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The theory of the He II thermal counterflow process in wide (¢>1073 cm) channels is investigated on the
assumption that both the normal and superfluid components make a transition from a laminar to a turbulent
type of flow. A critical heat current W is identified with the superfluid transition. The superfluid turbulent
stateis taken to be essentially that described by Vinen in terms of quantized vortex line and has an associated
mutual friction. A second critical heat current W, is identified with the normal-fluid transition. It is argued
that this transition is essentially of a classical turbulent type, with the added condition that the critical value
of the Reynolds number must depend on the extent of mutual-friction coupling. This interpretation is
shown to be consistent with experimentally observed critical heat currents, as well as with critical-velocity
effects found in other types of flow. The assumption of two crticial heat currents defines three distinct flow
regions. It is shown that these three regions are essentially the same as those found experimentally by Allen,
Griffiths, and Osborne. On the basis of some simplifying assumptions regarding the normal-fluid turbulent
state, the temperature and pressure gradients accompanying thermal counterflow are calculated. Comparison
with experiment shows good qualitative and often quantitative agreement. It is also shown that the model

8 APRIL 1966

developed can be successfully used to interpret experiments involving flows of a nonthermal counterflow

type.

INTRODUCTION

EARLY experiments on the heat transfer in He II
revealed an anomalously high thermal conduc-
tivity for sufficiently small heat flow. This is now
understood in terms of a two-fluid model in which heat
is transferred by the flow of a viscous normal fluid
accompanied by a counterflow of an inviscid superfluid.
Hydrodynamic equations have been developed for
these two fluids, and are consistent with experimental
observation for low heat flow.

In heat currents greater than some critical value,
nonlinear effects are observed. Vinen' has shown that
for heat currents not too near the critical value, many
experimental results are consistent with a model of
superfluid turbulence involving quantized vortex lines.
Some more recent measurements, however, are more
readily understood in terms of a turbulent normal
fluid.2-5 The purpose of this paper is to show that a
model based on turbulence in both the normal and
superfluid components offers a qualitative and often
quantitative agreement with experiment. Not only
does the model offer explanations for several heretofore
unexplained effects, but exhibits in several instances the
similarity between heat conduction and rotation effects.

The discussion will generally be restricted to tem-
perature and pressure gradients accompanying thermal
counterflow in wide (¢>10~% cm) channels, although
other systems will be considered when there appears
to be some unifying feature. Subcritical heat currents
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are considered in Sec. T in order to present the linearized
two-fluid equations. In Sec. IT the critical heat currents
corresponding to the two turbulent flows are considered
in detail. In particular, the effect of mutual friction on
the normal-fluid transition is shown to be consistent
with experimentally observed critical heat currents. In
Sec. TIT the effects of turbulence in the two fluids is
considered. The temperature and pressure gradients
arising from normal fluid and superfluid turbulence are
compared with experiment in Sec. IV.

I. SUBCRITICAL HEAT CURRENTS

There are several developments of the two-fluid
hydrodynamic equations.®? The generally accepted
form is

PrdVn/ 84 pa (Vo V)Vu=02V?V,— (on/P)VP
—p,gSVT’I"an, (1)

psavs/aH-ps (Vs' V)vs': (_"ps/P)VP'_I'"psSVT'—an ) (2)

where p, and p, are the normal and superfluid densities,
p is the total fluid density (p=pa+ps), Vo and v, are
the normal and superfluid velocities, 7, the normal fluid
viscosity, VP and VT the pressure and temperature
gradients, S the entropy per gram, and F,, the mutual
friction force. If we consider only subcritical heat
currents, F,,=0, and we can assume the velocities v,
and v, are small and time-independent. Thus we have

VP=pSVT 3
London’s equation, and
(—pn/p)VP=pSYT—1,V?Vn. @)

6. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts,
1959).

77. G. Daunt and R. S. Smith, Rev. Mod. Phys. 26, 172 (1954).
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Combining Eqgs. (3) and (4) gives
VP=9,V?v, ©)

an equation equivalent to the Poiseulle equation in
classical hydrodynamics. In the case of flow through a
circular tube of radius ¢ under a constant pressure
gradient, this equation can be solved to give®

(Va)=—(a*/81.)V P, (6)

where (v,) is the average of v, over the tube cross
section.

In terms of the two-fluid model, the normal fluid
carries the total entropy of the fluid, and a heat current
W (erg/cm? sec) is supported by a flow of the normal
fluid at (v,):

W=pST(Va). @)

If we also impose a condition of no net mass transfer,
we have
ann+Psvs =0. (8)

For subcritical heat currents, we then have from Egs.
(6) and (7):
VP=—81,W/a?ST. )

Combining this with Eq. (3) gives
VT=—80,W/a(oST):. (10)

Equations (9) and (10) have been used to compute 9,
from measurements of VP or VT in thermal counter-
flow. The viscosity measured by this technique is found
to agree closely with that found by most other methods,
with the exception of the oscillating disc.® The experi-
mental evidence, therefore, seems to verify the sub-
stantial validity of Egs. (9) and (10).

II. THE CRITICAL HEAT CURRENTS

In a series of theoretical and experimental papers,!
Vinen has given a detailed theory of superfluid turbu-
lence. In Vinen’s model, the turbulent superfluid is
pictured as containing a ‘“‘tangled mass of quantized
vortex lines.” The superfluid velocity necessary for the
production of a single vortex line at 7=0 in a tube of
diameter “d” has been given by Feynman® as

vs= (%/md) In(d/2ay), (11)

where ao is the vortex core radius. More detailed
derivations have been given,~2 but most result in an
expression in order of magnitude agreement with

vd=h/m. 12)

8 D. F. Brewer and D. O. Edwards, Proc. Roy. Soc. (London)
A251, 247 (1959).
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by C. J. Gorter (North-Holland Publishing Company, Amster-
dam, 1955), Vol. 1, Chap. II.

©V. P. Peshkov, in Proceedings of the VIIth International
Conference on Low Temperature Physics (University of Toronto
Press, Toronto, 1961), p. 555.
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We shall denote by v, this critical value of the super-
fluid velocity. The corresponding heat current W, is

then
Wo= (ps/pn)pST0s0 (13)

from Egs. (7) and (8). The presence of vortex lines in
the superfluid provides scattering centers for the ex-
citations composing the normal fluid.**** This scattering
results in an effective mutual friction between the two
fluids, represented in Egs. (1) and (2) by F,,. By con-
sidering the processes by which vortex line is generated
and decays, Vinen is able to show that F,, is approxi-
mately of the form

(14)

where v is the relative velocity v=v,—v,. Vinen’s
derivation assumes v>>vy (so that the distribution of
line may be assumed random) and is thus not incon-
sistent with the form

an’_‘APspnivva

(15)

which more closely fits the experimental data. By con-
sidering the process of vortex annihilation at the channel
walls, Vinen has also shown that a mutual friction
similar to that described by Eq. (15) would arise. In
this expression for F,, we mean by v, the value of
V=V,—V, when v,= vy or W=W,. Equation (15) then
assures that no mutual friction appears until vortex
lines are formed in the superfluid. The quantity 4 in
Eq. (15) is calculated by Vinen, but is generally taken
as an experimental parameter.’® It is clear physically
that there must be an initial “build-up” process during
which a “tangled mass of vortex line” is formed, and
Fsyn approaches its equilibrium value in Eq. (15). For
simplicity we shall assume that Eq. (15) is valid for all
V>V and defer further discussion of the “build-up”
process to Sec. IV.

The onset of superfluid turbulence at W, provides
one mechanism for nonlinear hydrodynamic behavior.
We shall assume that there is also a transition to
turbulent flow in the normal fluid at a heat current
W., where

an=APsPu|V“V0|2V§ VZVO

Wc= PST'Unc

and v, is the critical normal-fluid velocity.

If we were to assume there was no interaction
between the normal fluid and superfluid (that is, if
Fo,=0) then we would expect from Eq. (1) that v,,
would be given by a constant value of the Reynolds
number,

a7

consistent with the channel geometry of characteristic
dimension d. For a critical value of R, of about 2X10?

(16)

Rn""'ﬂnvncd/ﬂn

(typical for tubes of circular cross section), Eq. (17)

8 G. W. Rayfield and F. Reif, Phys. Rev. 136, A1194 (1964).

“H. E. Hall and W. F. Vinen, Proc. Roy. Soc. (London) A238,
204 (1956); A238, 215 (1956).

15 H. C. Kramers, Physica 26, 581 (1960).
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gives very large values of v,.. For temperatures larger
than about 1.0°K, the corresponding value of
95 (Vs="nepn/ps) is many times larger than the critical
value 5 given by Eq. (11). In this case the superfluid
would be turbulent and F,,7#0, so that the assumption
of no interaction between fluids is no longer valid.

We must therefore consider the transition to turbu-
lent flow of the normal fluid coupled to the superfluid
by mutual friction. We adopt the technique of
Chandrasekhar and Donnelly'® which has proved
successful in He II rotation analysis. These authors
adapt the perturbation stability method of classical
hydrodynamics®'” to the two-fluid system. In order to
illustrate the classical method, we briefly consider a
fluid described by the Navier-Stokes equation:

pDv/Di=—V p+4Viv, (18)

where
Dv/Dit=9v/dt+ (v- V)v. (19)

One assumes that the transition to turbulent flow is
characterized by the appearance of small, time-
dependent velocity fields superimposed on the laminar
flow. We thus wish to consider the stability of a per-
turbation v'(r,f) where

v=V(r)+ Vv (r,0) (20)
and

Vp=VP+Vy. 21)

Here V(r) and VP are the velocity and pressure
gradient in Jaminar flow. Assuming that the fluid is
uncompressible, we also have the continuity equation

v.v=0. (22)

Substituting Eqs. (20) and (21) into Eq. (18) gives to
first order in v':

pdV [ 0t4-p(V- V)V +p (V- V)V=V2¥'— V', (23)
where we have used

7V2V—VP=0 (24)

for the laminar values. Equation (23) is a linear
differential equation with constant coefficients and
thus has solutions of the form

v (r,t)=1(r) expi(k-r—w?), (25)

where o is in general complex. Substitution of Eq. (25)
into Eq. (23) then leads to an algebraic equation for
w(k,R), where

R=pid/q (26)

is the Reynolds number and d is a characteristic dimen-
sion of the system. The critical Reynolds number is

16 S. Chandrasekhar and R. J. Donnelly, Proc. Roy. Soc.
(London) A241, 9 (1957). .

171 C, C. Lin, The Theory of Hydrodynamic Stability (Cambridge
University Press, London, 1955).
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thus the minimum value of R such that
Imw (£,R)>0. 27

For R>R,, then, the perturbation v’ will increase in
time. At large values of R these perturbations occur
over a wide range of (real) frequencies and wave
numbers, and the flow is fully turbulent.

Chandrasekhar and Donnelly'® have used this tech-
nique to examine the stability of He II flow between
rotating cylinders, explicitly introducing a mutual
friction coupling force in the two-fluid equations. They
find that there are two critical velocities corresponding
to the superfluid and normal fluid, respectively. The
superfluid instability is of the classical Rayleigh type
for inviscid fluids, and the normal-fluid instability is
of the classical Taylor type for viscous fluids. In the
limit of zero mutual friction coupling, these critical
velocities reduce to their classical values. For nonzero
coupling, however, the effect of the mutual friction is
to modify the stability. That is, in the case of the
normal fluid, the critical Taylor number (analogous to
the critical Reynolds number in parallel flow) becomes
a function of the coupling strength

C=Bd/wv, (28)

where B is the mutual friction constant for rotation,*
d is the width of the angular gap, w is the rotation
frequency and v»=1%s/ps. Preliminary experimental
results are in complete agreement with these
calculations.!®

In the case of He IT thermal counterflow the situation
is somewhat different. Here we assume the mutual
friction is set up by the transition of the superfluid to
turbulent flow. Thus, only the normal fluid transition
can be affected by the mutual friction. We thus antici-
pate, in analogy to the rotation situation, that the
critical Reynolds number appropriate to the onset of
normal fluid turbulence will be a function of the mutual
friction coupling.

We shall not attempt a perturbation stability calcu-
lation of the coupled two-fluid equations for thermal
counterflow. Indeed, the calculation of the simple
Navier-Stokes equation for parallel flow is quite
formidable.l” Rather, we shall set up the equations and
show how they can be used to interpret experimental
data. We take for the coupled two-fluid equations (see
Egs. 1 and 2):

anvn/Dt:"ﬂnVZvn_ VPn-l"an ’ (29)
paDVs/Dt= - V?s""an ) (30)
where we take F., in the simplified form
an=ApsPnlv|2V (31)
and define
Vpu= (Pn/ﬁ)vﬁ'l'PsSVT; (32)
Vps=(ps/0)V—psSVT, (33)

18 R. J. Donnelly, Phys. Rev. Letters 3, 507 (1959).



144
such that
Vp': Vpn"*— Vps . (34:)

Addition of Eqgs. (30) and (31) gives another funda-

mental equation
p2DVy/DiA4-p, DV /Dt=13,V20,— Vp. (35)

Introducing the perturbation as in Egs. (20) and (21),

Va=Votv,); Vp,=VP,+Vp, (36)

vi=V,+v)/; Vp,=VP+Vp,/ 37

V= (Vs"" Vn)+ (Vs,"— Vn,) = V+ V, 3
Vp=VP+Vp'. (38)

Using these expressions in Egs. (30) and (35) gives to
first order in the perturbations:

Psavs,/at"{“l)s (Vs * V)vs,+ps (vs, N V)Vs

=—VP,—Vp'—Apepa| V|*V—Apspa| V|?V', (39)
0V /3t pn (Vo VIV +pu (v - V)V,
+Psavs,/al+ps (Vs : V)vs,+Ps (vs, ‘ V)Vs
=1V, — VP— V. (40)

Since V., V;, VP and VP, are assumed to represent
the laminar solutions, we have

0=—VP, —Ap,p.| V|2V, (41)
0=1.7*V,— VP. 42)
Thus Egs. (39) and (40) reduce to
Psavsl/at—’_ps (Vs * V)vs,+Ps (vs,' V)Vs
= Vpsl_Apspnl V] v, 43)
Pnavnl/at'—l_pn (Vn' V)vn/+l-7n (vn,° V)Vn
+Psavs,/at+Ps (Vs * V)vs,+P3 (Vs, * V)Vs
=1,Vv,/—Vp'. (44)

Writing Eqgs. (43) and (44) in terms of dimensionless
variables (*=1(V,/d, V*=Vd, V*=V,/V,, v*=v//V,,
V¥ =V./Va, vi*=v,//V,) gives

(Pn/P) [6Vs*/3t*+ (V¥ v¥)v (ve* V¥V.*]
=—V*p*/p— (ApdV)| V*|2v¥, (45)

(0n/P)L(pn/ ps) OVa*/ 35+ (V- V¥V 2+ (vi*- V)V, *]
+ (Pn/P) (Pn/PS)[avs*/at*
+ (V5 v (75 V9V
= V*p*/p‘l" (I/R)V*zvn* ’

R= Pvnd/ Nn. (47)

Equation (45) shows that one effect of the mutual
friction is to couple the velocities v,* and v,*. The
magnitude of the dimensionless number pdAV deter-
mines the importance of the mutual friction term, just
as the Reynolds number R determines the importance
of the viscous term in Eq. (46). The stability of the

(46)

where
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normal fluid perturbation v,* is determined by Eq.
(46). This stability is dependent on the magnitude of
R and the effect of the terms in v,*. This latter effect is
determined by the magnitude of pdAV in Eq. (45).
We now postulate that the normal fluid perturbations
become unstable at a particular value of R=R, deter-
mined by the value of pdAV and the system geometry.
It is convenient to use the quantity

g=pdAd V/ (14-pd4 V) (48)

which varies between zero and one, rather than pd4 V.
Our assumption thus implies the existence of a universal
function

R.=R.(g) (49)

describing the onset of turbulence in the normal fluid.
We might anticipate that for small coupling, R, will
have essentially its classical value, and decrease with
increasing g. Our assumption is identical with the results
of the Chandrasekhar and Donnelly calculation'® for
flow between rotating cylinders. These authors find that
the normal-fluid critical Taylor number T is a function
of the coupling strength C [Eq. (28)]. Our assumption
is, of course, highly speculative, but the results may
provide an indication of qualitative behavior. We shall
show that the existence of a function R.(g) offers an
explanation for the observed temperature dependence
of the critical Reynolds number in thermal counterflow,
as well as critical-velocity effects found in several
diverse experiments.

By using many different channels of different
geometries, Chase? has demonstrated the relevance of
the Reynolds number [Eq. (47)] in giving the tem-
perature, channel size, and geometry dependence of
W, at low temperatures. He finds that as the tempera-
ture increases, the critical Reynolds number decreases.
We can interpret this effect in terms of a decrease of
R, with g. Using Chase’s results for R,(T) in cylindrical
tubes, we have calculated a value of g for each (R,,T)
point. Plotting R, against g then gives the result shown
in Fig. 1. Figure 2 is a similar plot for his rectangular
channel. The rapid drop in R, at g=~0.5 is quite striking
in both cases. Figure 3 shows similar calculations using
the results of Brewer and Edwards® in 366-u and
107.6-u diameter tubes.

The experiments of Staas, Taconis, and van Alphen3
can also be interpreted in terms of R,(g). In these
measurements, critical Reynolds numbers were ob-
tained from pressure-gradient measurements in a flow
where v=v,—v,~0. From Eq. (48) then, we would
expect g to be quite small, and thus R, to have essen-
tially its classical value (2300) independent of tem-
perature. Indeed, it was found that R,=1200 for all
temperatures and for three channel sizes. It would be

¥ D. F. Brewer and D. O. Edwards, Phil. Mag. 7, 721 (1962).
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F1c. 1. The critical
L 4 Reynolds number R, as
~ a function of the cou-
o pling parameter g [Eq.
~ F 1 (48)], calculated from
o Chase’s temperature
gradient measurements
in cylindrical channels.
The dashed curve is an

8— —| extrapolation to small
B | wvalues of g.
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difficult to reconcile these results with those of Chase,
for example, if R, does not vary with the mutual friction.

Another measurement which can be interpreted in
terms of a function R,(g) was reported by Chase.® In
this experiment a rectangular channel (identical with
that of Fig. 2) was rotated an angular frequency w
about either its long or short axes. The critical heat
current was measured as a function of w at 1.4°K. It
was found that at low rotation speeds R. was inde-
pendent of w but decreased rapidly with w at higher
values. In this case a large mutual friction is developed
due to the rotation of the channel. The coupling con-
stant g is thus no longer appropriate as it represents
only the mutual friction due to the heat current W. In
Fig. 4 we show Chase’s R, data plotted against the
rotation coupling constant of Chandrasekhar and
Donnelly [Eq. (28)]. Comparison of Figs. 2 and 4
reveals a striking similarity. This experiment is the
converse of that of Staas ef al® In the latter case the
mutual friction was reduced from the equivalent-heat-

S i I
20— —
B 7 Fic. 2. The critical
- | Reynolds number R; as
a function of the cou-
S T h pling parameter g [Eq.
< 12— | (48)] calculated from
g Chase’s temperature
u . gradient measurements
8l— | in a rectangular channel.
The dashed curve is an
= e extrapolation to low g
4 _ values.
ot 1L v 1 4 1
0 02 04 06 08

2 C. E. Chase, in Proceedings of the VIIih Conference on Low
Temperature Physics (University of Toronto Press, Toronto,
1961), p. 438.
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current flow and the critical Reynolds number remained
constant. In the former case the mutual friction was
increased from the heat current value and R, was
reduced.

Without a detailed calculation of the function R,(g)
it is only possible to give a qualitative description of the
critical heat current W,. In general, the critical
Reynolds number will increase with decreasing tem-
perature reaching its classical value at about 1.3°K.
The classical value is a function of geometry only
(R.~2300 for circular tubes, ~1400 for rectangular
channels) but may be expected to vary somewhat from
these values because of length effects, entrance shape,
and roughness. This general behavior of R, results in a
temperature variation of W, as shown in Fig. 5. This
temperature variation is in qualitative agreement with
all available critical-heat-current data.

n
@

““““ ~o N F1c. 3. The critical
200~ 076 &~~~ —  Reynolds number R. as

N al.functxon Oft the I:c](gu—
o pling parameter q-
o (48) calculatedg from
o Brewer and Edwards
N o 1 temperature - gradient
o measurements in 366-x
and 107.6-x diameter
channels (circles and
squares, respectively).
The dashed curves are
extrapolations to low g
values.

The critical heat current W, is assumed to result from
superfluid turbulence originating at v5. With v, given
by the Feynman formula [Eq. (11)], we then have

Wo= (1/md) In(d/2ae)pST (0s/pn) - (50)

The temperature dependence of W, is shown qualita-
tively in Fig. 5. Experimentally it is found that v,,d
is not independent of temperature as given in Eq. (11).
Some investigators find it to be an increasing function
of T\2 others to be a decreasing function of 7', and
others find v,d increases at low T and decreases at
high 7% Recent experiments by Allen et al.’ suggest
that Wy may depend markedly on geometrical irregu-
larities in the channel or heater. In all cases, however,
the magnitude of the temperature variation is small
enough so that the qualitative behavior shown in Fig.
5 is not significantly altered.

2D, F. Brewer and D. O. Edwards, Phil. Mag. 6, 775 (1961).
2 J, N. Kidder and W. M. Fairbank, Phys. Rev. 127, 987 (1962).
B F, A. Staas and K. W. Taconis, Physica 27, 924 (1961).
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F16. 4. The critical Reynolds number R, as a function of the
rotational coupling parameter C [Eq. (28)] calculated from
Chase’s temperature-gradient measurements in a rotating rec-
tangular channel. Results are shown for rotation about an axis
p}altralle{ to the long side (a) and short side (b) of the rectangular
channel.

III. THE EFFECTS OF TURBULENCE

The assumption that there are two critical heat
currents W, and W,>W, defines three regions of
interest. The first, W<W,, is the subcritical regime
and was treated in Sec. I. In the second region,
Wo<W <W,, the superfluid is turbulent. This turbu-
lence is probably in the form of a ‘“tangled mass of
vortex line” as described by Vinen,! and generates the
mutual friction force. In the third region, W>W,, both
the normal and superfluid are turbulent. In the second
and third regions the hydrodynamic behavior of the
normal fluid is scaled by the Reynolds number in Eq.
(47). That is, it behaves as if it had a density p rather
than p, due to its coupling to the superfluid. We shall
treat the normal fluid as a classical turbulent fluid in
the third region. Support for this assumption comes
from the Chandrasekhar and Donnelly calculation®
which shows that the normal-fluid instability in rota-
tion is of the classical Taylor type. Direct evidence for
three distinct flow regions essentially as described above
has recently been obtained by Allen, Griffiths and
Osborne.> We shall defer discussion of this experiment
to the latter part of Sec. IV.

In terms of these assumptions, any nonlinear effects
occurring in the second region are a result of superfluid
turbulence. Vinen,* as well as others,**~?7 has suggested
that the presence of vortex lines in the superfluid could
give rise to a superfluid eddy viscosity 5,. This would
result in a superfluid force

Fy=1,V,; (51)

vs> Vso

% W. F. Vinen, Progress in Low Temperature Physics, edited by
C. J. Gorter (North-Holland Publishing Company, Amsterdam,
1960), Vol. III, Chap. 1.

% K. R. Atkins, Liguid Heliwm (Cambridge University Press,
London, 1959).

26 D. F. Brewer and D. O. Edwards, Phil. Mag. 6, 1173 (1961).

%1 P. P. Craig, in Proceedings of the VIIIth International Con-
ference on Low Temperature Physics (Butterworths Scientific
Publications Ltd., London, 1963), p. 102.
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to be added to the right-hand side of Eq. 2. The “pure
superflow” experiments of Kidder and Fairbank? have
been interpreted in terms of such a force. Using an
elaborate and sensitive pressure-measuring technique,
they find that above a critical superfluid velocity v, a
pressure gradient

VP=a(v—1vo)v=F, (52)
is observed. Their measurements were confined to one
tube diameter (d=1.1 mm) and to four temperatures
(T'=1.26,1.30,1.48, 1.57°K). The quantity « was found
to vary slowly with temperature, and was approxi-
mately 0.2 cgs units. Recent isothermal-flow measure-
ments by Kidder and Blackstead?® at 0.4°K give
similar results for a wide range of diameters. Although
in neither of these cases are the boundary conditions
expected to be identical with those in thermal counter-
flow, the results strongly suggest a force of the type
given in Eq. (52) may be present. Taken together,
Egs. (51) and (52) imply that 5, should depend simply
on the mean spacing of vortex lines. If such an inter-
pretation is correct, a superfluid eddy viscosity should
also be observed in rotation experiments where, for
rotation at angular frequency w, the mean spacing of
vortex lines is proportional to w'2 Indeed, Craig?
has shown that the velocity profiles measured in a
rotating-bucket experiment are most simply inter-
preted in terms of an eddy viscosity proportional to
w'2, For consistency, the normal fluid Reynolds
number in Eq. (49) should be defined with a total
viscosity 7,+7s. Experimentally, however, 7,257, so
that the qualitative results of Sec. II are not signifi-
cantly affected.

In the second region, the flow of the normal fluid is
laminar, and the pressure gradient necessary to produce
amean velocity (v,) in a circular tube of radius ¢ is found

Fic. 5. The qualita-
tive temperature de-
pendence of the critical
heat currents W, and
We.. Wo and W, are
plotted on the same L
arbitrary vertical scale.

Wo, We

W(T) for vso
increasing with T

WAT) fron; egn. 50
1 1
10 14 18 .
TeK) ez

% J. N. Kidder and H. A. Blackstead, in Proceedings of the
IXth International Conference on Low Temperature Physics
(Plenum Press, Inc., New York, 1965), p. 331.
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by solving Eq. (42).

VP=—8nu(Vs)/a*= VPs. (53)
Since this expression does not involve the density, the
normal fluid pressure gradient in the second region is
identical with that in the subcritical region [Eq. (6)].
In the third region (W>W,) the normal fluid is turbu-
lent and the pressure gradient is no longer a linear
function of {v,). A classical fluid described by the quanti-
ties p, v» and 7, flowing in a tube of diameter d has
three distinct flow regimes. For R<R,, the flow is
laminar and the pressure gradient is that given by Eq.
(53). For RS2R,, the flow is in a fully developed
turbulent state and may be treated by statistical
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methods. In this case the pressure gradient is given by
an empirical expression due to Blasius.?

VP=(0.133/R")p(v,.)%/d. (54)
This expression can also be obtained from semiempirical
theories of turbulent flow such as Prandtl’s mixing
length theory?® As in Eq. (52) for the superfluid, we
can interpret this pressure gradient as an effective
normal-fluid body force.
Fo=(0.133/RY%) (o(va)?/d); RX2R.. (55)
In the regime of Reynolds numbers R, < R<2R,, the
flow is in a state of transition from laminar to turbulent
flow. Pressure gradients in this region tend to show
large fluctuations in time and are greater than the
laminar value [Eq. (53)] but less than the turbulent
value [Eq. (54)].% This behavior is shown qualitatively
in Fig. 6. In terms of the usual hydrodynamic stability
analysis® (Sec. II), this region is understood in terms
of the growth of unstable perturbations on the laminar
flow. Landau® has shown on quite general grounds that
the magnitude of these velocity perturbations increases
with R as
7= const (R— R,)/? (56)
for R close to R,.. Recent experiments by Donnelly®
and Donnelly and Schwarz® have directly verified this
“Landau law” in the case of Couette flow. When R
becomes substantially greater than R,, these pertur-
bations occur over a wide range of frequencies and the
flow is fully turbulent.
The pressure gradient in the transition region may
be accounted for, at least approximately, in terms of an
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Fic. 7. The effective viscosity of CS; and He II measured in a
rotating cylinder viscometer as a function of the cylinder velocity
and corresponding Reynolds number. The open circles are the
data of Woods and Hollis-Hallett. The solid lines are plots of
1="00F7ne With 7, given by Eq. (57) using 8 =0.17 pP for He II
and 3=0.025 mP for CS;.
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F F1G. 8. The qualitative dependence of VP/W on heat current.
The total effect is shown as the sum of contributions from normal
fluid turbulence (F,) and superfluid turbulence (¥s). The VP/W
scale is arbitrary.

2 1,, Prandtl, Essentials of Fluid Dynamics (Hafner Publishing
Company, New York, 1952).
% R. R. Rothfus, C. C. Monrad, and V. E. Senecal, Ind. Eng.
Chem. 42, 2511 (1950).
31 R, J. Donnelly, Phys. Rev. Letters 10, 282 (1963).
( 32R). J. Donnelly and K. W. Schwarz, Phys. Letters 5, 322
1963).
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F16. 9. The effective normal fluid viscosity #e¢¢ obtained from VP/W for a 107.6-u diameter channel. The open circles are the meas-
ured values of Brewer and Edwards, and the solid lines the effective viscosity calculated from equations given in the text. Results are

for 1.3, 1.56, and 1.8°K.

eddy viscosity due to the perturbations [Eq. (56)] of
the form
Nne=0 (R—Rc)l/2 ) (57)

where 8 may be expected to vary with system geometry
and temperature. Evidence for this eddy viscosity can
be adduced from the rotating cylinder measurements
of Woods and Hollis-Hallett.3® In these experiments
the outer cylinder was rotated and the viscosity of the
working fluid obtained from the torque on the inner.
Measurements were made on CS,; and He II, and the
results are shown in Fig. 7. The results are consistent
with an eddy viscosity of the form given in Eq. (57)
and clearly show the similarity of He II flow to classical
flow. Note in particular that the critical Reynolds
number for the He II and CS, are identical within
experimental error.

The vibrating-wire measurements of Tough, McCor-
mick and Dash* also can be interpreted in terms of a
normal-fluid eddy viscosity. In these experiments the
damping force on a fine wire in He II was measured as
a function of heat current. Below the critical heat
current W, the damping was due solely to the normal
fluid viscosity, 7.. Above W, an excess damping force
was observed which varied as (R— R,)'/2. This can be
interpreted as the effect of a normal fluid eddy viscosity
as in Eq. (57).

For lack of a more detailed theory of the transition
region, therefore, we will assume that the pressure
gradient is given by the laminar expression [Eq. (53)]
with an effective viscosity 7,4 nne:

VP=— (8/0/2) (ﬂn"‘ﬂne)(vn)

=VPy+F,; R.<R<2R,. (58)

The eddy viscosity is given by Eq. (57) with 8 an un-
determined parameter. We shall fix 8 by requiring that
F, given by Egs. (57) and (58) join smoothly to F,

# A. D. B. Woods and A. C. Hollis-Hallett, Proceedings of the
Vih International Conference on Low Temperature Physics &

Chemistry (University of Wisconsin Press, Madison, Wisconsin,
1958), p. 16.

given by Eq. (55) at 2R, as in Fig. 6. Such an approach
cannot be expected to give great accuracy, but might
yield agreement with experiment.

IV. TEMPERATURE AND PRESSURE GRADIENTS
IN THERMAL COUNTERFLOW

Using F,, F, and F,, developed in the previous
sections, the pressure and temperature gradients can
be written

VP=1,V0,—F,—F,, (59)
psSV T=(ps/p)V P+ FontF,. (60)
Defining the subcritical values (Sec. I):
VPo=9,V%,, (61)
peSVTo=V Py, (62)
we have
VP=VP,—F,—F, (63)

VT=VTo+ (pn/p)Fs/pS—Frn/pS+Fon/psS. (64)

The qualitative dependence of VP/W on W given by
Eq. (63) with F, and F, given by Egs. (52), (55) and
(58) is shown in Fig. 8. There is a linear increase in
VP/W for W>W, due to F,, followed by a relatively
abrupt increase at W.. For W>W,, VP/W should
vary as W or W?** depending on whether F, or F, is
the larger. The relative magnitudes of the F, and F,
contributions will depend on the dimensions of the
system and temperature. The behavior shown in Fig.
8, however, is qualitatively like that found in all
pressure-gradient measurements.

Let us consider in detail the pressure gradient meas-
urements of Brewer and Edwards.?® They used a 107.6-
diameter conduction tube and measured the pressure
gradient as a function of heat current for temperatures
of 1.8, 1.56 and 1.3°K. The present their data in the
form of an effective viscosity defined as

nest= (a20ST/8)VP/W (65)
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F1c. 10 The quali-
tative dependence of
VT/W on heat cur-
rent. The total effect
is shown as the sum of
contributions  from
normal fluid turbu-
lence (F,), superfluid
turbulence (F,), and
mutual friction (Fen).
The VT/W scale is
arbitrary.

vT/W

as a function of the relative velocity
v=W/p,ST. (66)

Using F, given in Eq. (52) and F, given by Egs. (55)
and (58), we have calculated 7. The calculations are
shown as solid lines in Fig. 9 along with Brewer and
Edwards’ measurements. A value of a [Eq. (52)] of
0.2 cgs units was found to fit all the data. There seems
to be a systematic discrepancy which is largest at 1.3°K.
This may, however, be a result of the approximate
treatment of the transition region. Staas ef al.? have
made pressure-gradient measurements at 1.7°K in a
255 tube up to =~3W,. They find that the pressure
gradient above W, is equal to that given by Blasius’
expression [Eq. (54)] which we have called F,. This
result is somewhat surprising in that for a 255-u tube
at 1.7°K we calculate a value of F, essentially equal to
F.,, if a is taken to be 0.2. This would result in VP/W
varying essentially as W, but with about twice the
magnitude given by F, alone.

In a series of measurements made over a wide
temperature range with 82-p, 174-p and 255-u tubes,
and with a flow designed to give v,~v,, Staas ef al.3
find that again Blasius’ pressure-gradient expression
[Eq. (54)] agrees with experiment. In this case,
however, F, is approximately zero since v=v,—v,=0,
and we would expect only F, to contribute to the
pressure gradient, in agreement with experiment.

The values of the critical heat currents Wy and W,
corresponding to v, and v, which were considered
quantitatively in Sec. II, are shown in Fig. 9. There is
little difficulty in locating W, from pressure-gradient
measurements. W, becomes difficult to measure in small
channels at low temperatures when F, becomes quite
small. Fortunately W, is readily measured in tempera-
ture gradient measurements.

The qualitative behavior of V7/W, the thermal
resistance as given by Eq. (64), is shown in Fig. 10.
Here we expect the F,, term to dominate at high heat
currents since it increases most rapidly with W. As

T. TOUGH
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mentioned in Sec. IT, we have neglected any ‘‘build-up”
process in the mutual friction which might modify F,,.
at low (W=W,) heat currents. Vinen’s measurements
of transient effects' clearly demonstrate that such a
“build-up” process does exist, however. The tempera-
ture gradient measurements of Brewer and Edwards®
made in a 52-u tube at low (W=W,) heat currents
clearly show the effect of this “build-up” on the thermal
resistance to be confined to a small “transition region”
near W. They also noted large spontaneous fluctuations
in the temperature gradient in this region. Referring
again to Fig. 10, it can be seen that the “bump” in the
thermal resistance is due to the onset of the F,, term at
W .. Unlike the pressure-gradient results, if W >W, the
effect of F, on the total resistance becomes negligible.

We consider in detail the temperature-gradient
measurements of Chase? made in 0.080-cm diameter
tubes. Chase presents his data in terms of an excess
temperature gradient:

VI*=VvT—vVT,, 67)

where VT is given by Eq. (62) and VT is the measured
gradient. We have calculated VT* from Eq. (64) at
1.15, 1.3 and 1.8°K using F,, Fy,, and F, given by
Eqgs. (52), (15), (55), and (58). Since 4, the mutual
friction constant, is found to vary from one system to
another,'s we have treated it as a parameter, choosing
A such that the calculated and experimental tempera-
ture gradients agree at the highest measured heat
current. In this region F,, is the dominant contribution
to the thermal resistance and it is felt this fitting pro-
cedure is justified. The resulting values of A agree
closely with those found by Kramers!® in a 2.6-mm
diameter tube.

In Fig. 11 we show the calculated VI™* along with
some of Chase’s data. At all three temperatures the
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Fi1c. 11. The excess temperature gradient VT* [Eq. (67)] for
an 0.08-cm diameter channel. The open circles are the measured
values of Chase, and the solid lines the excess temperature
gradient calculated from equations given in the text. Results are
for 1.15, 1.3, and 1.8°K.
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F1c. 12. The excess thermal resistance VT*/W [Eq. (67)] for
an 0.08-cm diameter channel. The open circles are the measured
values of Chase, and the solid lines the excess thermal resistance
calculated from equations given in the text. Results are for 1.15,
1.3, and 1.8°K.

agreement is quite good. Note in particular the marked
curvature of the 1.15°K curve due to a large contri-
bution from F,. In Fig. 12 we show the excess thermal
resistance VI*/W for low heat currents. At the low
temperatures 1.15 and 1.3°K, the “bump” due to the
onset of F, at W, is quite dominant, but at 1.8°K has
become masked by the F,, term. This effect has also
been observed by Vinen! and others. It is difficult to
explain this penomenon without the assumption of two
critical heat currents. Vinen? refers to W, as the critical
heat current and regards the rise in thermal resistance
for W<W, as due to “‘subcritical turbulence.” Brewer
and Edwards,” on the other hand, regard W, as the
critical heat current and interpret the rise in resistance
at W as due to a mutual friction build-up process. This
interpretation of thermal resistance can also be applied
to temperature gradients measured in ‘“pure superflow.”
In that case the thermal resistance is found to increase
smoothly with no evidence of a “bump.”® This is
consistent with the present model, since the ‘“bump”
is thought to arise from the onset of normal-fluid
turbulence which is absent in these experiments.

The velocity-field measurements of Allen, Griffiths
and Osborne® to a large extent offer direct experimental
verification for the nature of the three flow regions.

#T. M. Wiarda, G. von den Heyden, and H. C. Kramers,
Proceedings of the I Xth International Conference on Low Tempera-
ture Physics (Plenum Press, Inc., New York, 1965), p. 284.
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Using a fine quartz fiber to detect circulation and
velocity fluctuations in a heat current, they have
demonstrated the existence of three distinct flow
regions. In the first (subcritical) region they find that
the normal fluid is laminar and the superfluid undis-
turbed. Observations in the second region suggest an
increasing density of disordered vortex line in the
superfluid. The third region is characterized by random
fluctuations of the normal-fluid velocity as would be
expected in turbulent flow.

In general, then, it appears that the present model
based on normal and superfluid turbulence gives a
qualitative and often quantitative description of tem-
perature and pressure gradients in thermal counterflow,
as well as critical heat currents. It also provides a
framework in which such diverse experiments as ‘“‘pure
superflow”?:?” and the Staas, Taconis, van Alphen
experiment (v,—v,~0) may be understood. While
there is every reason to believe that He II flow phe-
nomena are far more complicated than presented here,
it is felt that the present model offers a new and
promising basis for future study.
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