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Heat Cayacity and Other Proyerties of Body-Centered Cubic He'~
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The heat capacity at constant volume, C„, of bcc He4 has been measured for a number of molar volumes
covering most of the bcc region of the phase diagram. The results can be represented to within 3% of Q, by
a constant Debye 0+ of 16.95'K. Using the discontinuities in the heat capacity at the phase boundaries meas-
ured in this and in previous work, the compressibility ~ is found to be (3.8+0.2) X10 ~ atm ' and sub-
stantially independent of temperature, while values of the expansion coefEcient 0. found by the same method
are between 5X10 ' and. 13X10-'deg '. The values of e are consistent vrith a Gruneisen equation with a
Gruneisen constant y =2.6, the value found previously for hcp He'. The latent heats at constant volume at
the lower and upper triple points Ti and T~ have been measured as a function of volume and give for the
maximum entropy change at T&, where (hcp+liq) ~ (bcc), the value DS&/R= (9&1)X10 '. The maximum
entropy change at T&, where bcc ~ (hcp+liq), has the value aSs/R= (32+2)XtM. The triple-point tem-
peratures were found to be Ti=1.463+0.002'K and T~=1.7715&0.001'K. The intersection of the ) line
with the bcc phase boundary has been confirmed to be ~10mdeg below the upper triple point. The entropy
of the bcc phase at the transition line has been computed from the heat-capacity results and the latent-heat
measurements and is found to vary from S/R=0. 037+0.002 at T& to S/R=0. 068+0.003 at Ts. The relation
between 5 and C„is the same as for the other low-pressure structures of solid Hes and He4, indicating that the
variation of O~ with T and therefore the lattice spectra are similar. On the supposition that bcc He' is indeed
like the other forms of solid helium, it is estimated that bcc He' would have a Debye O~ at O'K, O~o, of 21 K
for a molar volume of 21 cm'. This value of 00, when compared with the measured velocity of sound,
indicates that bcc He4 is elastically highly anisotropic, in agreement with the recent theory of Nosanow and
%erthamer.

L OYTTRODUCTIOH

'HE body-centered cubic (bcc) phase of He' was
discovered~ and its boundar1es ln the p Tplane-

determined by yignos and Fairb»k' during measure-
ments of the velocity of longitudinal sound in solid
helium. The structure of the phase was dehnitely
established to be bcc by the x-ray work of Schuch and
Mills, ~ and later Grilly and Mills' measured, the molar
volumes and pressure at melting and at the bcc-hcp
transition (see Figs. 1 and 2). The bcc region of the
phase diagram is only 0.{)4'Kwide at constant pressure
and not much wider at constant d.ensity, while the total
variation of density across the phase is about 1/o. The
upper triple point T2 is very close to the X curve of the
liquid. The bcc structure is also found in solid He, where
it occupies a much larger area of the phase diagram, and
its existence in both isotopes can be attributed to the
dominant role played by the zero-point energy and the
lattice entropy, both of which oGset the higher potential
energy in the bcc structure compared with the close
packed structures.

Recently, the speci6c heat at constant volume of bcc
He' has been measured by Ahlers' in a small range of the
higher densities near to T2. The lower densities were not
measured because for these Ahlers was unable to form
a block of solid helium in the filling tube of the calorim-
eter so as to keep the specimen at constant volume. His

*VVork supported by the National Science Foundation and the
U. S. Once of Naval Research.' J. H. Vignos and H. A. Fairbank, Phys. Rev. Letters 6, 265
(1961).' A. F. Schuch and R. L. Mills, Phys. Rev. Letters 8, 469 (1962).' E.R. Grilly and R.L. Mills, Ann. Phys. (N. Y.}18, 250 (1962).' G. Ahlers, Phys. Rev. Letters 10, 439 (1963);Phys. Rev. DS,
A10 (1964).

results seem to indicate that bcc He' has remarkable
properties. in particular that (r)C,/r)V)s is negative,
implying a negative temperature coeKcient of the
thermal-expansion coefi6cient. By using his measure-
ments of the discontinuities in C, at the phase bounda-
ries with the I'VT data of Grilly and Mills, he was able
to obtain negative values of the expansion coefFicient
itself.
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FIG. I. Pressure-temperature diagram for He4 in the neighbor-
hood of the bcc phase. The phase boundaries have been drawn
using the results of Grilly and Mills (see Ref. 3) with the tempera-
tures corrected by Ahlers Lace Eq. (3) and Ref. 4j. The arrows
indicate two possible, constant-volume paths, a and b.
143
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In the present series of experiments no difficulty in
blocking the capillary tube occurred, so that more or less
the whole range of density has been covered. We have
also been able to obtain measurements of the latent
heats at the two triple points, T» and T2, as well as
approximate values of the entropy and a small number
of new points on the phase boundaries of the phase
diagram.

The experimental apparatus and the techniques used
in the present experiments have been described in our
previous paper' on the heat capacity of hcp He4, to
which we refer the reader for details.

FIG. 2. &olume-temperature diagram for He4 in the neighbor-
hood of the bcc phase. The open circles show the results of Grilly
and Mills (see Ref. 3) with temperatures corrected with Eq. (3);
the open triangles show the results of Ahlers (see Ref. 4) with
volumes determined from bcc melting temperatures using Grilly
and Mills' corrected bcc—(bcc+liq) melting line; the closed
circles are the present results with volumes determined in the same
manner, except for the point at 1.481'K where the volume was
determined from the (hcp+bcc) —bcc boundary. The hcp —(hcp
+bcc) line has been drawn using Grilly and Mills' data for 6Vt,, and
Ahlers' and the present results for the (hcp+bcc) —bcc line. The
dashed lines a and b represent the constant-volume paths shown
in Fig. 1.

diagram of Fig. 1. In some experiments speci6c-heat
measurements were taken erst in the single-phase hcp
region and then in the two-phase, hcp+liquid region
before the lower triple point temperature T» was
reached. At T» it was invariably observed that some
superheating of the hcp-liquid mixture occurred: The
temperature of the calorimeter could usually be raised
about 10 mdeg above T» before the bcc phase Anally
appeared. The temperature then suddenly dropped and
became more or less constant while the latent heat L»,
necessary to convert the sample to a hcp+bcc solid mix-
ture was supplied by theheater. By measuring the "fore-
drift" and "after-drift" before and after heating the
calorimeter through &», it was possible to measure the
latent heat to a few percent. The correction necessary for
the heat supplied to raise the temperature of the sample
and calorimeter was calculated from the heat-capacity
measurements made above and below T». The principal

difhculty in determining the latent heat like this was the
very long time required to attain equilibrium in the two-
solid hcp+bcc mixture. This was demonstrated when
the heat was turned oG above T» at the end of the latent
heat determination. The temperature of the calorimeter
dropped in a quasi-exponential manner with time until
levelling o6 to a steady rate of drift some 10 or 15 min
later. This slow approach to equilibrium, also observed
by Ahlers, 4 always occurred in the two-solid mixture and
made it difhcult and tedious to get reliable heat capacity
measurements in this region. To check our measure-
ments and the consistency of the other data used in
determining the latent heat, we also measured a sample
(average molar volume V=21.13 cm') which did not
intersect the pure bcc phase, but followed a path like
that labeled "b" in Figs. 1 and 2.This sample contained
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D. RESm,TS

Measurements of the Temperature and Latent
Heat at the Triple Points

As in our previous work' on hcp He4, the heat
capacity measurements were made at constant volume,
so that samples with densities corresponding to the
body-centered cubic region of the phase diagram
followed a path like that labeled "a" in the molar
volume-temperature diagram ot Fig. 2 and in the pT-

'D. 0. Edwards and R. C. Pandorf, Phys. Rev. 140, A816
(1965).
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FIG. 3. The heat capacity of (liquid+solid) He' at constant
volumes in the neighborhood of Tq and the upper triple point T2.
The triangles refer to sample numbers 3 and 4 of Table III and the
circles to sample number 7. The ulled points refer to measurements
on (bcc+liq) mixtures, including some superheated above T» the
open symbols refer to (hcp+liquid) mixtures. The heat capacity
of both types of mixture at a given volume is approximately the
the same at T2.
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liquid heliumII both above and below T&, consequently,
the thermal relaxation time was correspondingly lower,
about 3 min. The latent heat I 2 occurring at the upper
triple point T2 and the heat capacity just below and
just above T2 were also measured for several samples.
The calorimeter contained liquid helium I both below
and above the triple point (see a and b in Figs. 1 and 2)
and the relaxation times were reasonably short.

It is a remarkable fact that the melting heat capacities
measured just below and just above the triple points
seem to be the same within experimental error. Figure 3
shows the measurements for three diferent molar
volumes in the neighborhood of the melting X point Tq
and the upper triple point T2. The closed symbols
represent measurements when the sample was partly
bcc and partly liquid; the open symbols are for melting
hcp. The closed symbols above Ts are for srtperheated,
melting bcc. As the diagram shows, the results for melt-
ing hcp He' can all be extrapolated to T2 so as to inter-
sect the curves for melting bcc, and the maximum diGer-
ence in heat capacity at T2 between melting hcp and bcc
samples at the same density is less than a few percent.
The same fact is seen in Ahlers' measurements' for
V=20.940 cm'. At the lower triple point T~ following
the melting curve (path b in Figs. 1 and 2), the difference
in heat capacity is less than about S%%u~. At Tr, but follow-
ing the transition line above Tr (path a), no de6nite
conclusion could be reached because of the uncertainties
introduced by the long relaxation time in the two-solid
region. Some thermodynamic analysis of this apparent
equality of the melting heat capacities at the triple
points has been attempted, but without reaching a
definite conclusion. It appears likely that the equality
is not exact and that it can be justified only
approximately.

The measured molar latent heats at the triple points,
given in terms of entropies Lr/Tr, Ls/Ts, are plotted as
a function of the volume per mole of the sample V in
Fig. 4. They can be understood by means of the follow-
ing argument: Denote the three phases by the sures
a, b, c, with the convention that phases a, b, are present
below the triple point and a, c, above. Then the entropy
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Fro. 4. The entropy change nS/R =L/RT is shown at constant
volume at the upper triple point T~ (circles) and at the lower triple
point Tj. (triangles) as a function of volume. The pairs of dashed
lines are drawn to intersect the volume axis at the triple point
volumes of the liquid and the hcp phases, measured by Grilly and
Mills. At each triple point the pair of lines is drawn to intersect
at the volume of the bcc phase since the maximum entropy
changes will occur when V= V~.

S of the sample (all extensive quantities are molar} is
given by

dG dp dp
S=— +V =S.+(V- V.)

dT dT dT

where 6 is the Gibbs function and where V, and V are
the volumes per mole of the phase a and of the sample
as a whole. The total derivatives with respect to T are
along the phase equilibrium line. The change in entropy
at the triple point is therefore

The measured latent heats are consistent with the
linear dependence on V required by this equation, as is
shown in Fig. 4, in which the volumes of the three phases
at T& and T2 are those determined by Grilly and Mills. '
The maximum entropy changes, (ASr)~,„, (ASs)
which occur when V equals Vb„are compared in Table I

TAsLz I. The temperatures of the bcc-hcp-liquid triple points, 1'& and T2, and the upper X point, T~.
The maximum constant-volume entropy change at the triple points, (DS&)~ and (ttS&)~,x.

Source r2 10'(6 &S)~s x/R1 0(& S)rmax /R

Vignos R Fairbank&

Grilly R Millsb
Ahlerso

Klel stead~
Lounasmaa R Kaunisto'
Present experiments

1.449m 0.003
1.437~0.006
1.464+0.001

—0.005

1.463+0.002

1.765 ~0.003
1.760 ~0.001
1.763 &0.003

1.7633~0.0001
1.762 ~0.001
1.763 ~0.002

1.778 ~0.003
1.760 &0.004
1.773 a0.001

1,7732~0.0001
~ ~ ~

1.7715w0.001

22 33

35.5~2.0

a Reference i.
b Reference 3.
e Reference 4.
~ Reference 6.
e O. V. Lounasmaa and L. Kaunisto, Ann. Acad. Sci. Fennicae, Ser. A, VI, No. 59 (j.960).
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with values calculated with Eq. (2) from I'VT data.
As the table shows, agreement at T2 between the
present result, the one calculated from the slopes of
the transition line and hcp melting curve (Grilly and
Mills' ), and. the difference in melting curve slopes
(Kierstead') is excellent. At Ti the agreement is poor
but our value of (AS&),„ is quite consistent with
(dp/dT)~, obtained by Grilly and Mills at temperatures
a little higher than T~, and it appears that their value
at T& itself, which is anomalously high, is in error.

Table I also gives the triple-point temperatures Ti
and T2, and the temperature of the intersection of the
X line with the melting curve T~. In each case the result
is the average of several determinations during differ-
ent experiments with different densities, all of which
are within the limits of error quoted. We are in very
good agreement with the other authors except for
Grilly and Mills, ' and we have therefore followed
Ahlers4 and added a correction

cool back into the bcc region of the phase diagram, or
after holding the temperature steady in the bcc region
for half an hour or so. Otherwise the heat capacity was
higher and not reproducible and the heating curves
showed small relaxation effects which were apparently
due to small amounts of residual hcp phase which were
able to remain for a considerable time. These were
probably caused by pressure inhomogeneities: In par-
ticular, small regions of slightly higher pressure which
were produced during the hcp-bcc transition and which
slowly disappeared by the extrusion of the solid through
the pores of the sintered copper calorimeter. 'When all
traces of the residual hcp phase had been removed, it
was possible to supercool the bcc solid about 10 mdeg
or so below the lower phase boundary, and to measure
the temperature of the phase boundary with some
precision (see Fig. 6).Unfortunately, we were never able

The Specific Heat

The heat capacities measured in the "pure" bcc phase
are shown in I"ig. 5, both directly and as the effective
Debye temperature O~, for several different volumes.
Temperature rises of about 0.006 deg were used in the
measurements. The data were obtained after heating the
sample into the (liquid+bcc) region and allowing it to
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Fxo. 5. Measurements of the speci6c heat at constant volume
C, of bcc He4 for various molar volumes. The results are displayed
both as C, and as O~. The samples in the present measurements are
described in Table III and are shown as: 0, sample 1; Q, sample 2
(V=21.028 cm'); V, sample 3 (V=21.028 cm'); &, sample 5
(V=20.998 cm3); ~, sample 7 (V=20.943 cm'); e, sample 9
(V=20.927 cm'); where the volumes quoted have been fitted to
the melting line in the V-T diagram of Fig. 2 using the meas-
ured values of the melting temperature. Ahlers' measurements
(see Ref. 4) are for the following samples: ~, V=20.955 cm';
)(, V=20.940 cm', +, V=20.921 cm', where the volumes have
also been 6tted at the melting line.

6 H. A. Kierstead, Phys. Rev. 138, A1594 (1965); this issue,
144, 166 (1966).

~T=0.079—0.0375TgM

to Grilly and Mills' temperatures between T& and T2
whenever we have had occasion to use their I' VT data
(as in Figs. 1, 2, and 4), so as to bring their triple points
into agreement with Ahlers' and our own values. T('K)
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FxG. 6. Temperature of the calorimeter versus time taken from a
recorder tracing. At k =0 the sample (number 5, Table III) is in
the (supercooled) bcc state and is cooling by heat loss through a
superconducting indium thermal switch. At t =1.8 min the heat
capacity is determined in this supercooled state. Just after t =3
min, hcp solid begins to appear and the calorimeter is heated
slightly by the latent heat of transformation. At t=5.5 min, the
drift rate is steady once more and hcp and bcc are judged to be
very near to equilibrium. Assuming that the rate of heat loss is
constant over this small range of temperature, extrapolation of the
curves gives the bcc-hcp boundary in the absence of supercooling
to be 1.612~0.001'K.

to superheat the bcc solid above its melting point, even
after half an hour of annealing. Moreover, the increase
in specific heat at melting was not completely sharp but
showed a small "tail" up to 20 mdeg before the main
discontinuity, although the data in this region were
quite reproducible both on cooling and heating. These
phenomena indicate that freezing probably left some
small regions of slightly lower than normal pressure or
density which we were unable to remove by annealing.

Figure 5 also shows the data of Ahlers4 obtained at
the high-temperature end of the bcc phase. Both his
data and ours lie rather close to one curve and can be
represented to within about B%%u~ of C„by a Debye
formula with 0'=16.95'K for all densities. This be-
havior is similar to that of the thermal conductivity
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measured by Berman and Rogers~ which, when plotted
against temperature, also lies on one curve irrespective
of density. Ahlers has interpreted his specidc-heat
results as indicating that the bcc phase has some
anomalous properties in the high density part of the
phase diagram, in agreement with a theory of Goldstein'
which predicts anomalous thermal properties of the solid
near the intersection of the X line with the melting curve.
Ahlers bases his conclusions partly on the fact that, in
his experiments, the specific heat appears to decrease
with increasing molar volume at axed temperature
(see Fig. 5), In our experiments the tail or premelting
effect in the heat capacity makes the temperature and
volume dependence of C„or 0' difficult to determine,
but C, appears to increase with increasing V, which is
the behavior observed in bcc He' and in hcp He'
and He4.

The Entxopy

The specific-heat measurements on some samples (3,6,
8, and 9 in Table III) extend from the hcp phase past the
lower triple point Ti and across the two-phase hcp+bcc
region. Prom these measurements we have been able to
obtain the entropy of the bcc phase of He' by integrat-
ing C„/T and adding the appropriate entropy change
at Tj.Theresults for the entropy at the transition curve
are given in Pig. 7 as the square symbols. The experi-
mental error indicated in the graph is approximate and
is based on the estimated 10% accuracy of the heat
capacity measurements in the two-phase region where
the thermal relaxation time is long. The 6gure also gives
a value of S at the lower triple point Tr (the closed.
circle). This was obtained by adding (ESt),„(Fig.4)
to the entropy of the mixture of hcp He' and liquid He4
which transforms to bcc He4 at T~. The entropy of the
(hcp+liquid) mixture was determined from the data
on hcp He4 given in our previous paper, ' the entropy of
freezing liquid helium at T& given by van den Meijden-
berg, Taconis and Ouboter, ' plus the molar volume data
given by Grilly and Mills. ' The inverted open triangles
in Fig. 7 represent values calculated from the formula
Ss„Si„i+AS', S——i„u+AV&, (d—p—/dT)&„where(dp/dT)i,
and 0 V&, were taken from Grilly and Mills. The un-
certainty in these points is mainly in the value of d S&,
which was estimated to be &10%by Grilly and Mills.
The inverted, filled triangle at T2 was obtained in the
same manner but using the new measurements of
Kierstead' for (dp/dT)i, . The open circles in the figure
were calculated from Sq«= Si;~—~S —~S', where
hS =DV (dp/dT) is from Grilly and Mills, Si;u is
from the data of van den Meijdenberg et al. ,

' and DS' is
a small correction for the difference between the entropy
of the bcc phase at melting and at the transition line.
4S' was estimated from the present heat-capacity data

7 R. Berman and S. J. Rogers, Phys. Letters 9, 115 (3964).
L. Goldstein, Phys. Rev. 122, 726 (1961).

~ C. J. N. van den Meijdenberg, K. Vf. Taconis, and R. de
Bruyn Ouboter, Physica 27, 197 (1961).

0.06—

8/R
0.04

0.02—

l.5 l.6
T( K)

PIG. 7. The entropy of bcc He at the hcp-bcc transition line.
The solid squares show the entropy by integration of C,/T
using the present C, measurements in the hcp, ihcp+liql and
(hcp+bcc) regions together with the value of the latent heat at TI.
The solid circle gives the entropy at the lower triple point deter-
mined from the maximum value of the entropy change at T&,
(~SI), , the entropy of the liquid at the lower triple point from
van den Meijdenberg et al. (see Ref. 9) and the entropy of hcp He'
at P& (see Ref. 5). The open triangles show S& =S& p+AV&p
)& (dp/dT)q, using AVi, and (dp/dT)&, from Grilly and Mills (see
Ref. 3) and Sh,I, from Ref. 5; the closed triangle gives the same, but
using (dp/d T)t, from Kierstead (see Ref. 6).The open circles show
Sg,.=SIfq ~V~(dp/dT) —&S' using S&;~ from van den Meijden-
berg et al. and AV (dP/d1 ) from Grilly and Mills. (AS' is a
small correction for the difference in entropy below on the melting
line and the transition line. ) The straight line has been drawn
through our values of the entropy.

and amounts to 4% of Sbco at most. As the figure shows,
all the values of Sq„are in good agreement, within the
expected errors, with the smoothed curve through the
present data.

The entropy results together with the speci6c heat
have been used to give some information about the
possible temperature dependence of the Debye theta of
bcc He4 in the temperature range down to O'K. In this
region, of course, the hcp phase and the liquid are the
thermodynamic equilibrium states but, in principle, the
the bcc solid could exist in a metastable "supercooled"
state. The hypothetical temperature dependence of O~ in
this region has been studied by plotting the ratio of the
entropy to the specific heat, S/C„versus a function of
the specific heat, T/O~, which is approximately pro-
portional to the temperature. The graphs for hcp He4,
from our previous paper, ' for bcc He4, and some results
for bcc and hcp He' are all given in Fig. 8. The specihc-
heat measurements on the He' phases were made by the
same technique as in the present work and will be
described in a later paper. The He' entropies were cal-
culated by direct integration of the specific heat for
T/O~) 0.025. For T/0'(0. 025, the Debye entropy was
assumed, thus ignoring spin entropy and sects due to
He' impurity. Figure 8 also shows graphs of O~/0'&
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FIG. 8. SjC, versus
TjO+ for the various
low'-pressure helium
structures; the dashed
line gives the curve for
the Debye model. The
insert to the 6gure
shows O~ jOO versus
TjO~ for hcp He4 and
bcc He' (hcp He' is
nearly the same as
hcp He4 and is not
shown}.

TABLE II. The Debye 0 of bcc He' extrapolated to O'K.
Units are 'K. The error is +0.4'K,

Molar
volume
V (cma) 20.927

21.2

20.932

21.1

20.988

20.95

21.028

20.8

versus T/0' for the different forms of solid helium (O~p is
the value of 0' at 0'K). 1t may be seen that the entropy—
specific-heat curves reGect the dependence of 0+ on
T/O~ very well. The points for bcc He' lie very close to
the curves for the other forms of solid helium, which all
have very similar 0~/O~p —T/0~ curves, which suggests
that the specilc heat and Debye 0~ of "supercooled"
bcc He' would have approximately the same tempera-
ture dependence as the other forms of solid helium. The
agreement is closest with the 5/C, curve for bcc He' of
approximately the same molar volume (V= 20.43 cm'),
so that we have used this curve to extrapolate our 0+

values for bcc He' to O'K. The results of this calculation
are given in Table II.

The calculatedvalues of 0~0 for "supercooled" bcc He'
have approximately the same dependence on V as the
other solid helium allotropes in this volume range. These
have a Gruneisen constants=2. 6, so that 00~ V ' .It
is interesting to compare the magnitudes of O~p in the
four low-pressure forms of solid helium: The ratio
0'p(He')/0'p(He') at a given volume is 1.17 for the hcp
structure, much closer to the "classical" harmonic
value Q~p = 1.155 than that for the bcc structure which
1$1.23.

The Phase Diagram,

%e have already described the method of measuring
the temperature of the (hcp+bcc) —(bcc) phase
boundary, above and in the caption of Fig. 6. The
melting temperature of the bcc phase was more difficult
to determine because of the tail or premelting before
the main discontinuity in heat capacity and because
of the size of the temperature intervals used in measur-

ing the heat capacity. The melting point appeared as a

very steep rise in heat capacity, less than a few milli-
degrees wide, giving values for the melting temperatures
to about &0.003'K. In order to make a meaningful
comparison of these results with those of previous
workers, we have 6tted our melting points to the
smoothed melting V-T curve for bcc He4 obtained by
Grilly and Mills (open circles in Fig. 2), corrected using
the formula suggested by Ahlers, ' PEq. (3)].This pro-
cedure was used to determine the molar volume by
Ahlers, whose points are shown as open triangles. As
Fig. 2 shows, with the volumes normalized in this way
the data from all three sources are in good agreement.

As explained in the description of experimental tech-
nique in our first paper, ' we have also measured the
molar volume of our samples directly by measurements
on the gas at room temperature, and less directly, by
determining the freezing point of the hcp phase and
then using Grilly and Mills' melting curve data."
These values which are given, when available, in Table
III are in fair agreement with each other and the values
used in Fig. 2, although the discrepancies are slightly
larger than 0.2'Po in V, the expected experimental
accuracy.

The Comyressibility

Since bcc He4 exists over only a narrow range of
density and temperature, one would expect that the
compressibility a = —(1/ U) (pj V/8 p) r is fairly constant
over the whole bcc region of the phase diagram. Ap-
proximate values of a can be calculated in a number of
ways from the available experimental data:

(i) From the pressure, volume, and temperature
(PVT) along the phase boundaries, one can calculate
the average isothermal compressibility across the phase.
In Fig. 10 the curve marked PVT was calculated in this
way by Ahlers. 4

(ii) From the discontinuous change in heat capacity,
DC„at the boundaries of the bcc phase using the
thermodynamic equation" "

~= (T/VAC, ) (d V/dT)' (4)

where (dV/dT) is the slope of the phase boundary in
the V-T diagram (Fig. 2). The dC, data for both
boundaries of the bcc phase have been collected in Fig. 9
which shows that Ahlers" measurements and the present
ones are in fairly good agreement. The compressibilities
calculated with Eq. (4) from the smoothed curves for
hC, and from dV/dT obtained from Grilly and Mills'P

measurements are shown in Fig. 10 as the curves A & and
A . Here A ~ refers to the bcc compressibility along the
hcp-bcc transition line; A refers to the melting line.
These curves are similar to the ones published by Ahlers
but extend to lower temperatures.

(iii) From the variation of V with pressure along the

' K. R. Grilly and R. L. Mills, Ann. Phys. (N. Q.) 8, 1 (1959)."L.Goldstein, J. Wash. Acad. Sci. 40, 97 (1950).
"O.V. Lounasmaa, J. Chem. Phys. 33, 443 (1960).
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TABLE III. The samples of solid He . The table gives the initial, or freezing pressure, If, the directly measured volume per mole of
the sample, V, ; the observed values of the bcc melting temperature, T l~, the temperature at the hcp-bcc transition line, Tf,„and
the freezing temperature, Tf. The volumes in parentheses below the values of I'&, T &t,, Tt,„and Tf have been calculated from them
using the I'VT data of Grilly and Mills, corrected where necessary with Eq. (3).

Sample
number

I'f (atm)
&0.02 atm

46.0
(21.'os)
46.2

(21.07)
46.3

(21.O6)
46.3

(21.06)
47.3

(21.O1)
47.3

(21.O1)
48.6

{20.94)
48.6

(20.94)
48.7

(2O.93)

Vmens (Cm }
+0.04 cm'

21.11

20.97

21.04

20.90

20.86

& .u ('K)
&0.003

1.632
{21.028)

1.632
(21.o2s)

1.632
(21.028)

1.674
(20.998)

1.685
(20.98s)

1.730
(2O 943)

1.746
(20.927)

&t, ('I)
+0.002

1.561

1.612

1.627~1

1.691

1.708
(20.932)

1.712+3

Tf ('K)
~0.002

2+237
(2111)

2.242
(21.1O)

2.260
(21.06)

2.284
(21.O1)

2.291
(21.00)

a This sample crossed the hcp-(hcp+bcc) boundary at 1.482 +0.003'K.

0.7—

0.6—

I I

I
I I I )

I
I I I

o~-AHLE
»-PRES

FrG. 9. The change in
heat capacity at con-
stant volume hC, /R at
the bcc phase bounda-
ries as a function of
temperature. The open
symbols refer to the
hcp-bcc transition line,
the closed symbols to
the melting line.

O

0.5—

0.2—
4

~(hcp+bcc) ~bcc
h

I I I I I I l I l I l

I.60 I.70

phase boundaries, using the Gruneisen equation for
the isobaric expansion coeKcient, e= (1/V)(BV/BT)~
=y~C,/V, to correct for the change in V caused by
thermal expansion. This method results in the equation:

K= (dv/dT)/(pc, V(dp/dT) —j, (5)

where 7 is the Gruneisen constant which we have
assumed to be approximately 2.6 (see the discussion
above on the entropy of bcc He4). The values of z
calculated from Eq. (5) for bcc He4 along the melting
curve are shown in Fig. 10 by the curve 8 .

(iv) The quantity (dv/dT) along the phase bounda-
ries can be eliminated from the calculation of ~ by
combining Eqs. (4) and (5):.= Vac,/r[~c, v(dp/dr) jm. —

This method gives the closed circles for the compressi-
bility on the transition line and the closed squares for
the melting line. The approximate experimental error
indicated on these points has been estimated from the
uncertainty in hC, and p. (The term in & has only a
small effect on the results for a) The average value of
these points is ~= (3.8+0.2)&(10 3 atm '.

Curve C in I'ig. 10 represents some unpublished,
direct measurements" of z by Grilly. These extend from
~=3.4&(10 ' atm ' at 1.48'K to 4.2)(10 ' atm ' at
1.74'K with a scatter of about 5% in ~. Another direct

5'ui
O
E~ 4—

Ox5

I

Bm

A

I I I l

r---
~ Am PVT

I

l.5
I

l.6
I

l.7 l.8

»K. R. Grilly (unpublished). The authors are grateful to
Dr.' Grilly for this data in advance of publication.

I'zG. 10. The isothermal compressibility if: of bcc He' as a func-
tion of temperature. The points were calculated from Eq. (6).The
squares refer to the melting line and the circles are for the hcp-bcc
transition line. The line C represents some unpublished, direct
measurements of ~ along the melting line by Grilly (see Ref. 13).
The other curves are explained in the text.
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measurement, by Kidder'4 and not shown in Fig. 10,
gives (4.7+0.3)X 10 ' atm ' between 1.55 and 1.7'K.

The values of s from method (iv), i.e., from Eq. (6),
are self-consistent within the experimental error in that
the results for the transition line are the same as those
along the melting line and are independent of tempera-
ture. They also agree with the preliminary, direct
measurements of Grilly. The wide variations in ~, which
are given by the 6rst three methods described above,
are probably due to small inaccuracies in the volume-
temperature data which are not sufIiciently accurate
to give derived quantities like d V/dT.

l.5

J ~ ~ J
II

Fio. 11.The expansion coej5cient a of bcc He4 as a function of
temperature. The continuous line 6 is calculated from the
Gruneisen equation a = (~~C /U), assuming y =2 6.The points are
calculated from Eq. (7), n =~(dp/dT)+(~AC„/VT)'/'. The circles
are for the hcp-bcc transition, the squares for the melting line. The
compressibility a was estimated from Fig. 10, V and (dp/dT) from
Grilly and Mills, C, and AC, from Ahlers' and the present work.

'4 J. ¹ Kidder, in Proceedings of the Eighth International Con-
ference on Low Temperature Physics, edited by R. O. Davies
(Butterworths Scientific Publications, Inc.

&
Washington, 1963).

p. 419.

The Exyansion CoefBcient

The isobaric expansion coefficient of bcc He' can, like
the compressibility, also be estimated in a number of
ways from the experimental data which are presently
available. The methods are similar to the ones for the
compressibility discussed above. For instance, the ex-
pansion coefFicient can be obtained as an average across
the bcc phase using Figs. 1 and 2. Another way is by
using values of dV/dT and hC, as in method (ii) for the
compressibility. Such calculations, which have been
discussed by Ahlers, 4 give values of n which vary widely
with temperature and volume and in some cases give
negative values of e. The discussion of the compressi-
bility above has shown that the variation of U with T is
not known sufFiciently accurately at present for such
calculations to be at all reliable. Moreover, Kidder" has
shown by direct measurement that the isobaric expan-
sion coeScient is positive and less than 10—' deg

—' be-
tween 1.57 and 1.72'K. Self-consistent values of n can
be obtained by eliminating d V/dT from the input data.
Using the equation d V/d T= VLo.—«(dp/d T)j with

Eq. (4), one obtains

rr= K(dp/dT)+ (KAC./VT)'~'-. (7)

The result of applying Eq. (7) to the melting curve is
shown as the squares in Fig. 11, while the results along
the transition line are shown as circles. These two sets
of values are quite consistent with each other and also

with those from a completely diferent method, curve 0,
which was calculated from the Gruneisen equation,
n=ylrC, /V, using y=2.6.

E1astic Anisotroyy

The elastic properties of bcc He4 can be studied with
the help of the velocity of longitudinal sound, measured

by Vignos and Fairbank, ' " and the recent measure-
ments of the velocity of shear waves by I ipschultz and
Lee."The sound measurements are consistent with the
values of the compressibility in Fig. 10 if we assume
the samples studied in the sound experiments were
isotropic, since the equation, sP= (1/sp)+ (4eP/3), ap-
propriate to an isotropic (or polycrystalline) solid gives
a value of 3.8&(10—' atm —', in excellent agreement with
the present data. (It is estimated that the difference
between the adiabatic and isothermal compressibilities
is about 2%.) If the bcc He' crystal were itself isotropic,
the value of the Debye theta at O'K, 0'p, could be
calculated from the equation

hp6n'Ep)'Is( 2 1 )+
V I E3uP 3sgf

if v& and e~ are the sound velocities at O'K. This equation
gives 0&0——35'K, which is very high compared to the
values of 0'p in Table II ( 21'K) and the values of O~

given in Fig. 5 (~17'K).This result demonstrates that
bcc He4 is elastically highly anisotropic. The scatter in
the velocity of sound measurements from one specimen
to another was quite small, "'"so that we can deduce
that all the sound measurements were made on poly-
crystalline specimens containing a large number of
crystals.

Recently, Nosanow and Werthamer'~ have developed
a theory of the vibrational modes of both bcc and hcp
solid helium and have given values for the principal
sound velocities for He4 and He' at various densities.
Their theory shows that both structures should be very
anisotropic. We have compared the present results with
the theory by calculating the elastic constants c», c»,
and @44from the theoretical sound velocities. From these
elastic constants we have obtained a, the compressibility
at O'K, and 0'p, the Debye theta at O'K. For v= 21.00
cm', the theoretical value of ~ is about 3.4)& 10 ' atm ',
in good agreement with experiment; the theoretical

» J. H. Vignos and H. A. Fairbank, in Proceedings of the Eighth
International Conference on Joe Temperature Physics, edited by
R. 0. Davies (Butterworth's Scientific Publications, Inc. , Wash-
ington, 1963), p. 31.

'6 R. P. Lipschultz and D. M. Lee, Phys. Rev. Letters 14, 1017
(1965).

» L. H. Nosanow and N. R. Werthamer, Phys. Rev. Letters 1S,
618 (1965).Note that the degeneracies of the transverse modes in
Table I and Fig. 2 of this paper are incorrectly assigned. Table I
should read for the transverse $110j mode: 174, 343 m/sec for
V=19.88 cm', and 152, 335 m/sec for V=21.63 cm'; for the
transverse L100j mode, 343 (2) and 335(2) m /sec for the same two
volumes. We are grateful to Dr. L. H. Nosanow for a discussion
of this point.



HEAT CAPACI TY OF BOD Y —CENTERED CUBIC He'

value of 0'o, obtained by the "semi-analytic" method
described by de Launay, " is 24.5'K, again in fairly
good agreement with the values in Table II.

III. CONCLUSION

In summary, our data indicate that bcc He4 is proba-
bly not much different from the other forms of solid
helium. This is based upon the following results dis-
cussed in detail above:

(a) The compressibility n and the expansion coeK-
cient n are well behaved. The expansion coeKcient is
positive and agrees with the Gruneisen equation with a
Gruneisen constant y= 2.6, which is the value found for
the other low-pressure forms of solid helium and which is
not inconsistent with the variation of the Debye 0" with

"J.de Launay, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1956), Vol. D,
p. 285.

volume in the present measurements. As was illustrated
in Fig. 10, the V-T data available at present are not
precise enough to use d V/dT to obtain either n or n, so
that earlier calculations which gave negative values of
o. are unreliable.

(b) The entropy of bcc He4 when plotted as S/C,
versus T/O~ (Fig. 8) is found to be consistent with the
values for the other low-pressure, crystalline forms of
He4 and He', indicating that the temperature depend-
ence of 0" and the lattice spectra are very similar.
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Exact equations of motion for the space- and time-dependent thermodynamic coordinates of a many-body
system are derived directly from the Liouville equation. This is done by de6nining a generalized canonical
density operator depending only upon present values of the thermodynamic coordinates. This operator is
used no DMLtter how far the system is from equilibrium. An explicit expression for the entropy of a system
possibly not in equilibrium is given in terms of this operator. The equation of motion for the operator is
derived, and the coupled, nonlinear, integrodifferential equations of motion for the thermodynamic co-
ordinates follow immediately.

INTRODUCTION

q QUATIONS of motion for the thermodynamic co-
~ ordinates of a many-body system have been

remarkably successful in describing the results of non-
equilibrium experiments. The equations of hydro-
dynamics, London's equations for superconductors, and
Bloch's equations for nuclear magnetism are well-known
examples. Originally, these equations were not derived
from microscopic considerations, but were obtained
by more or less qualitative physical reasoning and
contained adjustable parameters whose values were
determined empirically. Since the assumptions made in
order to obtain these phenomenological equations
limited their applicability, it would be desirable to
generalize these equations and thus extend their
usefulness.

* Supported in part by the Advanced Research Projects Agency.
)Based on a dissertation submitted to Stanford University,

1964.
f. National Science Foundation Predoctoral Fellow, 1956—1959.

Unfortunately, it is not easy to just guess phenomeno-
logical improvements for these equations by using
qualitative physical reasoning alone. Furthermore, it
would be desirable to be able to calculate the values of
the parameters appearing in the equations. Thus we are
led to derive these equations from the Liouville equa-
tion and thereby obtain formal expressions for the
parameters.

Once we have derived the equations, they may be
solved as if they were classical equations, and in this
manner many problems in nonequilibrium statistical
mechanics can be solved. This equation of motion
approach yields more general results than the perturba-
tion-theory approach used in the linear theory of
irreversible processes. In particular, we will be able to
describe systems that may be arbitrarily far from
equilibrium, and this is not possible with the linear
theory.

The characteristic feature of our method is that no
matter how far the system is from equilibrium we use a
generalized canonical density operator o(t) that is a


