
HEAT CAPACI TY OF BOD Y —CENTERED CUBIC He'

value of 0'o, obtained by the "semi-analytic" method
described by de Launay, " is 24.5'K, again in fairly
good agreement with the values in Table II.

III. CONCLUSION

In summary, our data indicate that bcc He4 is proba-
bly not much different from the other forms of solid
helium. This is based upon the following results dis-
cussed in detail above:

(a) The compressibility n and the expansion coeK-
cient n are well behaved. The expansion coeKcient is
positive and agrees with the Gruneisen equation with a
Gruneisen constant y= 2.6, which is the value found for
the other low-pressure forms of solid helium and which is
not inconsistent with the variation of the Debye 0" with

"J.de Launay, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1956), Vol. D,
p. 285.

volume in the present measurements. As was illustrated
in Fig. 10, the V-T data available at present are not
precise enough to use d V/dT to obtain either n or n, so
that earlier calculations which gave negative values of
o. are unreliable.

(b) The entropy of bcc He4 when plotted as S/C,
versus T/O~ (Fig. 8) is found to be consistent with the
values for the other low-pressure, crystalline forms of
He4 and He', indicating that the temperature depend-
ence of 0" and the lattice spectra are very similar.
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Exact equations of motion for the space- and time-dependent thermodynamic coordinates of a many-body
system are derived directly from the Liouville equation. This is done by de6nining a generalized canonical
density operator depending only upon present values of the thermodynamic coordinates. This operator is
used no DMLtter how far the system is from equilibrium. An explicit expression for the entropy of a system
possibly not in equilibrium is given in terms of this operator. The equation of motion for the operator is
derived, and the coupled, nonlinear, integrodifferential equations of motion for the thermodynamic co-
ordinates follow immediately.

INTRODUCTION

q QUATIONS of motion for the thermodynamic co-
~ ordinates of a many-body system have been

remarkably successful in describing the results of non-
equilibrium experiments. The equations of hydro-
dynamics, London's equations for superconductors, and
Bloch's equations for nuclear magnetism are well-known
examples. Originally, these equations were not derived
from microscopic considerations, but were obtained
by more or less qualitative physical reasoning and
contained adjustable parameters whose values were
determined empirically. Since the assumptions made in
order to obtain these phenomenological equations
limited their applicability, it would be desirable to
generalize these equations and thus extend their
usefulness.

* Supported in part by the Advanced Research Projects Agency.
)Based on a dissertation submitted to Stanford University,

1964.
f. National Science Foundation Predoctoral Fellow, 1956—1959.

Unfortunately, it is not easy to just guess phenomeno-
logical improvements for these equations by using
qualitative physical reasoning alone. Furthermore, it
would be desirable to be able to calculate the values of
the parameters appearing in the equations. Thus we are
led to derive these equations from the Liouville equa-
tion and thereby obtain formal expressions for the
parameters.

Once we have derived the equations, they may be
solved as if they were classical equations, and in this
manner many problems in nonequilibrium statistical
mechanics can be solved. This equation of motion
approach yields more general results than the perturba-
tion-theory approach used in the linear theory of
irreversible processes. In particular, we will be able to
describe systems that may be arbitrarily far from
equilibrium, and this is not possible with the linear
theory.

The characteristic feature of our method is that no
matter how far the system is from equilibrium we use a
generalized canonical density operator o(t) that is a
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functional of the present values of the thermodynamic
coordinates (F„(r))&,which are functions of both space
and time. By using this operator, we obtain an ex-
plicit expression for the entropy of a system that may
be arbitrarily far from equilibrium as well as an ex-
pression for the temperature of a system in thermo-
dynamic cquillbrlum.

This generalized canonical density operator does not
satisfy the Iiouville equation as does the stdtistica1
density operator p(/), but it does satisfy another equa-
tion of motion, which we derive. Given the initia1
condition for p(/), we need no statistical argument for
this derivation. We start by rewriting the Liouville
equation using the Liouville operator I(/). Then, once
we have defined a(/), we define another operator
E(t) that converts the time derivative of p(t) into the
time derivative of 0'(/). Tllese opel'atols, along wltll an-
other operator T(t,t') that is an integrating factor,
appear in the equation of motion for 0(/). From this
equation, we immediately get a set of coupled, nonlinear,
integrodiGerential equations of motion for the thermo-
dynamic coordinates.

DEFINITIONS

It is necessary to use our intuition and experience to
decide upon the thermodynamic coordinates that
adequately describe the system and the experiment
whose results we wish to predict. The pertinent thermo-
dynamic coordinates are not determined merely by
specifying the system or its Hamiltonian; they also
depend upon what quantities are controlled or measured
in the experiment considered. For systems not in
equilibrium, it may be that the thermodynamic co-
ordinates are not uniform throughout the system and
hence have a spatial dependence. In general, the num-

ber of coordinates used will be quite small compared
with the immense number of microscopic coordinates
of the system. Usually it will be immediately apparent
which coordinates should be used in our theory.

Once the thermodynamic coordinates have been

chosen, we choose a set of time-independent, Inacro-

scopic, quantum-mechanical (i.e., Hermitian, linear,
and possibly noncommuting) operators corresponding
to some of these thermodynamic coordinates (e.g.,
energy density, particle density, magnetization per unit
volume, etc.). These operators are denoted by F„(r),
where e takes the values 1 2 . . m. If the thermo-

dynamic coordinates are not uniform throughout the
sample, the corresponding operators may be expressed
in a representation in the second quantized description
where they will depend explicitly upon position r in

space, as indicated. This functional notation is super-

6uous if the thermodynamic coordinates do not depend

upon r; then the operators may be expressed in a
representation where they do not depend upon I'. In
that case read F„in place of F„(r)and simplify the

following formalism accordingly.

Not all thermodynamic coordinates have correspond-
ing quantum-mechanical operators. In particular, it
appears that temperature and entropy are uniquely
thermodynamic vanables aqd are not at all mechanical.
Furthermore, if there is an external electric or magnetic
Geld and if that field is not quantized, then the Geld
must be treated as a parameter. The thermodynamic
coordinates that have no corresponding operators must
be treated in a diferent way from the ones that do.
As the theory develops, the entropy and the other re-
maining coordinates (e.g. , temperature, chemical poten-
tial, magnetic field, etc., all as a function of position r)
will be defined so that they may be calculated from
the values of the thermodynamic coordinates cor-
responding to the F (r). We then will have a complete
scheme for describing the thermodynamics of a quan-
tum-mechanical system.

The thermodynamic coordinates corresponding to the
operators F„(r) are the quantum-mechanical and
statistical expectations of these operators

where the trace, indicated by the symbol Tr, is the sum
of the diagonal elements of a matrix representation of
the operator in the brackets. These expectations de-
pend upon r since the operators F„(r)in the second
quantized description themselves depend upon r. They
also dcpcnd upon tlDM $, as indicated by tlM $ on the left
side of the equation, since the statistical density opera-
tor p(t) depends upon t

The statistical density operator p(/) satisfies the
equation of motion

Tr[p(/) ]= l

is consistent with this equation of motion.
The Liouville equation (2) may be written

(3)

where L(t) is the Liouville operator, '' which, when

operating to the right on any operator A, yields the

~ P. A. M. Dirac, Proc. Cambridge Phil. Soc. 25, 62 (1928).' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).' S. Nakajima, Progr. Theoret. Phys. (Kyoto) 20, 948 (1958).

6rst derived by Dirac' from Schrodinger's equation.
Since this equation is the quantum-mechanical analog
of the classical Iiouville theorem and since another
equation is already called the Dirac equation, it is
reasonable to call it the Liouville-Dirac equation or
more simply the Liouville equation. The operator X(/)
is the total Hamiltonian whose time dependence is
what causes the deviations from equilibrium that we

intend to study. Because of the invariance of the trace
of a product of operators to cyclic permutations of the
operators, the normalization
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commutator of the Hamiltonian with A:

L(t)A = ))i-'LX(t),A]. (5)

The Liouville operator is not a quantum-mechanical
operator since it does not operate on states and its ex-
pectation is not defined. It operates only on other
operators, turning them into new operators in a way
analogous to a quantum-mechanical operator changing
one state into a new one. All of the operators to the
right of L(t) must be included within the commutator.

The Liouville operator is a linear operator. This
means that when it operates on the sum of any two
operators A and B, the result is

L(t) (2+8)=L(t)A+L(t)B.

The dimensionality of the Hilbert space in which
L(t) is defined is the square of the dimensionality of the
Hilbert space in which K(t), p(t), and the F„(r)are
defined. Since the operators A on which L(t) operates
will always have the same dimensionality as p(t), then
L(t)A will also have that same dimensionality.

This formalism can be understood most easily if we
write the operators in a matrix representation. A
matrix representation of Eq. (4) is

that statistical methods enter. In the following section,
we will state the initial condition for p(t). Then, once
the Hamiltonian is explicitly specified, we will have a
complete formulation of quantum-statistical mechanics.
The Pauli exclusion principle and the resulting Fermi
statistics will automatically be included if anticom-
muting creation and annihilation operators are used.
On the other hand, Bose statistics will automatically
result if commuting creation and annihilation operators
are used. No additional physical principles will be
required for calculating the expectations (1) or for
obtaining their equations of motion.

o(t) =exp —Xo(t) —Q d'r X (r,t)P„(r) (6)

where Xo(t) and the X„(r,t) are to be calculated from
the m+1 equations

(F„(r))i——TrLP„(r)o (t)], n = 1,2, ,m, (7)

QUANTUM-STATISTICAL THERMODYNAMICS

In this paper we will derive the equation of motion of
the generalized canonical density operator, which is
defined to be

p„„(t)=-i+L„„,ai(t) p) i(t), TrLo(t)] = 1, (8)
where, from Eq. (5), the matrix representation of the
Liouville operator is

L„,),((t) = tt 'Pe„).(t) t)(„—b„pei„(t)].
Here BC i(t) is the matrix element of the Hamiltonian,
and b~ is the Kronecker delta. By using a matrix
representation, we have been able to give an explicit
expression for the Liouville operator. However, in
order to keep our equations from becoming burdened
with indices, we will use operator notation instead of
matrix notation.

If X(t) and therefore L(t) were independent of time,
the formal solution to Eq. (2) would be

p(t) =exp( —itBC/tt) p(0) e p(xitR/t), t

whereas the formal solution to Eq. (4) would be

p(t) =exp( —itL)p(0) .

By comparing these two expressions, we can see the
effect of the operator exp( —itL) when operating on a
quantum-mechanical operator such as p(0). We may
also see that the two expressions are equal by expanding
them both in powers of t and using Eq. (5). Neither
formal solution is of much use since it is not easy to
calculate explicitly all of the terms of the in6nite series.
Furthermore, even the formal solution to Eq. (4) is
usually more complicated than here since L(t) is
usually a function of time.

In addition to the Liouville equation (4) and (5) and
the expression for the expectation of an operator (1),
we need the initial condition for p(t), and it is only here

as follows. The normalization condition (8) gives

Xp(t) =lnZ (10)

by solving them simultaneously with Eq. (6). This
section will be devoted to discussing some of the
properties of o(t), to using o.(t) for concisely expressing
the initial condition for p(t), and to identifying Xo(t)
and the X„(r,t).

Calculating the X„(r,t) involves the simultaneous solu-
tion of m+1 coupled, nonlinear, integral equations,
which we can at least consider formally. The X„(r,t) are
functions of r and t since the expectations (7) themselves
are functions of r and t As a result, .o(t) depends upon t,
but it does not depend upon r since only the integral
J'd'r X„(r,t)F„(r)appears in Eq. (6).

As can be seen from Eq. (6), the generalized canonical
density operator o(t) is delned in the same Hilbert
space as the operators F„(r)and therefore in the same
space as the total Hamiltonian K(t) and the statistical
density operator p(t). Hence, in constructing a theory
around o(t), we are loo.king at the problem from Gibbs'
point of view and considering the system as a whole
instead of using the single-particle model for our many-
body system. Such a point of view is necessary for
systems of strongly interacting microscopic subsystems.

Equations (7) and (8) may be rewritten in terms of
the partition functional
ZP, ,(r,t),X2(r, t), ,X„(r,t)]

=Tr erp —p fd rX (r,r)F (r)'
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and the X (r, t) are obtained from

(F„(r))&———hXo(t)/bX„(r,f), n = 1,2, ,m, (11)

where 8 denotes a functional derivative. We can under-
stand this operation by considering the limit of the
discrete case as follows. Corresponding to each of the
possible values of r and t, there is a value of X„(r,t).
In performing the functional derivative, consider each
of these values of X„(r,t) to be an independent variable
and perform an ordinary derivative. Care must be taken
since the operators F„(r)may not commute with each
other although the results are the same as if they did.
This equivalence can be seen by using the trace of
Eq. (A2) from Appendix A and observing that
the trace of a product of operators is not changed
when the operators are permuted cyclically.

The generalized canonical density operator de6ned
by Eqs. (6)—(8) is the operator that renders

S(t)= —k Trio (t) lno (t)] (12)

a maximum subject to the constraints (7) and (8).'
By use of Eqs. (6)—(8) and (12), we may write

S(t) =kXp(t)+kg d'r X„(r,t)(F„(r)),. (13)

Since the X„(r,t) are functions of the (F„(r)}g,it follows
that Xo(/) and S(t) as defined by Eqs. (13), (10), and (9)
can be considered to be functions of the (F„(r)),only.
By calculating the total functional derivative of Eq.
(13) with respect to the (F (r)), and applying Eq. (11),
is is easy to show that

kX„(r,t) =5S(t)/5(F „(r))~, e= 1,2, ,m. (14)

To perform this functional derivative, again consider
the (F„(r))~for each of the values of r and t to be in-
dependent variables.

Gibbs canonical and grand-canonical densities are
special cases of our 0(t). Our 0 (I) reduces to a grand-
canonical density operator when E» is the total Hamil-
tonian X and Ii 2 is the total particle number operator Ã
and there are no other operators F„(r).However, in
general 0(t) will be a functional of all the operators F„(r)
corresponding to all of the observed variables and not
just BC and E, and we will use it whether or not the
system is in equilibrium.

A system in thermodynamic equilibrium, however, is
described by a canonical or grand-canonical density
operator or, more generally, a generalized canonical
density operator containing only operators that are
macroscopic constants of the motion. Examples of such

operators are the total energy, the total particle
number, the total momentum, the total angular mo-

mentum, etc. Since most systems on which nonequilib-

4E. T. Jaynes, Phys. Rev. 106, 620 (1957); 108, 171 (1957);
Statistica/ Physics, 1068 J3rarldeis Lectures (W. A. Benjamin,
Inc. , New York, 1963), Vol. 3, p. 181;Am. J. Phys. 33, 391 (1965).

rium experiments are performed are in thermodynamic
equilibrium at one time or another, we may without loss
of generality choose the initial condition for our system
to be one of thermodynamic equilibrium. The initial
condition for the statistical density operator p(t), then,
will be that at t=0 it equals a generalized canonical
density operator containing only macroscopic constants
of the motion.

We may express this initial condition in a convenient
and concise form provided the generalized canonical
density operator (6)—(8) is at least as general as the
statistical density operator p(0). It will be—provided
there are enough operators in the set {F„(r),m=1,
2, , m) so that all of the macroscopic constants of
the motion can be written as linear combinations of the
F„(r).If there are enough operators F (r), then, for
special values of the X„(r,t), the PJ d'r X„(r,t)F (r)
appearing in Eq. (6) will reduce to a nontrivial linear
combination of the macroscopic constants of the motion.
The initial condition for p(t) then may be written as

p(0) =0'(0) (15)

as can be seen by the following consideration. Since the
the X„(r,0) in Eq. (6) are determined by the (F (r)}p,
which for systems in thermodynamic equilibrium are
given by Eq. (1) with p(0) being a generalized canonical
density operator containing only macroscopic constants
of the motion, it follows that the X„(r,0) will have just
the values so that Eq. (15) will be true. All systems
initially in thermodynamic equilibrium at t=0 will

have a statistical density operator p(t) satisfying Eq.
(15), but it is also possible for Eq. (15) to be true even
if the system is not in thermodynamic equilibrium at
I,=O.

The experimenter may object to our including so
many operators in the set {F„(r),m=1, 2, , m) on
the grounds that he does not intend to observe all of the
corresponding dynamical variables. The objection may
be answered as follows. Because of the simplicity of the
initial condition (15) for the density operator p(t),
the equations of motion for the (F„(r)}&will be much
simpler. If there were fewer operators in the set {F(r),
n= 1, 2, , m) so that Eq. (15) could not be true, then
the equations of motion for the (F„(r)}&would be so
complicated as to make it very dificult to use them.
For the macroscopic equations of motion to be simple,
they must state explicitly that, for example, the total
energy, the total particle number, etc., of an isolated
system are conserved.

If the experimenter insists on not observing all of the
necessary dynamical variables, then he takes the risk
of not completely controlling the experimental condi-
tions. If he performs the experiment carefully so that
he can be confident that he knows the values of the
dynamical variables he does not observe, then we
should include this information in the theory. We may
do so, for example, by stating that the unobserved



NONEQUILI BRIUM STATISTICAL MECHANICS

dynamical variables are constant Rnd then by dropping
the corresponding equations of motion, keeping only
enough equations to describe the remaining dynamical
variables.

We novr direct our attention to identifying the tem-
perature and thermodynamic entropy. In doing so, we
will see that some of the equations already written are
familiar equations of equilibrium thermodynamics. We
will use them whether or not the system is in thermo-
dynamic equilibrium.

If the system undergoes a nonequilibrium process for
t&0 and then settles dovrn to thermodynamic equilib-
rium, the equilibrium thermodynamic entropy vrill be
larger than before. But, —k Tr[y(/) lnp(t)] is inde-
pendent of time. This can be proved using the I.iouville
equation (2), the trace of Kq. (A2) with A =1np(t), and
the cyclic invariance of the trace. Hence, even though
—k Trgp(t) inp(/)] is identical with the equilibrium
thermodynamic entropy for t(0, it cannot agree with
the new value of the equilibrium thermodynamic
entropy after the system has undergone a nonequilib-
rium process. Therefore, we must seek another
quantity to identify as the thermodynamic entropy of a
system possibly not in equilibrium.

In thermodynamics, the entropy is dehned only for
systems in thermodynamic equilibrium, and so it
depends upon only present values of the thermodynamic
coordinates and has no memory of past values. The
function S(t) in Eq. (13) is such a function and further-
more is equal to the thermodynamic entropy whenever
the system is in thermodynamic equilibrium, as we now
show. Consider an infinitesimal change in the thermo-
dynamic state of the system for any instant t, Suppose
the thermodynamic coordinates (F„(r))&are changed
by 2 (F (r))i, there will be no change in the operators
F„(r)themselves since we do not change what co-
ordinates we observe. Denote the resulting change in
X„(r,t) by DX„(r,t) Then, as a. result of the change,
&o(i) will change by

which may be derived from Eq. (11) and the usual ex-
pression for a total derivative. Therefore, for each
instant of time 3, the function S(/) will change by

which follows from Eq. (13). This equation is valid
vrhether or not the system is in thermodynamic equilib-
rium Rt time $.

In order to identify S(t) and the X (r, t), consider, for
example, R system of nuclear spins interacting vrith
each other and with an external magnetic held II. If
the system is in thermodynamic equilibrium, we need
consider only the total energy U of interaction betvreen

the spins Rnd the total magnetic moment M instead
of the local internal energy and the magnetization per
unit volume. Thus vre may simplify our theory by using
operators that do not depend upon position in space.
For this example, then, tvro macroscopic operators are
used: Ii~ is the total internal energy operator, and Jig
is the total magnetic moment operator. While the
system is in thermodynamic equilibrium, vre may com-
pare Kq. (17) with equations from equilibrium thermo-
dynamics as follows. The term for m=1 is khihU, and
the term for n=2 is kXRAM; so when we compare
Eq. (17) with the thermodynamic expression for
changes in the entropy

and the first law of thermodynamics

EQ= hU —HAM,

we see that S(t) is the thermodynamic entropy, Xi is
1/kT, and X2 is II//kT, wh—ere T is the temperature.

We now recognize Eqs. (11), (14), (16), and (17),
which have been obtained from our de6nition of 0(t),
as equations of thermodynamics. Whenever the system
is in thermodynamic equilibrium, S(t) is the thermo-
dynamic entropy, and the X„(r,t) are simple functions of
some of the remaining thermodynamic coordinates.
Even when the system is not in equihbrium, S(t) is the
same function of the (F„(r)),and the X„(r,t) as when
the system is in thermodynamic equilibrium.

During a nonequilibrium process, S(t) may be cal-
culated as follows. Although the system is isolated so
that no hcRt cRn Qow ln ol out wc CRn imagine thc
original irreversible change to be replaced by an equiva-
lent reversible change during which we lct heat enter or
leave. We construct this imaginary reversible change so
that the final values of the (F„(r))iand the X (r, t) for
the imaginary hnal thermodynamic state are the same
as the values of the (F„(r))iand the X„(r,t) for the
original nonequilibrium state at time t. In order to do
this, vre must imagine a Hamiltonian vrhosc time-
dependent parameters change slowly enough for the
system to remain in thermodynamic equilibrium. At
the end of the imaginary reversible change, these
parameters, of course, vrill have values diGerent from the
values of the parameters in the Hamiltonian of the
real system —provided the real system is not already
in thermodynamic equilibrium at time t. Whether or not
the system is in thermodynamic equilibrium at time t,
then, we get

S(t)=S(0)+ dQ/T,

where dQ is the heat we imagine to enter the system
while it undergoes the equivalent reversible change.

We are now ready to dehne the entropy of a system
not in thermodynamic equilibriu. In thermodynamics,
entropy is not defined for systems not in thermodynamic
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equilibrium. However, since S(t) reduces to the equilib-
rium thermodynamic entropy whenever the system is
in thermodynamic equilibrium and since it is always the
same functional of the (F„(r)),and the X„(r,t) whether
or not the system is in thermodynamic equilibrium, we
define it to be the thermodynamic entropy also for
systems that are not in thermodynamic equilibrium.
It may always be calculated since it is a function only of
measured quantities, and it satisfies a form of the second
law of thermodynamics.

For completeness, we list without proof several
properties of the entropy S(t) It tu. rns out that S(t)
is not always a nondecreasing function of time; if the
system apyroaches equilibrium in an oscillatory man-
ner, the entropy can also approach its equilibrium
value in an oscillatory manner. Although dS(t)/dt&0 is
not always true, S(t) always has a lower bound. If the
system is in thermodynamic equilibrium for k&0, then

S(t) &S(0) for t&0. (19)

The thermodynamic entropy of an isolated system can
never be less than its initial value during an initial
period of thermodynamic equilibrium. This is a form
of the second law of thermodynamics.

Furthermore, it is easy to show that

S(0)=0. (20)

At the start of a nonequilibrium process, the entropy
as a function of time always has zero slope.

Finally, if the Hamiltonian of our system is time-
dependent only during the interval of time 0&t &3' and
becomes independent of time for t& t' and if the system
does settle down to thermodynamic equilibrium for
t))t', then

S(t)&S(~) for t&t'. (21)

That is, when the system settles down to equilibrium
after being disturbed, the entropy will equal the maxi-
mum value it attained while with a time-independent
Hamiltonian the system was approaching equilibrium.

DERIVATION OF THE EQUATIONS
OF MOTION

Our present task is to construct equations that
describe the time and space dependence of the thermo-
dynamic coordinates (F„(r)),. Although we will use
quantum mechanics to derive these equations of
motion, they will be classical in form. Our hope is not
only to use erst principles to derive some useful phe-
nomenological equations, such as Bloch's equations for
magnetic resonance, but to obtain generalizations of
these equations that can describe more complicated
phenomena. Although we have had much success in this
program, unfortunately we have not yet been able to
completely calculate the functional form of all the ex-
pressions appearing in these equations. In applying a
linear approximation of this formalism in another paper,

P(t);; ii ——P d'r
n=1

8o(t)
[F„(r)j,.

-~(F-()) —;;

However, as we have already said, we will use operator
notation instead of matrix notation. We have written
the last two equations on1y to clarify the definition of
the operator P(t).

we will make some phenomenological assumptions for
the functional form of these expressions. The calcula-
tion in this paper, however, will be strictly deductive
starting with the I iouville equation.

We will derive the equations of motion for the
(F„(r))iby first deriving the equation of motion for
the generalized canonical density operator o(t).

Although either p(t) or o(t) can be used to calculate
the expectations (F„(r))i,the two density operators
have important differences. Since p(t) satisfies a first-
order differential equation, it need be known at only
one instant for it to be determined for all later (or
earlier) instants. Thus memory is contained in the
operator p(t). On the other hand, since the X„(r,t) de-
pend upon only the present values of the expectations
(F„(r))„,it follows that o(t) depends upon only those
present values. But the values of the (F„(r)),at only
one instant do not in general completely determine
their values for later (or earlier) instants. Thus o(t)
does not satisfy a first-order differential equation; it
does not satisfy a differential equation of any order.
Since o (t) contains no memory of past values of the ex-
pectations (F„(r))i,that memory must be supplied by
the equation of motionfor o.(t). In this equation, an
integral of o(t) over the time interval 0 to t is used to
determine how o (t) changes in time.

The form of the Liouville equation (4) suggests that
an attempt to obtain an equation of motion for o(t)
should begin with the calculation of the time derivative
o.(t). Now Eqs. (6)—(8) state that o.(t) is a functional
of the (F„(r))i,which themselves are functions of time.
So, we need to calculate the total derivative of o(t)
with respect to the time. This total derivative can be
expressed in the concise form

o(t) =P(t)p(t) (22)

by use of the time-dependent linear operator P(t)
dined by

m gg (t)
P(t)A = P d'r Tr[F„(r)Aj, (23)

&(F-(r))

where 6 denotes a functional derivative. Here A may
be any operator defined in the same space as the F„(r)
and thus as o(t) and p(t). The operator P(t)A will then
be defined in that same space while P(t) itself is defined
in the same space that L(t) is. All operators to the
right of P(t) must be included in the trace.

A matrix representation of P(t)A is

[P(t)A j;t=PP(t);~, iiAgt,
where



It follows from the definition (23), Eq. (7), »d thc
definition of the functional derivative that

and has the initial condition

T(t,t) = 1. (27}

TrLF„(r)P(t)A]=TrLF„(r)A) (24)

' R. Zvpanzig, J. Chem. Phys. 33, 1338 (j.960),

P(t)P(t') A =P(t)A,

where I,
' need not equal I,. Although the last equation

with t=t' appears to suggest otherwise, P(t) is not a

projection operator" in the usual sense. For an operator
P to be a projection operator, it must not only be linear

and satisfy I"=I', but it must al'so be Herrnitian. Our
opcl'R'tol' P(t) 18 Ilo't Hcl'InltlRll ill gcIlel'Rl.

The dependence of P(t) upon time arises because

P(t) depends upon o(t) or equivalently the {F„(r)),.
That P (t) depends upon only o (t) can be seen as follows.

Consid. ering the definition (6)-(8) of o(t), we can view

o'(t) Rs depending only upon thc (F (r))g 80 fllRt 'tllc

8 o(t) /8 {F„(r)),and hence P(t) depend only upon the

(F„(r)}I.But, Eq. (7) states that the {F (r) )g themselves

depend only upon o(t) Ther. efore, P(t) depends only

upon o (t).
We proceed with the derivation of an equation of

Illotloll fol' a(t) by llslIlg tile Llollvllle equation (4)
to evaluate p(t) in Kq. (22). As a result, the right side

of Eq. (22) will contain p(t) whose time dependence is

not known. However, p(t) may be written as the sum

of the desired o(t) and another unknown, p(t) —o.(t),
so that Eq. (22) becomes

'(t) = —'P(t)L(t) (t)—'P(t)L(t) I:p(t)—(t)1

Now an equation for p(t) —o(t} can be formed by cal-

culating the time derivative dp(t) —o(t)1/«using
Eq. (4) alld thc plcvlolls cqllRtloII, Rnd agRlll sepal'Rflllg

p(t) into ~(t) plus p(t) —~(t) to get

dLp(t) —~(t)j/«+iL1 —P(t) jL(t)l.p(t) —~(t)j=- L1-P(t)jL(t).(t).

No RddltlonR1 unkn0%'ns RppeR1 1n this equRtlon so

that there are as many coupled equations (two) as

there are unknowns (two). Thus these two differential

equations are sufhcient to determine the time depend-
ence of both a (t) and p(t) —0(t). The equation of motion
for o (t) is formed by solving the second equation above
fol' p(t) —0'(t) Rs R fuIlcfloll of o"(t) Rlld llslllg tllat solll-

tion to eliminate p(t) —o(t) in the first equation.

Since the second equation has only one time deriva-

tive and is linear in p(t) —a(t), it can be solved by a
method analogous to the usual Inethod of solving

ordinary erst-order linear diBerential equations. The
integrating factor for the second equation is a linear

operator T(t,t') that satisfies the differential equation

aT(t, t')/at'=iT(t, t')L1—P(t') jL(t') (26)

Since P(t) depends upon a(t), the operator T(t, t')
depends upon o(t") over the time interval between t'

and t. H L1—P(t)gL(t) were independent of time, the

solution to Eq. (26) would be T(t,t')=expL —i(t—t')

)&(1—P)L]. In general, however, both P(t) and L(t)
depend upon time so that the solution cannot be

written in closed form without the use of time ordering

operators or the equivalent. Nevertheless, it is not
necessary that we have an explicit expression for

T(t, t') in order to proceed with the formal derivatio~

of the equation of motion for o(t) W. e.will have to
face that problem eventually, however.

Now replace I, by t' in the second of the coupled

equations, multiply the result by the integrating factor

T(t,t'), and use Eq. (26) and the linearity of T(t,t') to

get

~(T(t,t') I p(t') —~(t') j}i»'
=—iT(t,t') L1—P(t')gL(t') o (t') .

Of course, this equation can also be veri6ed directly

by using Kqs. (4), (22), snd (26). When the equation is

integrated from 0 to 3, it becomes

p(t) ~(t) =—i dt'—T(t,t') L1—P(t') jI.(t')~(t'),

wllel'6 wc llavc used tile IIlltlal colldltloIls (15) Rnd (27).
When this is inserted into the erst of the coupled

equations, the result is'

o(t) = —iP(t)L(t)o(t)
t

dt' P(t)L(t) T(t,t') L1—P(t') jL(t')o (t'), (28)

which ls the desired equRtlon of Inotlon. The only
unknown in this equation is o(t) so that in principle
this equation along with Eqs. (5)-(8), (23), (26), and

(27) determines the time and space dependence of the
thermodynamic coordinates (F„(r)),. Although Eq. (28}
appears to be linear in o (t), it is not since the operators

P(t) and T(t,t') depend upon o(t).
Since o.(t) depends upon the (F„(r)}I,Eq. (28) may be

written as a set of es coupled, nonlinear, integro-
diffcrential equations for the III unknowns (F„(r))~.
These equations are obtained by multiplying Eq. (28)
by the F„(r),taking the trace of both sides, and using

6 A derivation that appears to be similar to this has been given
by Nakajima (Ref. 3} and in more detail by Zvranzig (Ref. 5).
Although our derivation was partly motivated by Zvranzig's, it
necessarily is different since r(/) is not a linear function of p(t).
Hence, although Kq. (28) appears to resemble an equation of his,
it is not the same equation, the most important difference being
in the definition (23) of the operator I'(t). Our I' {t) depends upon
the unknovrn a (I), is not a projection operator, and does not give
the relevant part of p(t), hut instead satis6es Eq. (22).
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Eqs. (7) and (24) to get

a(F„(r))~/a~=—i Tr[F„(r)L(()~(t)]

d&»{F.( r)L(~)&(V )[1-~(~)]1(~')~(~')}

which along with Eq. (6) gives

1(t)~(t)= —P d'r d*~(t)*
n 0

X[L(t)F.(r)]~(t)'-*a„(r,t). (31)

Sy using this and the identity

Tr{A[B,C]}=Tr{[A,B]C},
we may write Eqs. (29) as

8(F„(r)),/Bt= Tr{[iI(t)F„(r)]o(t)}
t

+ d]'g d'r'K„„.(r, r', t, t')X„(r',r'),

(32)

where
v=1,2, ,m, (33)

E„„(r,r', t, t') = — dx Tr{[iL(t)F„(r)]T(t,t')

X[1—&(&')] (t') [I-(&')F.( ')] (&')'-*}. (34)

These equations are all exact and have no restric-
tions to their generality. In Appendix 8 we show that

n=1,2, . ,m. (29)

In principle, to use these equations, one must 6rst cal-
culate T(t,t') from Eqs. (26) and (27), where L(t) is
defined by Eq. (5) and P(t) is defined by Eq. (23) and
then use Eqs. (6)—(8) to express T(t,t'), F(t), and 0(t)
in terms of the (F„(r))~.

Instead of viewing the (F (r))~ as being the only un-
knowns, it is easier to consider tlie X (r,t) as also being
unknowns that are to be calculated simultaneously with
(F„(r)),.Then, when Eqs. (6) and (10) are inserted into
Eqs. (7) and (29), the latter equations become 2'
coupled, nonlinear, integral and integrodifferential
equations in the 2m unknowns (F (r))~ and X„(r,t).
These equations are coupled algebraic and integro-
differential equations for the time dependence of the
(F„(r))gand the X„(r,f). Furthermore, they are coupled
integral equations for the space dependence of the
(F (r))~ and the X,(r,t). Thus the theory is memory-
retaining and nonlocal.

Finally, we rewrite the last term of Eq. (29) to make
some of its dependence on the X (r,t) more explicit.
By using the definition (5) of 1-(t), we may prove the
identity2

1.(()A = —A ' dx d[A*X(t)A' 5/dx, (30)
0

E„„.(r,r', t,t') is real. Furthermore, in a linear approxima-
tion, E:„„.(r,r', t,t') will satisty a reciprocity relation and
a time-reversal symmetry relation, ' which we prove
in Appendix C. In general, E„„.(r,r', t&t') depends upon
the unknown X (r,t) in a complicated way. For the
examples of the application of Eqs. (33) so far worked
out, the 6rst term on the right reduces to easily recog-
nized kinematic terms, and the integral term causes
relaxation.

CONCLUSION

Regardless of the complexity of a system or of the
experiment performed on that system, it is always
possible to describe the results of the experiment with a
set of exact equations of motion whose only unknowns
are quay. tities that are directly observed, i.e., the
(F„(r))~and the X„(r,t). In our notation these equations
are Eqs. (7) and (29), which are to be used with Eqs.
(5), (6), (9), (10), {23),(26), and {27).

That these equations are exact and have been
derived from quantum-statistical mechanics without
assumption or restriction of generality is the most im-
portant feature that distinguishes our work. However,
these equations do contain expressions that in general
may be evaluated only approximately, a difhculty that
appears to be inherent to the subject. In the following
we will compare our work in detail with a few recent
papers in order to illustrate the advantages of our
method.

By making several assumptions, Zwanzig' has ob-
tained approximate equations for the thermodynamic
coordinates n (t) and F„[n(t)],which correspond to
our (F ), and X„(t).To do this, he uses a probability
distribution in classical statistical mechanics that does
not correspond to any expression in our formalism. In
his notation, our generalized canonical density operator
0(/) corresponds to the generalized microcanonical
density 5[A(x)—n(/)]/J'dx' 8[A(x') —n(t)], which he
does not consider. In obtaining his approximate Eq. (40)
which corresponds to our exact Eq. (33), he restricts the
Hamiltonian to be independent of time and assumes
what in our notation is equivalent to assuming that
F(t) may be set equal to zero in the equation for
T(t,t') The latter as. sumption precludes a description
of many systems exhibiting interesting memory effects.

Mori' obtains approximate equations for his A(t),
whose expectation corresponds to our (F )~, by applying
the method of Ref. 5 to Heisenberg's equations of
motion instead of to the Iiouville equation. His
operator 6', however, is not Hermitian and hence is not a
projection operator. Nevertheless, the method still
works since his (P is independent of time. But he does not
obtain an exact equation of motion for his A(t) with
that A (t) as the only unknown. He uses a high-tempera-

7 R. danzig, Phys. Rev. 124, 983 (1961).
H. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).
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ture approximation to his initial density operator. In
Appendix C, we restrict our Hamiltonian to be in-

dependent of time and make a linear approximation. If
we furthermore restrict our system to be uniform in
space, our formalism reduces to Mori's once we eliminate
the hi (h) between Eqs. (C4) and (CS). Our operator
E(t) then is independent of 0(h) and furthermore is
independent of time and reduces to the Hermitian
conjugate of his O'. An advantage still remains in our
formalism even after being so restricted and approxi-
mated: Our operators F„are the directly observed
dynamical variables, and we need not remove their
invariant part, i.e., the part that is diagonal in a
representation in which the Hamiltonian is diagonal.
This is important since removing the invariant part of
an operator is as dificult as solving the entire many-
body problem itself. A further advantage of our for-
malism even in this linear approximation is that we use
the hi„(r,h), which together with the (F„(r))icomprise
all of the thermodynamic coordinates at least when the
system is in thermodynamic equilibrium. The simple
physical interpretation of the hi„(r,h) and the simplifica-
tion of the formalism resulting from their use makes it
desirable to keep them in the formalism and not
eliminate them as has Mori. Like his formalism and
that of Ref. 5, our formalism in general takes the same
form in classical as in quantum-statistical mechanics.

In a study of relaxation in a gas, Pano' has applied
the method of Ref. 5 in the frequency domain instead
of the time domain and so restricts his discussion to
Hamiltonians that are independent of time. In a study
of relaxation in a solid, Lax" has used an improved
Hartree procedure in a density matrix formulation.
Both authors consider a system of interest interacting
with a thermal bath, a point of view that we did not
ind necessary to take. Neither author obtains exact
equations of motion whose only unknowns are the
thermodynamic coordinates of an arbitrary system.

A survey of the theory of irreversible processes has
been made by Chester, "and a comparison between the
Nakajima-Zwanzig master equation and other master
equations has been made by Zwanzig. "
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depend upon a parameter x', then

(didx') exp[x'(A+8)] exp[—x'A]
=exp[x'(A+8)]8 exp[—x'A],

which may be verihed by direct differentiation. Now
integrate this over x' from 0 to x, multiply both sides
on the right by exp(xA), and transpose the lower limit
on the left side to the right side of the equation to get

exp[x(A+ 8)]=exp[xA]

+ dx' exp[x'(A+8)]8 exp[(x —x')A].
0

This integral equation may be solved approximately for
the unknown exp[x(A+8)] by iteration giving

exp[x(A+B)]=exp[xA]+ dxi exp[xiA]8
0

)&exp[(x—xi)A]+ dxi dx2 exp[x2A]8
0 0

Xexp[(xi xg)A]8 exp[(x xi)A]+' ' ' (A1)

Finally, let 8= bA and keep only first-order terms to
show that

8 exp[xA]—=exp[x(A+ BA)]—exp[xA]
(A2)

dx' exp[x'A](8A) exp[(x—x')A],
0

which is valid for any operator A.

APPENDIX B

The proof that E„„(r,r', h, h') defined by Eq. (34) is
real is as follows. Equation (26) may be integrated using
Eq. (27) to form a linear integral equation with T(h, h')

as the unknown. This integral equation may be solved
by iteration giving

T(h, h') =1—i dh, [1—F(h, )]L(h,)

The author thanks Professor E. T. jaynes for many
helpful conversations.

APPENDIX A

If A and 8 are any two operators that possibly do not
commute with each other and that do not operate on or

~ U. Fano, Phys. Rev. 131, 259 (1963); Lectures om the Maly-
Body Problem, edited by K. R. Caianiello (Academic Press Inc. ,
New York, 1964), Vol. 2, p. 217."M. Lax, J. Phys. Chem. Solids 25, 487 (1964)."G. V. Chester, Rept. Progr. Phys. 26, 411 (1963}.

~ R. Zwanzig, Physica 30, 1109 (1964).

dh, dh, [1—F(h,)]L(h,)[1—F(h, )]L,(h,)+
ti tl

(&1)

Now since [A,B]~= [At,Bt] for any l—inear operators
and B, where the dagger indicates a Hermitian

conjugate, we have

[iL(h)A t]= iL(h)A &, (II2)

where L(h) is defined by Eq. (5) with X(h)&=K(h).
Furthermore, because of the definition (23) of P(h),
we have

[F(h)A]t=F(h)A.
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As a result,
LT(t t )Ajt=2'(t, t )At. (84)

coupled equations

Finally, we need (F-( )) =(F-( ))—Z- d' 'L(F-( )F- ( '))

dx o(t) Ao.(t)'— = dx o(t) A o(t)' (B5)

APPENDIK C

ln this Appendix we restrict ourselves to a Hamil-
tonian that for t&0 is independent of time and consider
a linear approximation to our formalism in order to
prove some reciprocity relations and time-reversal
relations. Such a restriction is not always necessary in
order to obtain a useful theory. This Appendix is the
only place in this paper any approximations or restric-
tions to generality are made.

Let X=X(0+) represent the Hamiltonian for t)0
where X(0+) is different from the initial Hamiltonian
X(0—) so that at t=0 the system is disturbed from
its initial state of thermodynamic equilibrium. Be-
cause of our requirement that the operators F„(r)be
sufBciently general that all of the macroscopic constants
of the motion may be written as linear combinations
of the F„(r),we are always able to write

Ã=g fd'r v„(r)F„(r), (C2)

where it„(r)and v (r) are suitable functions of r. If X
and E are the only macroscopic constants of the motion,
a useful approximation will be to consider

which follows from o(t) t=o (t). Now, since the complex
conjugate of the trace of a product of two operators is
the trace of the product of the Hermitian conjugates of
the operators, and since the F„(r)are Hermitian, it
follows from these equations that E'„„(r,r', t,t') is real.

n'

gati„(r',t)
X = 5„„-8(r—r"), (C10)

B(F„(r)),

which are obtained by taking the functional derivative
of Eqs. (CS) with respect to (F„(r)),. From now on we
will consider the gati„(r',t)/5(F„(r)), as having been
eliminated between Zqs. (C9) and (C10).

The kernel (34) may now be considerably simplified

by solving Eqs. (26) and (27) for T(t, t') and inserting
the solution into Eq. (34) to get

E„„(r,r', t—t') =—([HALF „(r)5expf i(t t—') (1 —P)L5-
&& (1—P) LiLF„.(r') j), (C11)

where we have written L for L(0+). Finally, Eqs. (33)
become

—(F„(r))(F„(r'))jti„.(r'), rt=1,2, ,m. (CS)

In this linear approximation, the definition (23) of the
operator P(t) becomes

gati„.(r', t)
PA = —Q d'r d'r'

nn' ~(F.(r)) i

X[F„(r')—(F„(r'))joo TrLF„(r)Aj. (C9)

We have written P for P(t) since that operator is in-
dependent of time as may be seen by observing that the
gati„.(r', t)/8(F„(r))i are the solutions to the coupled
equations

ti„(r,t)=X (r,t)—n v (r)—lait„(r) (C3) ~(F-( ))i/~t= —Z. d"'(L~LF.(r)jF. (r'))t. (r', t)

as being small, where 1/kP is the temperature and n/P
is the chemical potential. Then to first order in ti„(r,t),
the deinition (6), (10), and (9) of o (t) becomes

(t)= o
—Z d' -(,t)LF-()—(F-())j o (C4)

where

o o=—exp( —nlV —PX)/Tr [exp(—nÃ —PX)j (CS)

and where
(A)=—Tr(Aoo),

1

oo~~oo~
0

(c6)

(C7)

for any operator A. As in Zqs. (7), the p„(r,t) are to be
determined in terms of the (F„(r)),by solving the

t

dt' g„d'r'K„„.(r,r', t t')ti„(r',t'), —

rt=1,2, ,m. (C12)

The kernels in Eqs. (CS) and (C12) are now independent
of the unknown o.(t) or equivalently the ti (r,t) or the

(F„(r))&.The first two kernels may usually be cal-
culated at least approximately, but the third kernel

(C11) is more diflicult to calculate. However, our
theory becomes immediately useful phenomenologically
if a convenient functional form is assumed for the
kernel (C11). The kernel should decrease to zero for
increasing ~r—r'~ and for increasing (t t') although-
not necessarily monotonically. This will be assumed in

another paper in which our formalism will be applied
to a paramagnetic system with a time-dependent
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RXHE. '=K H, (C22)

where the subscript indicates the sign of the external
Inagnetic ield H appearing in the Hamiltonian. Under

18 g.. R. Bliss Rept. Progr. Phys. 26, 30"1 (i963).

Hamiltonian that drives the system far from equilibrium.
The reciprocity relations may now be derived as

follows: Equations (C6) and (C7) give

(AB)=(BA& (C13)

for any operators A and j3. The reciprocity relation

&F.(.)P..(.'))=(F..(")F.(.)& (C14)

follows immediately. Since the matrix

—C-(F" (r"}F-(r'))—&F--(r"))(F- (r')&j

is symmetrical in e'r' and e"r", then its inverse (C10)
is symmetrical also

'.- (",~)!'&F.( )& ="(,/)/'&F" (*')&'. (C»)
Now Eqs. (5), (CS), and (C6) give

((ALA) &=0 {C16)

for any operator A. Also, Eqs. (5), (C9), (C13), (C15),
and (C16) give

&(iLA)g /LB)) = &(iLB)F(iLA)) (C17)

and Eqs. (5), (32), and (C13) give

(A(iLB))= —&B(i')& (C18)

for any operators 2 and 8.The reclproc1ty relation

&L'LF.()jF"(")&=-(L'LF.(*')jF.()& (C»)
follows immediately from Eqs. (32) and (C18).Further-
more, by using a method similar to the method used to
prove Eqs. {C1/) and (C18), we may prove

&(iLA)Lo(1—F)Lj"(1—F)(iLB))
=((KALB)L—'(1—Z)Lj'(1—Z)(ALA) & (C20)

by induction for any operators 3 and 8 and for k
being a non-negative integer. The reciprocity relation

E„„.(r, r', / /') =E„.(r', r, t—'—f) (C21)

follows immediately by Taylor expanding the right
side of Eq. (C11) and using Zq. (C20) term by term.

Next we derive the time-reversal symmetry relations.
Under time reversal given'3 by the similarity trans-
formation R( )R-', the Harniltonian XH becomes

time reversal and simultaneous reversal of the external
magnetic 6eld, then, XH is unchanged. Also, since
RIM '=E Eqs (CS) and (C22) give

R(~o)HR '=(~o)-I
Furthermore, since RiR '= i—Eqs. (5) and (C22) give

R(iLHA)R '= —K HRAR-' (C24)

for any operator A. Now, without loss of generality, we
may de6ne the operators F"(r) so that

RF„(r)R—=o F„(r),o„=+;1,I=1,2,",m, (C25)

1.e. under time reversal F (r} changes at most ln sign
only. Then, by introducting 1=8 '8 into the trace
in Eq. (C6) and by using Eqs. (C7), (C23), and (C25)
and the invariance of the trace of a product of operators
to cyclic permutations of the operators, we may prove
the time-reversal symmetry relation

&F„(r)F„.(r')&H=o„o &F (r)F„.(r')) H, (C26)

where o„is the same as in Eq. (C25) and the subscript
indicates that H is changed in sign 1n 0'o. Also, by in-
troducing I=E. % into the trace in the irst term on
the right of Eq. (C12) and by using Eqs. (C6), (C7),
and (C23)-(C25) and the cyclic invariance of the trace,
we may prove the time-reversal symmetry relation

(EoLF.(r)jF.{r)&I=.....&LoLF.(r)jF,(r')& I, {C27)

where o„is the same as in Eq. (C25) and the subscript
indicates that H is changed in sign in both I, and o-o.

Furthermore, by introducing i=A 'R into the trace
in Eq. (C6) with A replaced by F„(r)and by using
Eqs. (C23) and (C25) and the cyclic invariance of the
trace, we may prove the time-reversal symmetry
relation

&F.(r)&a=o.&F„(r)&H m=12 "~ (C28)

where o„is the same as in Zq. (C25}. By applying
Eqs. (C22), (C25), and (C28) to Zqs. (C7) and (C9),
we get

R(FHA)R '=F HRAR '. (C29)

Finally, introduce 1=E 'E. into the trace in Kq.
(C11) and use Zqs. (C24), (C25), and (C29), R/R '=/,
and the cyclic invariance of the trace to get the time-
reversal symmetry relation

E„„.(r,r', ~—t')H=o„o„'E„„.(r,r', ~'—/) I, (C30)

where the subscript indicates that H is changed in sign
everywhere it appears.


