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A variational criterion is used to find approximate eigenfunctions and eigenvalues of the Liouville operator
in classical many-body systems. The trial functions are taken to be sums over molecules of functions depend-
ing on the position and momentum of a single molecule. In a harmonic lattice, this approach leads to exact
eigenfunctions and eigenvalues. In a fluid, the eigenvalue spectrum is continuous, and the eigenfunctions are
related to those found by Van Kampen in his study of the linearized Vlasov equation for a plasma. The time
dependence of the fluid current density is found by means of these eigenfunctions and eigenvalues. The
results show persistent free-particle propagation and damped sound-wave propagation, with relative im-
portance depending on the magnitude of the sound velocity.

INTRODUCTION AND SUMMARY

CHARACTERISTIC feature of much recent work
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in statistical mechanics is the extensive use of
collective variables in describing states of many-body
systems. This is particularly true in solid-state physics
and in superQuid physics.

Attempts to use the same ways of thinking about
many-body systems, but in connection with classical
Put'ds, have not met with much success. Perhaps this
will turn out to be due to the inappropriateness of the
approach; maybe there are no useful collective vari-
ables for classical Quids. But this failure may also be
due, in part, to the inappropriateness of the kinds of
collective variables that have been studied in this
connection.

In this article, and in a later one, we describe some
attempts to find good collective variables in classical
many-body systems. The approach taken here is to use

a variationaI criterion to 6nd the "best" eigenfunctions

of the classical Liouville operator (Poisson bracket

operator), starting with various guesses as to the gen-

eral structure of the eigenfunctions. In the present
article we consider only eigenfunctions that are sums

of single-particle functions. In a future article a dif-

ferent class of trial functions will be studied.

This approach resembles closely one that is familiar

in quantum statistical mechanics: the "equation of
motion method. '" Use of a variational formulation,
however, appears to have certain advantages over more
conventional formulations of this method. One ad-

vantage lies in the great freedom of choice made avail-

able by searching for "best" eigenfunctions having
various specified properties. Another advantage is due

to the particular form of variational criterion used,
which allows us to take into account many thermal
equilibrium properties of the system under consideration.

The results obtained here are essentially as follows.

In a perfect harmonic lattice, the "best" eigenfunctions

having the form of sums of single-particle functions are

~This method is surveyed by D. Pines, in The Many-Body
Problem (W. A. Benjamin, Inc. , ¹wYork), 1961. See especially

p. 44-48.
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the exact normal mode variables, and the corresponding
eigenvalues are the exact lattice frequencies.

In a Quid (deQned here is a translationally invariant
many-body system) the eigenfunctions have a structure
very much like those discussed. by Van Kampen' and
Case' in connection with the linearized Vlasov equation
of plasma theory. An essential difference is that the
interparticle potential, Coulomb in the plasma case, is
replaced by the direct correlation function of the Quid.
Instead of the plasma frequency, the frequency of a
sound wave appears.

As in the Vlasov case, the eigenvalue spectrum is
continuous. A phenomenon analogous to Landau damp-
ing occurs. That is, when the eigenfunctions are used to
solve the initial value problem for the time dependence
of the current density of the Quid, both persistent free-
particle behavior and damped collective behavior are
observed. The latter is controlled by the sound velocity
of the Quid; the rate of damping becomes very small in
the limit of high sound velocity, and very large in the
limit of small sound velocity. Thus the free-particle
behavior dominates at low density, and the collective
behavior is of importance only at high density.

The article begins with a general discussion of the
Liouville operator in classical mechanics, and its spec-
trum, along lines set forth many years ago by Koopman4
and von Neumann. Following this, a variational prin-
ciple is demonstrated which leads to exact eigenfunc-
tions and eigenvalues of the Liouville operator. Then
the variational principle is applied to trial functions of
the form of sums of single-particle functions, and an
equation is derived for the "best" single-particle func-
tion. The solution of the equation is found, by inspec-
tion, for a perfect harmonic lattice. For a Quid, the
equation is converted, by appropriate changes in vari-
able and notation, into the linearized Vlasov equation,
and solved by standard methods. '

~ N. G. Van Kampen, Physica 21, 949 (1955);23, 641 (1957).
3 K. M. Case, Ann. Phys. (N. Y.) 7, 349 (1959).' B.O. Koopman, Proc. Natl Acad. Sci. U. .S. 17, 313 (1931l.
5 J. von Neumann, Ann. Math. 33, 587, 789 (1932).
6 We follow the treatment and notation of R. Balescu, Sta-

tistical 3fechanics of Charged Particles (John Wiley 8z Sons, Ltd. ,
London, 1963).
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THE LIOUVILLE OPERATOR

We begin with a discussion of some general properties
of the Liouville operator and its spectrum.

Consider a dynamical system with coordinates q&,

q2, and conjugate momenta Pl, P2, ~ . The sets of
q's and P's will be denoted just by q and P. The Hamil-
tonian function is H (p,q).

We define the Liouville operator by

/II Bf BH Bf

-8pa Bqa Bqa ~pa-

where f(p, q) is sn arbitrary function of the dynamical
variables. This de6nition can also be written more con-
cisely by means of the Poisson bracket operator [fHj

I.f=—if',ej. (2)

[Note that the de6nition contains a factor i=+—1.
Originally the Liouville operator was introduced, by
Koopman, 4 as the infinitesimal generator of a unitary
transformation in the Hilbert space of measurable
functions in phase space. This is the source of the factor
i. For our purposes it is more natural and direct to
de6ne I as above, and to deduce from this the existence
of the unitary operator. )

The most important property of the Liouville opera-
tor for the following discussion is its equivalence to the
time derivative. The rate of change of some dynamical
quantity tt. (p,q) is evidently given by

det/dt =iLet.

On solving this equation symbolically as an initial-
value problem, the value of 0, at time I, is

n(t) =exp(itL)n.

The exponential operator exp(ftL) is the unitary opera-
tor introduced by Koopman. It may be called the time-
displacement operator because of the way it shifts
functions along trajectories in phase space.

Suppose now that ot is an eigenflttctiott of L with the
eigenvalue ), or

Then the time dependence of 0. is known explicitly,
and ls

n(t) =exp(f0)tt. . (6)

Constants of the motion are eigenfunctions with zero
eigenvalue.

As was 6rst shown by Koopman, the amplitude and
phase of an eigenfunction have interesting properties
of their own. The discussion of these properties starts
with the observation that exp(itL) has a distributive
effect on a function of a function

ettLf (~) f(ettL~)

This can be verified, for example, by di8erentiation.
Thus the effect of exp(itL) on the amplitude of a func-

tion is given by

obeys the equation

Ze(~) &'a,Z'S Zsa«ie ~(~X~)
a (»)

The phase increases linearly with time, and is therefore
an angle variable. The eigenvalue belonging to n is the
frequency of the angle variable.

It is thus clear that eigenfunctions and eigenvalues
of the Liouville operator can be constructed from the
action-angle description of a system. The action vari-
ables are the constants of motion, and the amplitudes
of the eigenfunctions are arbitrary functions of the
actions. The phases of the eigenfunctions are just the
angle variables.

In the special case of a system of coupled harmonic
oscillators, the action variables are essentiaHy the
energies of individual normal modes of vibration, and
the angle variables are the phases of the same normal
modes.

By a similar argument, based or the identity

LetP =nLP+ (Ln)P, (13)
it is easy to see that any product of eigenfunctions is an
eigenfunction; if

Let=ha, LP=ttP,

L-p=(~+.)-p, (15)
so that the corresponding eigenvalue is the sum of the
individual eigenvalues. This may be generalized im-
mediately; any product of integral powers of eigen-
functions is an eigenfunction, and any linear combina-
tion (with integral coeflicients) of eigenvalues is an
eigenvalue. (The restriction to integral powers and
integral coefFicients is due to the requirement that
elgellfllllctlolls be slllgle vallled. )

%hat does this tell us about the nature of the spec-
trum of the classical Liouville operators Barring acci-
dental cases, where all eigenvalues are commensurable,
the spectrum is at least countably in6nite and un-
bounded. For a harmonic lattice, the spectrum is a
point spectrum, densely distributed over the entire real
axis in the limit of a very large lattice.

The harmonic case, however, appears to be unique.
In general the spectrum of I is continuous. This may

But if n is an eigenfunction with eigenvalue X, then

(9)

The amplitude of an eigenfunction is also an eigen-
function, and in particular it is a constant of the
motion,

L)n[ =0. (10)
The phase of the same eigenfunction, denoted here

bye,
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be seen from the action-angle picture. Suppose that the
action variables are J~, J2, . Then the eigenvalues
are the frequencies of motion,

v.(J)=aH(J)/aJ, (a=1, 2, ), (16)

and their linear combinations. But in general the energy
is not a linear function of J, so that i (J) varies with J.
(For example, the frequency of the anharmonic oscilla-
tor governed by the Hamiltonian —',p'+q' is propor-
tional to J'('.) By varying J continuously, the frequency
v varies continuously, and so the spectrum is continuous.
The only exception is when ) (J) is actually independent
of J.This can happen only for harmonic oscillators.

It should be noted that the spectrum with respect to
constraints may have an entirely diGerent character
than the total spectrum. For example, if we consider
only systems with specified actions J, then the spectrum
is discrete. Normally, however, in statistical mechanics
we do not have so much information under control; if
only the total energy is speciied, then the spectrum is
generally expected to be continuous.

A VAMATIONAL PRINCIPLE

As is well known, eigenvalue problems can be formu-
lated by means of variational principles. In the present
instance, the variational integral is constructed as
follows.

First we introduce a weighting function. Let f(p, q)
be some time-invariant distribution function in phase
space, so that

Lf(p, q) =0.

For convenience we normalize f(p, q) to unity,

dpdqf(pq)= 1.

awhile in general f(p,q) may be any measurable function
of known constants of the motion, we shall always take
it to be the canonical ensemble distribution function
for a system in thermal equilibrium.

Average values taken with respect to f(p, q) will be
denoted by angular brackets,

leads directly to the eigenvalue equations for )P and )P*,

LP =X/,
L)p*=X)p*.

(22)

Because I. is Hermitian, its eigenvalues are real.
Note that (P itself does not have to be integrable over

phase space. Convergence of integrals is taken care of
by the weighting function f(p, q).

The chosen distribution function f(p, q) drops out of
the exact eigenvalue equation, simply because of its
time invariance,

L(f4) =fL4. (23)

If, however, we choose trial functions that cannot lead
to exact eigenfunctions because they have the wrong
structure, then the resulting "best" trial functions will
depend on the choice of f(p,q). An example will be
discussed later.

The denominator in Eq. (20), by virtue of the
symmetry between identical molecules, takes on the
form

&+*+)=&&4*(1)f(1))+&(&—1)&4*(2)4(1)) (25)

The averages can be written more explicitly using the
single-particle distribution function f(1), de6ned by

f(1)= d(2). d(1V)f(1,2, . 1V) (26)

EIGENVALUE EQUATION FOR SINGLE-PARTICLE
TRIAL FUNCTIONS

For the rest of this article we consider a system of S
identical molecules contained in a volume V, having
positions Ri, R2, and momenta pi, p, , (These
quantities all refer to the center of mass of each mole-
cule. Internal molecular structure is not of interest in
the present calculation. ) For convenience the variables
R;, p; will often be denoted by (j).

The trial functions to be used here have the form of
a sum over molecules of an arbitrary function of the
position and momentum of an individual molecule,

+=2 0(»;p~) =Z 4(j).

d pdqf(p, q)~(p q) .
and the two-particle distribution function f(1,2) de-

(19) fined by

Now we introduce a trial function )p(p, q), and its
complex conjugate (p*(p,q), and we form the ratio

f(1,2) = d(3) d(1V)f(1,2, . 1V).

Then the denominator is

(2&)

(20)
&+*+)=& d(1)f(1)4*(1)4(1)

5P.]=0, (21)

The requirement that p] be stationary with respect
to small variations in )P and )P*,

+~(~-~) ~(~)fd(2)fO, ~)4"(2)k(0 (28)



PROXIMATE EiGEN~UNCT~ON

The numerator in Eq. (20) is

(O*L+)=E(%*I.Q(1)).

The I iouvillc operatol ls

p; 8 8
L= i—P — i—P Fg.

~ m8R; ~ Oy;

v here I'; is the total force on the jth molecule. Conse-
quently, when L operates on P(1), we get only the
contribution from the 6rst molecule,

where K is a vector of the reciprocal lattice, R' is the
equilibrium position of a molecule in its unit cell, and

p has the periodicity of the lattice. The eigenvalue
equation is then transformed to

p] 8 8
i—— i—(F& 1) ~

1s 8Rg 8pg-

f(1,2)=)P(1)+X d(2) P(2)e'K a"'—a&'). (37)
(1)

pi B4(1) . W(1)
LP(1) =. i —— i F—z

5$8Ry 8px
(31)

In the canonical ensemble, the reduced distribution
functions may be expressed in terms of a Boltzmann
distribution of momentum,

qs(p) = (2~mkT)-8" exp( —p'/2mkT) (38)On integration by parts, taking advantage of the in-
variant character of f(1,2,3, .,E), we find that the
cross terms connecting molecules j and k all vanish,

leaving

and the one- and two-particle space densities

We define the average force on a particular molecule by

The integration over position R~ may be decomposed
(F„1)= d(2). . .d($)f(1,2, . N)F,/f(1). (33) into a sum over unit cells (excluding the cell J=1, be-

cause we are dealing here with the pair function of
distinct molecules), and an integration over a given unit
ceH. The trial function has the symmetry of the lattice,
and is independent of the identity of any given cell.

p(1) . (34) Then the right-hand side of (37) becomes

Thus the numera, tor in Eq. (20) is

p] 8 8S d(1)f(1)P(1) i ———i(Fg, 1)
tÃ BRy Bpy-

)y(1)+y p e~x. (ap—ap)

(39)
p") (R~) =f(1)/~. (pi),

Py 8 8 p"'(R~ R~) =f(1,2)/~ s(pi) vs(p~)
(+*Le)=X y*(1) —i— —iFi 4 (1) (32)

m BRy Bpy- Thus the integrand in (37) contains

f(1»)/f(1) = vs(p2)p") (Ri, R2)/p") (Rx) (40)

When the numerator and denominator are combined,
and the variation with respect to P* is taken, the result-
ing eigenvalue equation for P is

Pl
i — —i(—F) 1—).

ps 8Rg

f(1,2)
=~ O(1)+(~-1) d(2) 4(2) . (»)

(1)

This is the fundamental equation of the present article.
Its solution is described in the following sections.

Harmonic Lattice

The normal-mode variables of a harmonic lattice
(with one molecule per unit cell) have just the same
structure as our assumed trial function (24); so we
expect that the preceding equation for the "best" trial
function is obeyed by these normal-mode variables. This
is demonstrated now.

Because of lattice symmetry, the most general solu-
tion of (35) has the form of a Bloch wave,

k(R, p) = e*'" "'&(R—R', p), (36)

p&') (Rg, RP+ r)
«dp2~e(pm) 4(r,p2). (41)

cell p( )(R~)

In a canonical ensemble, the mean force (F~, 1) can
be obtained from the familiar identity

(F~, 1)=kT inp&')(R, ).
DRg

(It shouM be recalled that the present treatment is
based on classical mechanics. )

The space densities p&'& and p&'& may be found easily
by direct integration, because the potential energy is
quadratic and the complete E molecule distribution
function is Gaussian in its arguments. In fact, both
p~ ) and p&'& are themselves Gaussian in their arguments,
so that it is sufhcient to 6nd their first and second mo-
ments. For example, the one-particle density is

po)(R~) exp —-', (R~—RP) g (R~—RP) (43)

aside from normalization. The matrix g is connected
with the second moment of displacements within a
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unit cell

g
—'= ((R(—R(0) (R,—Rio)) (44)

The corresponding mean force is linear and dis-
placements

three-dimensional case is handled in exactly the same
way.

If Q&( is the Eth normal-mode coordinate, then the
displacements are given by

(F( 1)=—kTg (R(—R(0) R; R0=—(1/QN) Q&r (."~a~'Ql( (53)

and the left-hand side of (37) is

pr 8
i —+—ikT(R( —R(') g (t (1). (46)

m aR, pc-

This looks just like the Liouville operator for a one-

particle system in a harmonic well, and suggests that
the general solution of (37) will have the form

)=a (R—R')+b. p. (47)

On substitution into (37), the left-hand side becomes

i(p,—/m) a+ikT(R( R,')—g b.

If the same substitution is made in the right-hand side

of (37), we get

),a (R,—RP)+Lb pg

p('& (R(,R,'+ r)
+) P (,iK (RP—RP& dr a. r (49)

jul p"'(R~)

The momentum contribution to p drops out of the

integral by symmetry.
Because of the Gaussian character of p((& and p(~&

the integral over r gives a quantity linear in R,—R|o.
When this is worked out, the result is

a ((R;—RP)(R&—R&.')) g (R&—R&') (5O)

which contains the correlation of displacements in the

first and jth cells.

By equating coefficients of momentum and displace-

ment, which are linearly independent variables, we

obtain from the preceding arguments a pair of equations

for a and b,

The sum over j in (52) reduces easily, and the eigen-
value equation becomes

(k T/m&(') a= a(Qr(*QI() . (54)

By equipartition, the second moment of QK is related
to the frequency orz of the Eth mode by

(Q&r*Qir) = k T/m(0ir'.

Then the nontrivial solution of (54) is

(55)

(56)

which shows that the present variational method leads
to the exact eigenvalues of the system.

The eigenfunctions can be found from (51).We choose

a= (icoir/gN) .
Then the resulting eigenfunctions are

'p =Qx~i(0&rQI(.

(57)

(ss)

The "best" eigenfunctions are clearly the exact eigen-
functions of the Liouville operator in the present
example.

APPROXIMATE EIGENFUNCTION'8
FOR FLUIDS

(59)

and the two-particle space density is proportional to
the radial distribution function g(r),

We now describe the solution of the fundamental
eigenvalue equation (35) for a Quid phase.

In a Quid, the one-particle space density is inde-
pendent of position,

p"'(R) = 1/V

—(i/m) a= A;
p('& (Ri,Rp) = (1/V')g(R( —R2) . (6O)

ikTg b=ka+Xgs' '

jul

ya ((R;—R )(Rg—R&')) g.

The quantity b may be eliminated easily, leaving

(51)
As indicated by Eq. (42), the mean force (F|,1) on a
particle vanishes,

(Fg, 1) (lp&'&/(7R, =O. (61)

Thus the eigenvalue equation reduces to

p( 8$
=l($+l(— dp2 dRnpi&(pm)

m (&R& V
(kT/m&') a

a.Pi &iK (Ri —R| &((R, Rio) (R( R(0)). (52)

Note that the sum over lattice sites now includes all

sites.
To complete the calculation, we express the displace-

ments in terms of normal coordinates, and 6nd their

second moments from equipartition. The argument is

straightforward but a little tedious; to save space, we

give the details only for a one-dimensional lattice. The

~g( 4( R2)f(Ra, p2) ~ (62)

(The difference between N —1 and N is negligible in a
large system. )

Because of translational invariance, the eigenvalue
equation can always be solved by functions of the form

4 (R,p) =~"'v(p), (63)
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W en i edWhen this is substitutebitrary vector. W en iwhere k is an ar i
e obtain1

KR ~ (Ra-Rg)d R2g (R2—Rg) e'".k p/ )v(p)=le(p)

X dpmKK'~(p2)y(p&). (64)

k vp~(v vk vx(v)—
1+KG( )

i ution, so thate Boltzmann distri u
'

Because y~ is the o z

—k. vy~=ksTk 8'~ 8v,

we may rewrite 70 as

(71)

orm of the radial dis-he Fourier transform oLet us define t e o
tribution function by

G (k) = d R2gg (Rmg) e'".R».

e e uation becomesThen the eigenvalue eq

(k p~/~)v(p~) =1 v(p~)

k' —pgk VX+kgT
Bv

(73)

andt eah bove equationn becomes

1+KG(k)
'

n we denote Boltzmann'snfusion in notation, we eno
f h o etio )

v~'= kgTNG—k)/[1+KG(k)),

dp2K s(p~)V(p~) (66 8+a
k vx —v,'k v

Bv

(76)

la

dv'qa v')y(v'). (67) wherex=—y~ v y v)+eG(k)ys(v) dv'q~ v y v

h

(77)

(78)C(k) =G(k)/[1+KG(k) j.
ff tive otential U,H(k,roduce an effectiveT us we may intro u ff tive

(79)

n be obtained easily w'withnsformatio e o
ifibl di tl b tthe aid of the identity (veri a e

gf = —kgb.eff

+1K—G(k)
V

t e re as the linearizedthe same structure asThis has exactly t e re asd' l di t ib t o
op tyo

ms t e qua
' ' es the value

l h f ht

(75)2= 2 2
y

is fre uency. This is actually a
PP

h 1oldb b

P

as set for y e a-

pp

e mean e gy. ar K

'
bles, Eq. (66 can

v„'=eU(k) .
ow the Coulomb case.

'
ll the same no a i scusshall use essentia y

w e E uation (75) follow e e.
book.

it Int epr
"transform

th lo
ed by e. The d s e change is o

dfi d

v '= ekgTC—(k),

U the new functionrep ce y e

dvx(v == [1+KG(k)] dvpg(v)r . 8v y(v). (68)

e transformation isThen the inverse ra

y(v) = x(v) nG(k)

p~(v) 1+KG(k)
dv'x(v'). (69)

h
' '

chan es are made in 66), weW enh the indicated changes

is effective potentia has a
d

' '
fod th ti li fi

h Foui rtr fo U-p y
of the actual potentia

T cpa a trv„' y

b
y.

in toibili (k) o dterms of a k-dependent compressi i i

(8O)1+KG(k) =ekgT~(k) .
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The k-dependent isothermal sound velocity B(k) is re-
lated to the compressibility by

B'(k) = 1/3IItt(k),

The analog of the plasma dielectric constant is

e~(t) = ei(t)uses(t),

so that
t ~'= B'(k)—ksT. (82)

(86)

In low-density gases, B(k) is very close to kttT, and

~„ is very small. In dense systems, on the other hand,
the sound velocity is large and v~ is large.

The distinction between an ordinary Quid and a
plasma lies in the behavior of t ~' or B'(k) for small k.
In an ordinary Quid these quanti. ties approach finite
limits, while in a plasma they diverge as 1/k .

Van Kampen showed how to solve the linearized
Vlasov equation as an eigenvalue problem. His results
(and their extension by Case) are directly applicable
here. The eigenvalues are real and form a continuous
spectrum: Every X is an eigenvalue. The functions
associated with any given ) are singular, i.e., they are
distributions in the sense of the theory of generalized
functions. They are given explicitly in Chap. 5 of
Balescu's book. We shall not write them down here.
Knowing X, however, we can form the desired eigen-
functions of the Liouville operator by means of Eqs.
(63) and (69). (Note added irt proof. The eigenfunc-
tions v are given explicitly at the end of this article. )

AN INITIAL-VALUE PROBLEM

Just as in plasma theory, the eigenfunctions that we

have found here are not particularly informative. One

can get a better physical picture by using them to
solve an initial-value problem. An example will be
given now.

The problem to be considered is to 6nd the time
evolution of the quantity that, at time t =0, has the form

+=Et e'" R'pt" k/Ikl (83)

or

v(1)=p k/Ikl (84)

This is in fact the longitudinal current density of
the Quid.

The calculation involves the following steps. First,
p is converted to X by means of the transformation

given in Eq. (67). Next, this X is expanded in a series of
Van Kampen —Case eigenfunctions. Next, the time de-

pendence of each individual eigenfunction is inserted.

Finally, the series is resummed. A procedure for ac-
complishing this is given in Chap. 5 of Balescu's book;
we shall omit the details here.

To conform to Balescu's notation, we replace ) by

(85)

we use e for the longitudinal part of v (the transverse

parts being of no concern in this calculation. ), and we use

g~ for the Boltzmann distribution in the single com-

ponent e.

where the contour for the v integration lies helot the
real axis, and surrounds all singularities in the lower
half-plane. (This solution holds for positive times only. )

We evaluate the contour integral by residue theory.
The singularities in the lower half-plane (excluding the
real axis) come only from the zeros v, of the dielectric
constant e+,

e+(v„)=0, r=1, 2, (88)

By residue theory, the result is

V(t) = [e/e+(tt)]e —'"'

The first term in v(t) persists for all times, and the
time dependence is just as if the molecule were moving
freely. The remaining terms in v(t) are all damped in
time, because all the zeros v, have negative imaginary
parts.

The long-time behavior of the damped part of v(t)
is determined by v&, the zero of e+ having the smallest
imaginary part. Numerical values for v~ as a function
of p~' can be found from the extensive tables of Fried
and Conte. ~ It appears that the most useful variables
in this connection are the combinations

and

tr = ps /2ktt2

i.= t/(2ksT')»s

(90)

(91)

The numerical results are essentially as follows. When
u is smaller than about 3.4 (and either positive or nega-
tive), then the imaginary part of t is larger than 0.1;
under these conditions, which apply for gases at low
density, the damping lifetime is of the order of period
of oscillation. If, on the other hand, n is very much

7 B.D. Fried and S. D. Conte, The Plasma Dispersion Function
(Academic Press Inc., New York, 1961}.

es(r) =wr' V s'(~),

where P means the principal part.
Then Balescu's prescription for solving an initial-

value problem leads to the result

V(t) =Le/e (e)3e '"'
1 p

dp e
—i7tvt (87)

tl p tt e+(p)e (p)
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larger than 10, then

In this limit, we can replace v~ by the sound velocity
8(k); see Eq. (64). Then, in the limit of large sound
velocities, the smallest root is

vr 8—2i(2rrksT)r~s(8'/2kIIT)'s-~""&r. (93)

The damping rate is very small, and the time depend-
ence of this contribution to y(t) goes as

expik8$.

This part of the current density propagates as a sound
wave.

Furthermore, the relative importance of the per-

slstcllt aIld damped contllbutlons 'to y(/) depends oil
the sound velocity. When 8 is large, the persistent
free-particle part is small, and the sound-wave part is
doI11lnallt fol a loIlg 'tl111c (altllollgh ultlmatcl)r lt deca)rs
to zero). When 8 is small, the free-particle behavior
dominates, and the sound-wave part decays rapidly.

It is interesting to contrast this behavior with what
occurs in a plasma. There the parameter v~' is inversely
proportional to O'. Thus long-wavelength collective
variables are associated with very large o., and behave
as slightly damped plasma waves. At short wavelengths,
on the other hand, a is small, and free-particle behavior
is found. $/ote added srI proof. The eigenfunctions are
given explicitly by

v(s) = Ls ~(~)l ' «W(~)b+(& —~)

in the notation used above. )
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General Characterization of a Two-Fluid Anisotropic Warm Plasma
in Principal Coordinates~

HoLLls H. C. CHEm ~ DAvio K. CHEzo
Electrical Engineering Department, Syraclse University, Syracuse, Ãm Fork
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A macroscopic characterization of a two-Quid compressible plasma in an external constant magnetic Geld is
suggested in this paper by the introduction of two "compressivity tensors, "one for the electrons and one
for the ions, as new constitutive parameters. A new set of four governing equations is formulated which
are mathematically concise and are amenable to meaningful physical interpretation. Because the com-
pressivity tensors and the permittivity tensor are Hermitian and pairwise commutative, a unitary trans-
formation is found which simultaneously diagonalizes the matrix forms of all three parameter tensors. This
permits a change of basis for the governing equations to a principal coordinate system. The longitudinal
components of the electromagnetic Gelds can then be decoupled from their transverse components.

L INTRODUCTION

Y far the largest number of published studies on the
propagation, scattering, and radiation properties

of electromagnetic waves in a plasma environment has
been based on the magneto-ionic theory In this theory
the plasma is treated as a homogeneous incompressible
medium which is rendered anisotropic under the inQu-
ence of an external magnetic 6eld; only electron motion
is considered. At low frequencies the efI'ects due to the
motion of the heavier ions become important, and vari-
ous authors have extended the magneto-ionic theory to
include such effects. '—'
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Foundation under Grant No. GK-643.
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When the pressure gradients in a plasma are not
negligible, a warm plasma results and the conventional
magneto-ionic theory is no longer adequate to describe
the properties of wave motion in such a medium. The
consideration of plasma compressibility not only in-
creases the mathematica], difhculty but also hinders a
concise physical interpretation of the equations govern-
ing electromagnetic phenomena. Recently the present
authors~' introduced a "compressivity tensor" as a new
constitutive parameter which can be used to describe
medium compressibility in a similar manner as a
permittivity tensor is used to describe medium anisot-
ropy. Such a step proved to be advantageous both in the
systematic solution of electromagnetic problems in an
anisotropic warm plasma and in the physical interpreta-
tion of the mathematical formulation.

It is a purpose of this paper to extend the general
characterization of an anisotropic warm plasma to a

' D. K. Cheng and H. C. Chen, Proc. IEEE 53, 759 (1965).
8 H. C. Chen and D. K. Cheng, J. Appl. Phys, 36, 3320 (1965).


