
D YNAM I CS OF J = —', +K™AN D EN SYSTEMS 1275

nance" in every J=ss+ (B+P) system will still be
maintained, barring the situation where the Born terms
are strongly repulsive. "

We note that the above arguments regarding self-

consistency need not hold for resonant solutions

L(s~);„)(B+P)'), since the representation of the
partial-wave amplitude by the fixed-energy dispersion
relation is not expected to hold in the physical region.
$1n other words we cannot directly use Eq. (26) to judge
the self-consistency in «.$ From this one might guess
that the self-consistency may get worse as one goes
sufliciently above the physical threshold L(stt);„)(B+P)'+50m ', sayj. This is found to be the case

by actual calculation in various systems.

' In view of the role played by the nearby singularities (E(„))
and g1+( " & and the fact that the self-consistency cannot quite
rigorously be judged on the basis of Eq. (A.2},it is quite possible
to obtain a low-lying Plow-lying compared to the physical thresh-
old (B+P)'j resonance rather than a bound-state solution. This is
what happens in the case of the (3,3) e.sV resonance, (Ref. 11) for
example.

VI. CONCLUDING REMARKS

In the present work we have ca,rried out explicit
calculations for l=1 E and ES systems using the
Halazs-type N/D method, and found that self-con-
sistent bound-state (or resonant) solutions exist for
both systems. On considering the general case of
arbitrary baryon-meson systems, we found a typical
feature of this procedure that in almost any J=2+
baryon —pseudoscalar-meson system, one would obtain
self-consistent bound-state or low-lying resonant solu-
tions. This is a remarkable and somewhat awkward
result, it it corresponds to reality. It leads one to
wonder about the physical implications of the results
in such a scheme. At any rate the most interesting ques-
tion is: Will experiments confirm such a conclusion?
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All the isobar-pion coupling constants are calculated using the Lie algebra LSU(2)SSU(2))XTe of the
strong-coupling theory. The X*~ Xm reduced width comes out to be in agreement with experiment. %'e
also calculate isobar magnetic moments in terms of proton and neutron magnetic moments. The results
obtained are also compared with SU(6) and reciprocal-bootstrap predictions.

I. INTRODUCTION

ECENTLY the Lie-group structure of the strong-
coupling theory of baryon-meson scattering'~ has

been deduced in the framework of the dispersion rela-

tions satisled by the static models. ' Various possible
irreducible representations of this Lie group provide
the possible isobar spectra. The number of isobars
turns out to be infinite for any irreducible representa-
tion. Mathematically this is due to the group involved

being noncompact, so that it has no finite-dimensional

unitary representations. It is physically understandable
that in the limit of very large baryon-meson coupling
an infinite number of isobars would occur. More and

' C. J. Goebel, Proceedings of the International Conference on
High Energy Physics, Dubna, 1964 (Atomizdat, Moscow, 1965);
Proceedings of the 1965 Midwest Conference on Theoretical
Physics, Ohio State University (unpublished).

'T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15,
35 (1965) (to be referred to as CGS).

e G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

more poles of the scattering amplitude, representing
isobars, move onto the physical sheet as the coupling
constants are increased to larger and larger values. In
the physical case all the coupling constants are finite
and only a few of these poles would have approached
the physical sheet. So in the physical case one would
observe only a few low-lying isobars. It should be
emphasized that in this model only the scale of various
isobar coupling constants tends to infinity; the ratios
of these remain finite.

I'or the case of symmetric pseudoscalar-meson theory
it was shown by Cook, Goebel, and Sakita that the Lie
group G of this theory is G=(SU(2)QxSU(2))XT, .
Further, using group contraction on the SU(4) group
with respect to its subgroup SU(2)QXSU(2), it was
shown that the only irreducible representations (IR)
of group G are given by the SU(4) IR with Young-
tableau characterization (eo,) s,Xs). The mass spectrum
was shown to be of the form

M (I,J)=3/Is+ M tJ(J+I)+Mrl(I+1),
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where M(I,J) is the mass of the isobar having isospin
l and spin J. Thus the low-lying isobars would be the
ones with low isospin and spin. The simplest irreducible
representation of G is that characterized by the Young
tableau (~,0,0). We shall refer to this representation as
"8." It has the isospin-spin content'

I J 1 3 5» 2P»

The first two members of this series can be respectively
identified with X(940 MeV) and X*(1240 MeV). The
status of the reported I=J= ,'pgr+gr+ —bump as a full-

Redged isobar is rather uncertain. In any case it is
probably a borderline case. Thus it would appear that
this IR of G is the physically interesting one. The others
have a larger number of low-lying isobars and hence are
physically less interesting. The purpose of the present
paper is to calculate the coupling-constant ratios for
this IR of G. This is necessary to calculate isobar widths.

It may be noted that the isobar series I=J=-,', —,',
was also obtained in the classical strong-coupling calcu-
lations. ' There are, however, differences of principle
between the classical and the present approach. Thus in
the classical approach only the lowest mass baryon,
i.e., the nucleon, is singled out and the Hamiltonian
contains terms representing only its interaction with

pions, while in the present Goebel version all the isobars
are treated on the same footing. More recently the same
series was obtained by Abers, Balazs, and Hara, ' also
in the dispersion theory framework, with the assump-
tions (i) that the denominator functions in the N/D
cs,lculation are linear in energy, (ii) that the calculation
of lower isobar states is not affected by higher isobars.

In Sec. II we give the commutation rules of the Lie
algebra of G in the convenient spherical basis. We then

go on, in Sec. III, to determine the matrix elements of
the generators of G for the IR "B." The last two sec-
tions mill be devoted to the physical applications. In
Sec. IV, we calculate the /@*~ 1'. decay width and
also other X* coupling constants. The la,st section (V)
deals with isobar magnetic moments. We also compare
results obtained in the present approach with the re-
sults obtained from SU(6) ' g and reciprocal-bootstrap
calculations. '

II. COMMUTATION RULES FOR THE LIE
ALGEBRA OF THE GROUP G

The I.ie algebra of the group G for symmetric pseudo-
scalar-meson theory, as shown by CGS, is the sernidirect

' G. Wentzel, Helv. Phys. Acta 13, 269 (1940); W. Pauli and
S. DancoQ, Phys. Rev. 62, 85 (1942).' E, S. Abers, L. A. P. Balazs, and Y. Hara, Phys. Rev. 136,
B13SZ (1964).' F. Giirsey, L. A. Radicati, and A. Pais, Phys. Rev. Letters
13, 299 (1964).

'M. A. B. Beg, B. O'. Lee, and A. Pais, Phys. Rev. Letters 13,
514 (1964).' G. F. Chew, Phys. Rev. Letters 9, 233 (1962); See also Ref. 5
and L. A. P. Balazs, V. Singh, and B.M. Udgaonkar, Phys. Rev.
139, 81313 (1965).

[J.,J,]=~J„
[J+)J—]=2J.,
[I.I+]=~I+
[I+,I ]=2I, ,

(2 1)

(2.2)

(2 3)

(2 4)

[J*,I+]=[J*I 1=[J+4]
= [J+,I+]=LJ+,I ]=o (2 5)

Then there are CR expressing the fact that the meson
currents T„,,, transform like the regular representation
under the SU(2)rQxSU(2)~. We shall take the conven-
tion that the first index of T„,, is the spin index while
the second is the isospin index:

(2 6)

(2 7)

(2 8)

(2 9)

[li,r = W1,0].
The CR (2.1)—(2.9) are more or less "kinematical. "

The specific dynamics manifests itself in the form of
CR between meson currents. In the strong-coupling
theory one gets the following CR:

[T„,„T„„]=0.
This completes the specification of CR for G.

(2.10)

III. DETERMINATION OF THE MATMX ELE-
MENTS OF THE GENERATORS OF G

Our task is now to solve the CR (2.1)—(2.10) to
obtain the explicit matrix representation of meson
current operators T„,, for the case of IR "8," which
has only the states with I=J=» ~, each occurring

product of the nine-parameter Abelian group T9 and
the invariance group of the problem, SU(2)&QxSU(2)g,
i.e.,

G= [SU (2)iQxSU (2)z]X Tg .

The SU(2)i and SU(2)q in the maximal compact
subgroup of G refer to isospin SU(2) and angular-
rnomentum SU(2), respectively. The nine generators
of G, which span T9, correspond to pion current opera-
tors, the isospin 1 of pions together with the p-wave na-
ture of interaction accounting for the nine components.

The commutation rules (CR) of the Lie algebra of G
in Cartesian basis for both SU(2)'s were given by CGS.
We shall find it more convenient to use the spherical
basis for both the SU(2)'s. The commutation rules can
be specified as follows:

First there are the CR defining the subgroup SU(2)
QxSU (2). We take I+, I, I, to define isospin SU(2) and
similarly J~, J,J, for angular-momentum SU(2). The
CR are then given by



LIE GROUP OF STRONG —COUPLING THEORY. I

only once. We shall divide the discussion in two parts.
The erst part will be concerned with the "kinematical"
CR, i.e., (2.1)—(2.9), while the second part will be
devoted to the "dynamical" CR (2.10). The "kine-
matical" CR for group G are the same as those for the
SU(4) symmetry group, i.e., the spin-isospin inde-
pendence scheme. The SU(4)-group Lie algebra differs
from Lie algebra (2.1)—(2.10) of G only in the CR (2.10).

~st«)m, t n«t«)m, t (3 2)

~+4-, '= L(j~«)(j+«+1)]"'4-, ', (3.3)

1st« m, t' = «t« m, t' ~ (3 4)

T„,,t«)m, t)=Q Ss '(j,m, «';j ',m')«')@m, t
)'. (3.5)

Pm't'

Then using the commutation rules (2.7) and (2.9) it is
easy to show that, on the right-hand side of (3.5), the
summation of m', t' should be restricted to

m'= m+«t and «'= «+ r. (3 6)

Thus, we get

T„,Q, ,'=g S"'(j,m, «; j', m+)tt, «+r)t«) +„,t+.,' . (3.7)

Furthermore since T„,, transforms like a vector opera-
tor under SU(2) r and SU(2) ~ and we have

10&& I= (j—1)0+iD+(i+1),

the summation over j' in (3.7) has to be restricted to

j'=j—1 j j+1
Ke thus can write

Tsgmt) =C,"', (m,,«)t«)~st+s) '+A)",'(m, «)t«)m+s, ty'
+D,+g&'(m, «)t«) +„,,+, +'. (3.8)

Let us now use the commutation rule (2.6) in the
following form:

(J~T„,, T„,J~)y,t-
= L(1~.) (2~«)]'"T..~„4- t (3 9)

A. "KinematicaV' Commutation Rules

We shall denote the isobar states occurring in the
IR "8"by specifying their spin and the third compo-
nents of their spin and isospin. This constitutes a com-
plete specification of the states in IR "B." For a,

general IR of G, this description of states would, of
course, not be complete and one would need more
quantum numbers to label the states. This is an essen-
tial simplification which occurs when one is interested
in only the IR "B."

Let the isobar state with spin j and with third com-
ponent of spin and isospin, respectively, equal to es and
«be denoted by t«„,, t'. We have, using (2.1)—(2.5),

J~P, t)'=L(jam)(jam+1)]t~'pm~, t), (3.1)

L(jwmwttt —1)(jam'«t)]'t'C s'(m, «)

L(j&m)(jism+1)]'«'C '(m&1, «)

= L(1~«) (2+«)]'"C,""'(m «) (3 10a b)

L (

jism%)tt)

(j&» +«t+ 1)]'«'A, s'(m, «)

$—(j ~»)(jism+1)]»2A ' (»~1, «)

= L(1~ttt) (2+«t)]"'A &+' '(m «) (3.11a b)

L (

jism%«t+

1)(

jam�+�«t+

2)]t&'D,+,&'(m, «)

—L(jam)(jam+1)]'«'D, +,s (ma1, «)

= ((1%«t)(2&«t)]'"D ~ls+' '(m «) . (3.12a b)

Similarly, using the CR (2.8), we get the following set
of equations:

L(j~«+r—1)(j~«~r)]'"C " '(m «)

—f(jW«)(j+«+1)]"'C, '(m, «+1)
= L(1=Fr) (2+r)J«'C ~'+'(m, «), (3.13a,b)

[(q~«~r) (q~«~r+1)]»2A ' (m «)

—L(ja«) (j&«+1)]'"A s'(m, «+1)
= $(1+r) (2+r)]'~~A "'+ (m «) (3.14a, b)

f(j~«mr+1) (ja«ary2)]'&'D, „' (m, «)

-E(j~«)(j~«+1)]"'D,+" (, «~1)
= $(1+r)(2mr)]'~'D ' +'(m «). (3.15a,b)

Here "a, b" with the equation numbers refer to the
equations obtained by taking only the upper or lower
signs, respectively.

It is obvious from the structure of the Eqs. (3.10)—
(3.15) that the solutions are of the foim

C,' '(m, «) =C,s(m)c, '(«)C, , (3.16)

A,' (m, «)=A,~(m)A, '(«)A, , (3.17)

D "(m «) =D,&(m)D,'(«)D, . (3.18)

Using the expression (3.16) in Eqs. (3.10) and (3.13)
we hnd they both reduce to

L(jam'«t —1)(jam'«t)]')'C, s(m)
—P(jam) (jam+1) J«'C,'(ma1)

= L(1~«) (2~«)]'"C,"" (3 19a,b)

Substituting «t=1 in (3.19a,b), we get

(3.20)$(j—»—2)]'«'C, '(m) = L(j—m)]'«'C, '(m+1),

((j+»)(~—m —1)] C, (m)
—L(j+m) (j—m+1)]'"C,"(m—1)

=%2cso (m) . (3.21)
Solving (3.20) and (3.21), we get

C,'(») = $(j—m) (j—m —1)]'t',

C,o(m) = —uZLj2 —»2]t~~.

(3.22)

(3.23)

Using Eqs. (3.1) and (3.8) to evaluate the two sides of
Eq. (3.9) and equating the coe%cients of t«)~„~&,t~, ' ',
)jan)s+)tyg, t+s', «and t«)m+t)yf, t+s'+' on both sides, we get the
following equations:
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Substituting /2=0 in (3.19b), we get

[(j+m—1)(j—m)]"2C,'(m)
—[(j+m) (j—m+ 1)]'/'C, '(m —1)

=u2C, '(m), (3.24)

which, using (3.23), leads to

C,
—'(m) = [(j+m) (j+m —1)]"'. (3.25)

Similarly one can solve for A,"(m) and D,"(m). We
give the results in the tabular form below.

C,'(m)

1,~(m)

D;+,~(m)

[(j—m) (j—m —1)] /

—[(j+m+1)(j—m)] /

[(j+m+1) (j //-m+2)] /

0 —1

—~2[(j2— ') 1'/2 +[(j+m) (j+m—1)]'»
&2m +LU —m+ 1)(j+m)]'"
%2[(j m+—1)(j+m+ 1)]'/' +[(j—m+ 1)(j—m+ 2)]"2.

(3.26)

B. "Dynamical" Commutation Rules

We shall now work out the implications of the CR (2.10). Vile have, as one of these CR,

Hence we must have
[T+0,Too]=0.

(T+oToo Too Tyo)—g, i'= 0 ~

(3.27)

(3.28)

Using (3.8), (3.16)—(3.18), and (3.26), we get

T+ogm &' = —V2 [(j—m) (j—m —1)(j2—P) ]1/ C y~1,/ —' —~2[(j+m+ 1)(j m) P]'"—2 y~1,&

+&2[(j+zzz+1)(j+m+ 2) (j+t+1)(j t+1)]'"D—,+&/~1, &&+' (3.29)

Tope ,
m'=12[(j'—m') (j'—P)]'/2C/Pm, &' '+ 2m«3, gm, &/+ 2[(j+1)'—m']"'[(j+1)'—t'] "D/+ ibm, ,'+'. (3.30)

Using (3.29) and (3.30), we can evaluate the left-hand side of Eq. (3.28). The result of a, tedious calculation is

(1/2~2) (TyoT00 T00T+0)$
=-4~1,1' '[t'(j' —«') (j—m) (j—m —1)]'"[(j—1)~/-1—(j+1)~/]CD+4-+l, l'[(j m) (j+m+—1)]'/'

X{[—j'(2j—1)C,D,+ (j+1)'(2j+3)C,+1D,+1]+t'[(2j—1)C,D, (2j+3)C,+,D,+„—A,'])—
+@m+1,1/"'[ (j+m) (j+m+ 2) P (j+t+ 1) (j t+ 1)]'"[——jA, + (j+2)A,+1]D,+, . (3.31)

Hence, in order to satisfy (3.28) we must have

LU —1)4 ——(j+1)~ ]C =0, (3 32)

[j~ U+2)~z+1]»—+1=0, (3 33)

[j'(2j—1)C,D, (j+1)'(2j+3—)C;+1D,+1]=0, (3.34)

(2j—1)C/»—(2j+3)Cl+1»+1 ~/'=0 (3»)
These equations are easy to solve and the solution is

~,=~/j(j+ 1)

C,D,= a'/j ' (4j ' 1) . —
(3.36)

(3.37)

(4m, l', Tppitm, l/) = (T004m, lZAm, l')

(y, z' ', Toy, 1') = (Tooy, 1' ',y, 1/),
-

which leads to

(3.38)

(3.39)

(3.40)

(3,41)

This is all the information that can be gotten out of the
CR of G. The use of other commutation rules does not
give any further information. So far we have not im-
posed the condition that IR "8"be unitary. Thus, we
must have

Combining (3.36) and (3.40) we see that a must be
real. We can choose arbitrary phases such that we
finally have

~ =~/j(j+1) (3.42)

(3.43)C =»= ~/j[4j' 1]'"—
(a real). This completes the determination of the matrix
elements of generators of the group 6 for IR "8."

IV. ¹~N~ DECAY WIDTH AND OTHER ¹

COUPLING CONSTANTS

0@1/2,1/2 —4CS/2/1/2, 1/2 + 2 2/2/1/2, 1/2

+12D0/ p /, 1/2
/

~ (4.2)'

In the last section we were able to determine the
matrix elements of meson currents between isobar
states, which is the same thing as determining isobar
coupling constants. Since there occurs an arbitrary
parameter u, all possible isobar coupling constants are
determined in terms of this parameter a, which fixes
the scale of coupling constants.

Let us calculate X*(1240)~ E(940)+zr decay width
and other E*coupling constants. Using (3.30),we obtain

T00$1/2, 1/2 2~1/2/1/2, 1/2 +4D2/2/1/2, 1/2 y . (4 1)
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733/|'l l=1 (4.6)

Surprisingly this agrees exactly with the value of
y33/y11 obtained in Chew's reciprocal bootstrap scheme
between X and X*.' It is interesting to compare it with
SU(6) prediction, ' which is

We have from (3.42)—(3.43)

A 1)3=4a/3, A 3~3=4a/15,
C3(3=D3(3=a/3vZ) C3(3=D3(3= a/5+6,

which leads to the following x' coupling constants, in
an obvious notation:

(N*+ z =-'l~olP I =-')
=~~(p, I*=3

I 'lP, I*=3), (43)
(N*+ I =1l~3lN*+ I =1&

=l(p, &.=ll-'IP, J.=!), (44)
and

(Ns3+ I 1l~olNe+ I 1)
= (3V'6/5)(P, ~*=3 I

~'l P, I*=3) (4 5)

Here we have denoted by S~* the possible I=7= —,
'

isobar state.
The coupling-constant relation (4.3) leads to the

following ratio between the X* reduced width y33 and
N reduced coupling constant F11(=3f3),

I3,(j)= constX j, (5 3)

again remembering that magnetic moments are defined
with J,=j for spin-j particles.

If one regards the total magnetic moments as com-
posed of only isoscalar and isovector parts in accordance
with the minimal-electromagnetic-interaction hypothe-
sis, then one can predict all the isobar magnetic mo-
ments in terms of proton and neutron magnetic moments
p, (p) and p(33) only.

For example, using (5.2), one gets

properties of isovector magnetic moment operator, we

get .(j,I )=LI l(j+1)j~, (5 2)

where p is some constant. Note that the magnetic
moments are defined with J,=j.

The result (5.2) follows in the old strong-coupling
theory for the total magnetic moments and was first
derived by Pauli and Dancoff. 4 In the present approach
it, however, refers only to the 3sonector Part of the total
magnetic moment. We thus do not get, as in the old
strong-coupling theory, p (P)= —p (33).

Similarly, if the isoscalar part of the magnetic moment
transforms like a generator of G, then it must transform
like J.' This leads for the isoscalar magnetic moment
p, (j) of isobar with spin j.

V33/V11= 8/25 (4 7) I (N*') I
(&*')=(—3/5)LP(p) —P(~)j (54)

Experimental results are in agreement with Chew's
reciprocal bootstrap value and not with the SU(6)
value.

We do not have any experimental information on
the N*N*3r coupling constant. The result (4.4) given
by the present calculation is in agreement with the
SU(6) prediction. The SU(6) has, however, nothing to
say about higher isobar coupling constants, so it does
not have any prediction like (4.5).

and using (5.3), one gets

(N*')+ (N*')=3L (P)+ ( )j.
Therefore, we get

(N*')= (9/5) (P)+(6/5) ( )

I (N*') = (6/5)l (P)+ (9/5)u(~) .

(5.5)

(5 6)

(5 7)

Let us compare these results with SU(6) results. In
SU(6) we have

V. ISOBAR MAGNETIC MOMENTS ~(p) = —(3)~(~) . (5.8)

We now wish to make some comments about the
isobar magnetic moments. If we assume that the
isovector-magnetic-moment current transforms like
T„,„ then we can get all isobar isovector magnetic
moments in terms of just one parameter.

Let I3~(j,I3) denote the isovector magnetic moment
of isobar with spin j, isospin j and electric charge equal
to I3+31. We get from (3.30) and (3.42)

(j,J„I3l Tpp l jJ„I3)= 2J,I3a/j (j +1). (5.1)

Here we have denoted the eigenvalues of the third
components of J, and I3 by the same symbols. Hence,
making the above assumption about the transformation

Using this p(p)/p(N) ratio in (5.6) and (5.7), we get

~(N*') =u (P),

p(N*') =0,
(5.9)

(5 1o)

which agrees with SU(6) results for the N* magnetic
moments. ~ It should be emphasized that the extra
predictive power of SU(6) comes from the inclusion of
strange particles in it. Thus the SU(4) subgroup of
SU(6) would not lead to any more predictions than
(5.6) and (5.7).

9 The author is grateful to Dr. P. Babu for a discussion about the
isoscalar part of magnetic moment.


