and (40) reduce to

p, av. '/at+p, (V, v)v, '+p, (v, ' v)V,
vp, '

Ap p —
I
VI'v'—, (43)

p„av„'/at+p„(V„v)v„'+p„(v„' v)V„
+p, av, '/at+p. (V, v)v, '+p, (v, ' v)V,

=rt Vsv„' —VP'. (44)

Writing Eqs. (43) and (44) in terms of dimensionless
variables (8= tV, /d, V*=Vd, V,*=V,/V„v, *=v, '/V„
V„*=V„/V„, v„*=v„'/V„) gives

(p /p)[ave/ats+(Vs vs)vg+(v @V/)V$]
= —V*P.*/p —(&pd V)

~

V*~'v*, (45)

(p./p)[(p. /p, )av„*/at'+(V„* v*)v *+(v„*v )V„*]
+ (p-Ip) (p./p. )[av.*/at*

+(V,* v*)v,*+(v,* v+)V,+]
= —V*P*/p+(1/R) V*'v„*, (46)

where
R=pV d/rt„.

Equation (45) shows that one effect of the mutual
friction is to couple the velocities v„* and v,*. The
magnitude of the dimensionless number pdA V deter-
mines the importance of the mutual friction term, just
as the Reynolds number E determines the importance
of the viscous term in Eq. (46). The stability of the

Addition of Eqs. (30) and (31) gives another funda-
mental equation

p„Dv„/Dt+ p,Dv, /Dt =rt„V's„VP—. (35)

Introducing the perturbation as in Eqs. (20) and (21),

v„=V„+v„'; VP„=VP„+VP„' (36)

v, =V.+v, ', VP.= VP,+VP, ' (37)
which varies between zero and one, rather than pdA V.
Our assumption thus implies the existence of a universal
function

R,=R,(g) (49)

describing the onset of turbulence in the normal Quid.
We might anticipate that for small coupling, E, will
have essentially its classical value, and decrease with
increasing g. Our assumption is identical with the results
of the Chandrasekhar and Donnelly calculation" for
Qow between rotating cylinders. These authors find that
the normal-Quid critical Taylor number T, is a function
of the coupling strength C [Eq. (28)]. Our assumption
is, of course, highly speculative, but the results may
provide an indication of qualitative behavior. We shall
show that the existence of a function R, (g) offers an
explanation for the observed temperature dependence
of the critical Reynolds number in thermal counterQow,
as well as critical-velocity eGects found in several
diverse experiments.

By using many different channels of different
geometries, Chase' has demonstrated the relevance of
the Reynolds number [Eq. (47)] in giving the tem-
perature, channel size, and geometry dependence of
8', at low temperatures. He 6nds that as the tempera-
ture increases, the critical Reynolds number decreases.
We can interpret this effect in terms of a decrease of
R, with g. Using Chase s results for R, (T) in cylindrical
tubes, we have calculated a value of g for each (R„T)
point. Plotting E, against g then gives the result shown
in Fig. 1. Figure 2 is a similar plot for his rectangular
channel. The rapid drop in E., at g =0.5 is quite striking
in both cases. Figure 3 shows similar calculations using
the results of Brewer and Edwards" in 366-p and
101.6-p, diameter tubes.

The experiments of Staas, Taconis, and van Alphen'
can also be interpreted in terms of R, (g). In these
measurements, critical Reynolds numbers were ob-
tained from pressure-gradient measurements in a Qow
where v=v, —v„=0. From Eq. (48) then, we would
expect g to be quite small, and thus R, to have essen-
tially its classical value (2300) independent of tem-
perature. Indeed, it was found that E,= j.200 for alt
temperatures and for three channel sizes. It would be

"D.F. Brewer and D. 0. Edwards, Phil. Mag. 7, 721 (1962).

normal Quid perturbation v„* is determined by Eq.
(46). This stability is dependent on the magnitude of
R and the effect of the terms in v,*.This latter effect is
determined by the magnitude of pdAV in Eq. (45).
We now postulate that the normal Quid perturbations
become unstable at a particular value of R=E., deter-
mined by the value of pdA V and the system geometry.
It is convenient to use the quantity

g =pdA V/(1+ pdA V)
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FIG. 1. The critical
Reynolds number R, as
a function of the cou-
pling parameter g PEq.
(48}j, calculated from
Chase's temperature
gradient measurements
in cylindrical channels.
The dashed curve is an
extrapolation to small
values of g.

current Qow and the critical Reynolds number remained
constant. In the former case the mutual friction was
increased from the heat current value and R, was
reduced.

Without a detailed calculation of the function R, (g)
it is only possible to give a qualitative description of the
critical heat current H/', . In general, the critical
Reynolds number will increase with decreasing tem-
perature reaching its classical value at about 1.3'K.
The classical value is a function of geometry only
(R,=2300 for circular tubes, =1400 for rectangular
channels) but may be expected to vary somewhat from
these values because of length effects, entrance shape,
and roughness. This general behavior of R, results in a
temperature variation of 8', as shown in Fig. 5. This
temperature variation is in qualitative agreement with
all available critical-heat-current data.

dificult to reconcile these results with those of Chase,
for example, if R, does not vary with the mutual friction.

Another measurement which can be interpreted in
terms of a function R, (g) was reported by Chase. " In
this experiment a rectangular channel (identical with
that of Fig. 2) was rotated an angular frequency co

about either its long or short axes. The critical heat
current was measured as a function of or at 1.4'K. It
was found that at low rotation speeds R, was inde-
pendent of co but decreased rapidly with co at higher
values. In this case a large mutual friction is developed
due to the rotation of the channel. The coupling con-
stant g is thus no longer appropriate as it represents
only the mutual friction due to the heat current 8'. In
Fig. 4 we show Chase's R, data plotted against the
rotation coupling constant of Chandrasekhar and
Donnelly )Eq. (28)g. Comparison of Figs. 2 and 4
reveals a striking similarity. This experiment is the
converse of that of Staas et al.' In the latter case the
mutual friction was reduced from the equivalent-heat-

I
i

I

M6p

20 —107.6 p

cu 16—
O

K
12—

FIG. 3. The critical
Reynolds number 8, as
a function of the cou-
pling parameter g PEq.
i48l) calculated from
Brewer and Edwards
temperature - gradient
measurements in 366-p
and 107.6-p diameter
channels (circles and
squares, respectively).
The dashed curves are
extrapolations to low g
values.

I l I l I ( I

0 0.2 0.4 0.6 0,8
g

The critical heat current Wp is assumed to result from
superAuid turbulence originating at ~,p. With v, p given
by the Feynman formula $Eq. (11)j, we then have

20—

I
I

I
I

l
I

l

Wo= Pl/tmd) ln(d/2ae) pST(p, /p ) . (50)

16—

CU

O
& 12—
Q

0 l I l I l I l

0 0,2 0,4 0,6 0.8
q

Fzo. 2. The critical
Reynolds number 8, as
a function of the cou-
pling parameter g fEq.
(48)j calculated from
Chase's temperature
gradient measurements
in a rectangular channel.
The dashed curve is an
extrapolation to low g
values.

The temperature dependence of 8'p is shown qualita-
tively in Fig. 5. Experimentally it is found that e,pd

is not independent of temperature as given in Eq. (11).
Some investigators 6nd it to be an increasing function
of T" others to be a decreasing function of T" and
others find e,pd increases at low T and decreases at
high T." Recent experiments by Allen et al. ' suggest
that TVp may depend markedly on geometrical irregu-
larities in the channel or heater. In all cases, however,
the magnitude of the temperature variation is small
enough so that the qualitative behavior shown in Fig.
5 is not significantly altered.

~ C. E. Chase, in Proceedings of the UIIth Conference oN Jom
Tem peratlre Physics (University of Toronto Press, Toronto,
1961),p. 438.

"D. F. Brewer and D. O. Edwards, Phil. Mag. 6, 775 (1961).
~ J.N. Kidder and W. M. Fairbank, Phys. Rev. 127, 987 (1962).
~ F. A. Staas and K. W. Taconis, Physica 27, 924 (1961).
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tatj, ve dependence of
pressure gradient
on Reynolds number
for a classical fluid.
The pressure gradi-
ent is plotted on an
arbitrary scale.

methods. In this case the pressure gradient is given by
an empirical expression due to Blasius."

VP= (0.133/R"4)p(v„)'/d.

This expression can also be obtained from semiempirical
theories of turbulent Qow such as Prandtl's mixing
length theory'' As in Eq. (52) for the superfluid, we
can interpret this pressure gradient as an effective
normal-Quid body force.

F„=( 0.1 33/RU4) (p(v„)'/d) R)2R, . (55)
I I I t I I Ill I I I l I IIIl

5 IO 50 IO0 ' 500
R/lO

by solving Eq. (42).

VE= —8g (v )/e'= VED.

Since this expression does not involve the density, the
normal Quid pressure gradient in the second region is
identical with that in the subcritical region LEq. (6)$.
In the third region (W) W,) the normal Quid is turbu-
lent and the pressure gradient is no longer a linear
function of (v„).A classical fluid described by the quanti-
ties p, e„and g„Qowing in a tube of diameter d has
three distinct Qow regimes. For R(R„ the Qow is
laminar and the pressure gradient is that given by Eq.
(53). For R)2R„ the flow is in a fully developed
turbulent state and may be treated by statistical

l6

In the regime of Reynolds numbers R,(R(2R„ the
Qow is in a state of transition from laminar to turbulent
Qow. Pressure gradients in this region tend to show
large Quctuations in time and are greater than the
laminar value [Eq. (53)) but less than the turbulent
value LEq. (54)]."This behavior is shown qualitatively
in Fig. 6. In terms of the usual hydrodynamic stability
analysis (Sec. II), this region is understood in terms
of the growth of unstable perturbations on the laminar
Qow. Landau' has shown on quite general grounds that
the magnitude of these velocity perturbations increases
with R as

v'= const(R —R )"' (56)

for R close to R,. Recent experiments by Donnelly"
and Donnelly and Schwarz" have directly verified this
"Landau law" in the case of Couette Qow. When R
becomes substantially greater than R„ these pertur-
bations occur over a wide range of frequencies and the
Qow is fully turbulent.

The pressure gradient in the transition region may
be accounted for, at least approximately, in terms of an
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MEASUREMENTS IN G S AT 204 C
2

Fxa. 7. The effective viscosity of CS& and He II measured in a
rotating cylinder viscometer as a function of the cylinder velocity
and corresponding Reynolds number. The open circles are the
data of Woods and Hollis-Hallett. The solid lines are plots of
z =&0+& .with p„, given by Eq. (57) using P =0.17 pP for He II
and P=0.025 mP for CSg.

"L.Prandtl, Essentials of Fluid Dynamics (Hafner Publishing
Company, New York, 1952).

~ R. R. Rothfus, C. C. Monrad, and V. E. Senecal, Ind. Eng.
Chem. 42, 2511 (1950)."R.J. Donnelly, Phys. Rev. Letters 10, 282 (1963).

"R. J. Donnelly and K. W. Schwarz, Phys. Letters 5, 322
(1963).



CLASSICAL AND QUANTUM —MECHANICAL TURBULENCE 193

20

00

W,

IO
W(mW/cma)

(a)

t

20

20—

00
I 'I

lo
W(mW/cm~)

(b)

I

20
f

50

28

24—

~ 20CL

~ I6

8—0

T= I.3 4K

W,

t

20
W (mW/em~I

I

50

Fro. 9. The effective normal fluid viscosity se ff obtained from VP/W for a 107.6-p diameter channel. The open circles are the meas-
ured values of Brewer and Edwards, and the solid lines the effective viscosity calculated from equations given in the text. Results are
for 1.3, 1.56, and 1.8'K.

eddy viscosity due to the perturbations PEq. (56)$ of given by Eq. (55) at 2R, as in Fig. 6. Such an approach
the form cannot be expected to give great accuracy, but might

q„,=P (R—R,)'is, (5/) yield agreement with experiment.

where P may be expected to vary with system geometry
and temperature. Evidence for this eddy viscosity can
be adduced from the rotating cylinder measurements
of Woods and Ho/lis-Hallett. " In these experiments
the outer cylinder was rotated and the viscosity of the
working Quid obtained from the torque on the inner.
Measurements were made on CS2 and He II, and the
results are shown in Fig. 7. The results are consistent
with an eddy viscosity of the form given in Eq. (57)
and clearly show the similarity of He II Row to classical
Qow. Note in particular that the critical Reynolds
number for the He II and CS2 are identical within
experimental error.

The vibrating-wire measurements of Tough, McCor-
mick and Dash' also can be interpreted in terms of a
normal-Quid eddy viscosity. In these experiments the
damping force on a fine wire in He II was measured as
a function of heat current. Below the critical heat
current 8', the damping was due solely to the normal
Quid viscosity, q„. Above 8', an excess damping force
was observed which varied as (R—R,)'i'. This can be
interpreted as the effect of a normal Quid eddy viscosity
as in Eq. (57).

For lack of a more detailed theory of the transition
region, therefore, we will assume that the pressure
gradient is given by the laminar expression LEq. (53)]
with an effective viscosity rf„+ri„,

VP= —(8!o')(n +rf )(v )
=VPo+F„; R,&R&2R, . (58)

The eddy viscosity is given by Kq. (57) with P an un-
determined parameter. We shall fix P by requiring that
F„given by Eqs. (5/) and (58) join smoothly to F„

"A. D. B. Woods and A. C. Hollis-Hallett, Proceedings of the
Vth Internutional Conference on Low Temper/Jture Physics &'
Chemistry (University of Wisconsin Press, Madison, Wisconsin,
1958), p. 16.

VP=g„V'e„—P,—F„,
p,SV T=(p,/p)VP+F, „+F,.

Defining the subcritical values (Sec. I):
VPp

——7/I„V'v„,

p,SV'Tp= V'Pp,
we have

VP=VPp —I',—F„

(59)

(6O)

(61)

(62)

(63)

V T'= V &a+ (p„/p)F, /pS F„/pS+F,„/p—,S. (64)

The qualitative dependence of VP/W on W given by
Kq. (63) with F, and F„given by Eqs. (52), (55) and
(58) is shown in Fig. 8. There is a linear increase in
VP/W for W) Wo due to F„followed by a relatively
abrupt increase at W, . For W)&W„VP/W should
vary as 8' or 5''i" depending on whether F, or P„ is
the larger. The relative magnitudes of the Ii, and Ii„
contributions will depend on the dimensions of the
system and temperature. The behavior shown in Fig.
8, however, is qualitatively like that found in all
pressure-gradient measurements.

Let us consider in detail the pressure gradient meas-
urements of Brewer and Edwards. "They used a 107.6-p
diameter conduction tube and measured the pressure
gradient as a function of heat current for temperatures
of 1.8, 1.56 and 1.3'K. The present their data in the
form of an effective viscosity defined as

rf, rr = (aspST/8) VP/W (65)

IV. TEMPERATURE AND PRESSURE GRADIENTS
IN THERMAL COUNTERFLOW

Using F„P„and P,„developed in the previous
sections, the pressure and temperature gradients can
be written



194 J. T. TOU GH

Fzo. 10 The quali-
tative dependence of
VT/8 on heat cur-
rent. The total eBect
is shown as the sum of
contributions from
normal Quid turbu-
lence {F„),superQuid
turbulence {F,), and
mutual friction (F ).
The VT/IV scale is
arbitrary.
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as a function of the relative velocity

mentioned in Sec. II, we have neglected any "build-up"
process in the mutual friction which might modify F,„
at low (W=Wp) heat currents. Vinen's measurements
of transient effects' clearly demonstrate that such a
"build-up" process does exist, however. The tempera-
ture gradient measurements of Brewer and Edwards"
made in a 52-p tube at low (W=Wp) heat currents
clearly show the effect of this "build-up" on the thermal
resistance to be confined to a small "transition region"
near lVO. They also noted large spontaneous fluctuations
in the temperature gradient in this region. Referring
again to Fig. 10, it can be seen that the "bump" in the
thermal resistance is due to the onset of the F„term at
8',. Unlike the pressure-gradient results, if 8',))Wo the
effect of F„on the total resistance becomes negligible.

%e consider in detail the temperature-gradient
measurements of Chase' made in 0.080-cm diameter
tubes. Chase presents his data in terms of an excess
temperature gradient:

v= W/p, ST. (66) VT*=VT—V To, (67)

Using F, given in Eq. (52) and F„given by Eqs. (55)
and (58), we have calculated rf.rr. The calculations are
shown as solid lines in Fig. 9 along with Brewer and
Edwards' measurements. A value of n I Eq. (52)$ of
0.2 cgs units was found. to fit all the data. There seems
to be a systematic discrepancy which is largest at 1.3'K.
This may, however, be a result of the approximate
treatment of the transition region. Staas et a/. ' have
made pressure-gradient measurements at 1.7'K in a
255 tube up to =38',. They find that the pressure
gradient above t/V, is equal to that given by Blasius'
expression LEq. (54)$ which we have called F„.This
result is somewhat surprising in that for a 255-p, tube
at 1.7'K we calculate a value of F, essentially equal to
F„, if n is taken to be 0.2. This would result in VP/W
varying essentially as 5", but with about twice the
magnitude given by F„alone.

In a series of measurements made over a wide

temperature range with 82-p, , 174-p, and 255-p, tubes,
and with a flow designed to give v, =v„, Staas et aV
find that again Blasius' pressure-gradient expression

t Eq. (54)J agrees with experiment. In this case,
however, F, is approximately zero since v= v,—v„=0,
and we would expect only F„ to contribute to the
pressure gradient, in agreement with experiment.

The values of the critical heat currents t/t/'0 and t/I/',

corresponding to e,o and v„„which were considered

quantitatively in Sec. II, are shown in Fig. 9. There is

little difhculty in locating t/t/', from pressure-gradient
measurements. t/t/"0 becomes dificult to measure in small

channels at low temperatures when F, becomes quite
small. Fortunately t/t/0 is readily measured in tempera-
ture gradient measurements.

The qualitative behavior of VT/W, the thermal
resistance as given by Eq. (64), is shown in Fig. 10.
Here we expect the F,„term to dominate at high heat
currents since it increases most rapidly with t/t/. As
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FIG. 1i. The excess temperature gradient VT* I Kq. {67))«r
an 0.08-cm diameter channel. The open circles are the measured
values of Chase, and the solid lines the excess temperature
gradient calculated from equations given in the text. Results are
for 1.15, i.3, and 1.8'K.

where V Tp is given by Eq. (62) and VT is the measured
gradient. We have calculated VT* from Eq. (64) at
1.15, 1.3 and 1.8'K using F„F,„, and F„given by
Eqs. (52), (15), (55), and (58). Since A, the mutual
friction constant, is found to vary from one system to
another, "we have treated it as a parameter, choosing
A such that the calculated and experimental tempera-
ture gradients agree at the highest measured heat
current. In this region F,„is the dominant contribution
to the thermal resistance and it is felt this fitting pro-
cedure is justified. The resulting values of A agree
closely with those found by Kramers" in a 2.6-mm
diameter tube.

In Fig. 11 we show the calculated VT* along with
some of Chase's data. At all three temperatures the
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agreement is quite good. Note in particular the marked
curvature of the 1.15'K curve due to a large contri-
bution from F„.In Fig. 12 we show the excess thermal
resistance VT*/W for low heat currents. At the low
temperatures 1.15 and 1.3'K., the "bump" due to the
onset of P„at 5', is quite dominant, but at 1.8'K has
become masked by the F,„ term. This eRect has also
been observed by Vinen' and others. It is dificult to
explain this penomenon without the assumption of two
critical heat currents. Vinen'4 refers to TV, as the critical
heat current and regards the rise in thermal resistance
for lV($', as due to "subcritical turbulence. " Brewer
and Edwards, " on the other hand, regard 8'0 as the
critical heat current and interpret the rise in resistance
at 8', as due to a mutual friction build-up process. This
interpretation of thermal resistance can also be applied
to temperature gradients measured in "pure superQow. "
In that case the thermal resistance is found to increase
smoothly with no evidence of a "bump. '"4 This is
consistent with the present model, since the "bump"
is thought to arise from the onset of normal-Quid.
turbulence which is absent in these experiments.

The velocity-field measurements of Allen, GrifBths
and Osborne' to a large extent oRer direct experimental
veri6cation for the nature of the three Qow regions.

'4T. M. Wiarda, G. von den Heyden, and H. C. Kramers,
Proceedings of the IXth International Conference on I.om Tempera-
tlre Physics (Plenum Press, Inc. , New York, 1965), p. 284.

Using a 6ne quartz fiber to detect circulation and
velocity Quctuations in a heat current, they have
demonstrated the existence of three distinct Qow

regions. In the first (subcritical) region they find that
the normal Quid is laminar and the superQuid undis-
turbed. Observations in the second region suggest an
increasing density of disordered vortex line in the
superQuid. The third region is characterized by random
Quctuations of the normal-Quid velocity as would be
expected in turbulent Qow.

In general, then, it appears that the present model
based on normal and superQuid turbulence gives a
qualitative and often quantitative description of tem-
perature and pressure gradients in thermal counterQow,
as well as critical heat currents. It also provides a
framework in which such diverse experiments as "pure
superQow'""' and the Staas, Taconis, van Alphen
experiment (v„—v, =0) may be understood. While
there is every reason to believe that He II Qow phe-
nomena are far more complicated than presented here,
it is felt that the present model oRers a new and
promising basis for future study.
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