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We have studied the dynamics of the I= 1, 1=-.,'+ E" and Ebi systems by the Balazs type E/D method
and have observed a typical feature of this procedure for treating the far left-hand singularities. The dy-
namical singularities of the partial-wave amplitude are assumed to arise mainly from the nearby cut (due
to 2 and h exchange in the crossed channel) and the far left-hand cut (—~ &s&0). The contribution of the
former is evaluated explicitly in terms of the relevant Yukawa coupling constants, and that of the latter by
the method of Balazs, through the introduction of effective-range pole terms. We Qnd that for a wide range
of choice of the relevant Yukawa coupling constants, there exist self-consistent bound-state (or resonant)
solutions for both I= 1 E and I= 1 EÃ systems. The self-consistent solution for the position in the case of
the former is found to lie in the range 1650-1870 MeV, and for the latter in the range 1300—1600 MeV. The
over-all conclusion is found to be rather insensitive to the choice of the relevant Yukawa coupling constants.
Qn considering the general case of arbitrary baryon-meson systems, we hand that at least in the Bal6zs-type
procedure, one would obtain self-consistent bound-state or low-lying resonant solutions in almost any
J=-',+ baryon-meson system, unless the Born terms are very strongly repulsive. Experimental conGrmation
of the existence or nonexistence of such systems would thus have strong implications for the dynamical
methods such as, for example, those adopted in the present note. As one consequence of the present work, it
appears that the qualitative features of any further Balazs-type calculations, especially in the J= ~+ baryon-
meson system, could essentially be anticipated.

inherent multichannel problem (for example, to the
treatment of the far left-hand-cut singularities, inelastic
effects, etc.). The other feature (which is common to
the *' problem as well) is that in the method where one
treats the far left-hand-cut singularities by the effective-
range pole terms' (it may be hoped that this is better
than just considering the explicit contribution of the
Born singularities), the dependence on the relevant
Yukawa couplings is not so marked, at least for the
qualitative aspects of the conclusion. This may, at the
outset, also be regarded as a virtue. (However, see the
discussion in Sec. V.)

We note that there are three distinct systems in the
27-fold representation of SU(3), which also have the
characteristic of being essentially single-channel prob-
lems. They are the I=1 X system, the I=1 EE
system, and the I=2 Z~ system. In analogy with the
0 problem, we study in this note the dynamics of the
I=1,J=~3+E and EE systems with a view to finding
out whether or not one should expect a bound state (or
a resonance) in these systems, and if so at what energies
and with what residues. The I= 2 Zz system is
studied similarly in a separate note. '

We find that for a wide range of choice of the relevant
Yukawa coupling constants, there exist self-consistent
bound-state (or resonant) solutions for both the I= 1
X and I=1 A.E systems. The results are presented
in Sec. III and discussed in Sec. IV. In Sec. V we show

I. INTRODUCTION

~ 'HE discovery of the 0 hyperon at about 1680
MeV fits beautifully into the ten-fold representa-

tion of SU(3). From the dynamical point of view it
occurs as a pole (in this case a bound state) in the I=0,
J=-',+ E scattering amplitude —a pole which pre-
sumably arises through the forces due to Z and A. ex-
change in the n channel. Explicit dynamical treatment
of the above scattering via the E/D method with the
specific purpose of studying whether one should expect
a bound state (or a resonance) in the above system
has been carried out by many authors. ' One interesting
feature that puts the dynamical treatment of the 0—on
a somewhat better footing than those of its predecessors
such as the *' and the I'»*' is that to a fairly good
approximation the 0 is essentially a one-channel prob-
lem; hence the virtues or defects of the dynamical
methods may be attributed to sources other than the

4 L. A. P. Balazas, Phys. Rev. 1.26, 1220( 1962).' K. Vasavada, Nuovo Cimento 40, A1045 (1965).
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published). In this work the Z-A. mass difference is retained, in
contrast to Kane's work.' J. C. Pati, Phys. Rev. 134, B387 (1964). This will be referred
to as I in the present work.

' M. Der Sarkissian, Nuovo Cimento 30, 894 (1963).



DYNAM ICS OF J = ~s+E" AN 0 EÃ SYSTEMS

that it appears to be a typical feature of the Balazs pro-
cedure for treating the far left singularities that in al-
most any J= pP+ baryon Pse—udoscalar mes-on system, one
would obtain a self co)z-sistent bound sta-te or low tyi-ng

resoeaet solution, except when the Born terms are very
strongly repulsive. Thus experimental confirmation of
the existence or nonexistence of such systems will have
strong implications for dynamical methods such as the
one adopted in the present note. As one consequence of
the present work it appears that the qualitative
results of a,ny further Bala,zs-type calculations, es-
pecially in the J= ~3+ baryon —pseudoscalar-meson
system, could essentially be anticipated.

and

D(s) =1—$—$() q "iV(s')
ds

f7+ )~ S (S $)(S sp)

Here
('($) ~ (f)($)+ ( ( )(s) . (2)

II. THE J= ~+) I= 1) X H AND J N SYSTEMS

Z System

We will first discuss scattering in the I= j., J=-,'+
E system and mention later what substitutions are
needed for the corresponding EE system. We will
follow the same notations and almost the same pro-
cedure as in I.' The reader is referred to I for details.
The singularities of the partial-wave amplitude in the
unphysical region arise from (i) h. and Z exchange in
the u channel, (ii) higher mass exchanges in the u
channel, (iii) vector-meson and higher mass exchanges
in the t channel, and (iv) anomalous branch cuts arising
from triangle diagrams. We neglect (ii), (iii), and (iv) in
so far as they contribute to the singularities in the
unphysical region in the right-half s plane. The latter
are thus assumed to arise solely through (i). The con-
tributions of (i), (ii), (iii), and (iv) to the singularities in
the left-half s plane are represented by effective-range
pole terms whose positions and residues are determined
by the procedure suggested by Balazs.

Writing the partial-wave amplitude g(~($) as usual in
the form cV($)/D(s), where 1V contains all the un-
physical singularities and D the physical right-hand
cut, we have (using elastic unitarity)

L 2(&)

~'(.)($)=-
L 1(~)

Img) ("(s')
ds—

.Is —5

where

Lp(A) Img ~(x) ($')
ds' —, (5)

I 1(A) s —s

g~+(r)($) = (gr-. fez/32zrq4)L{(IIr+g) —& }
X(W+I' —2 )Qz(a)+{(W—)'—K'}

X(m+2=--I )Q,(.)&, (6)

a= {2(Z'+E')—5'—E'}/2q'+1.

s~ ——95m ' S2=123m '

The residues b~ and b2 are determined for a given choice
of (i) the coupling constants grfr)r'/4zr, (ii) the sub-
traction point sp, and (iii) the input value ($)z);„of
the position of the bound state or resonance under
examination.

For s below the physical region (i.e., for s=sM& or
$3fz, to be introduced below) 1V (s) is evaluated ex-
plicitly by numerical integration.

From Eqs. (1), (2), (3), and (10), the D function is
given by

where

$—$0 4

D(s) =1— Q b;F(s,s, ,sp),
(12)

Q~(x) stands for the Legendre function of the second
kind, gy-~ for the I""K coupling constant and V for
Z or A. The end points of the cuts are given by

L~(I') = (='—&')'/I" Lz(I') =2(="'+&')—I' (8)

Thus:
Lg(A) = 91m~', Lz(h.) = 139m ',
L (Z))=79m ', Lz(Z)=129m '.

As mentioned in I, the nearby cut contribution to the
1V function Li.e., 1V( )(s)j is well represented by a two-
pole formula for s in the physical region. Thus for
$) (g+8)

X(„)(s)~b&/(s—Sg)+bz/(s —sz)(s& (E+ )') (10)

where by explicit evaluation of X(„)(s) (as in I) for a
few values of s, we find

1 ' {Imgz+(s') }D(s')
iVf (S)=— ds' =

S —S

b3 b4
+——, (3)

$—$3 $—$4

F(s,s;,sp) =
(q"/$')

ds'. (13)
fr+„=)* (s' —s) (s' —sp) (s' —s,)

where b3 and b4 are unknown constants independent of s
and will be determined by the use of the 6xed energy
dispersion relation, and s3 and s4 are determined by
drawing the Balazs curves and are found to be

S3~—22.6m ', S4~—625m '.

The Ii functions were evaluated numerically by an
IBM 7094 computer for various values of the argument
s. Thus the partial-wave amplitude JV (s)/D(s) is deter-
mined except for the unknown constants b3 and b4.
To determine b3 and b4 we use the Axed-s dispersion rela-
tion in a region where the partial-wave expansion is
expected to be convergent. The Axed-energy dispersion
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rela, tion for the invariant amplitude A (s,t, 44) is given by

Eg Ag A~
A (s, t,',44) =— +- + —+— dt'( )I—m~' I—m~' s—sg vr

+— d44'( ) . (14)

A similar expression holds for B(s,t,u). The third term
corresponds to the contribution of the bound state or
resonance in the direct channel with unknown position
and residue. Ke assume that the contribution from
the integral terms on the right side of Eq. (14) as well
as of the vector-meson-exchange pole terms in the t

channel are small. Thus our partial-wave amplitude
approximated by the partial-wave projection of Eq.
(14) in the appropriate region is given by

We choose

sg 18.8m ', sg 39.4' ',
s3~—17m ', s4 —400m, '.

s~i ——QQm, ~, s~q ——80pp&
p

(20)

systems arise from similar exchanges in the crossed
channels, such as, for example, A. and Z exchange in
the u channel. Thus the treatment of the KE system is
simply obtained from that of the E™system by the
following substitutions:

+~1~,Z~», gaze gdivz, and gz=. z~gzyz. (19)

For the ElV system, essentially due to the ™-Smass
diBerence, we find

Li(A)~16.6m, ',Lg(A) 51.6m, ',Li(Z) 14.5m ',
Lg(Z)—42m ',

gi+(~)=gi-"'(~)+ gi "'(~)+gi -"'"""(E), (15) sp= SM] . (21)

where
(W+~)' —K' 1

~(Bound) (&) (K) (16)
(WB+Z)' —E' W—WB

I=1, J=~+, KN System

The treatment of the I=1, J=-',+ KN system is very
similar to that of the I=1, J=—,'+ E™system. The
singularities of the partial-wave amplitudes of both

g ~ stands for s~'~' and denotes the mass of the bound
state (or resonance); 14 is the corresponding residue.

If we equate the right side of Eq. (15) with»(s)//D(s)
at two points s3E& and st& [chosen appropriately'
so that both the representation (15) and the approxi-
mate representation for»(s)/D(s) outlined above may
hold at ski and s3II2], we can evaluate ba and b4 in
terms of the input. values of sB and 14 [called (s~);„
and (~); ] for a given choice of the I'.K coupling
constants. We choose, subject to the criterion dis-
cussed in I,

SM~= 75m ', sM~= 142m~'.

Once b3 and b4 are determined, as mentioned above,
one can compute the D function, look for the zero of the
real part of the D function, which will be identified as
the output value (s~)ou4 of s~, and the corresponding
output value of the residue is given by

»[(&a)ou4]
II: out=

ReD'[(sB).„4] 2(WB).„,

Solutions for s~ and ~ are to be regarded as acceptable
if their output values are consistent (to within say 5%)
with the input values. It is hoped that these solutions,
if they exist, will lie within a narrow range and will

determine the question of existence of the physical
bound state (or resonance).

The matching procedure for the ES system and the
testing for the existence of self-consistent solutions for
bound states or resonances are done in the same way as
for the E system. The results for both systems are
summarized in the following section.

IH. RESULTS

In the following we 6rst summarize the results for the
J=-,'+, I= j.E system and then do the same for the
corresponding EE system.

J=-'+, I= l, X System

(1) First. of all, irrespective of the choice of the
relevant Yukawa coupling constants (confined within a
reasonable range) we find that there does exist a self-
consistent solution for position and residue. This in-
dicates the existence of a bound state (or resonance) in
the I=1 X system (call the corresponding particless, s, ands').

(2) In the 5U(3) limit, gr =z'/47r~„15, and for an

f/d ratio=,', gd™z'/4m~0 Since it.is not clear how well

these predictions are fulfilled by the physical coupling
constants apart from what is a reasonable value for the
f/d ratio, we tried a wide range of values for these
coupling constants. We chose gs-. z'/44r = 16, 8, 4, 1, 0
and independently gd-. z'/44r=16, 8, 4, 1, 0. We find,
as in the "~ problem, that the results are rather in-
sensitive to the choice of the Yukawa coupling constants
Of course, as is expected, there is found to be a gradual
increase in the self-consistent value of the residue ~

with an increase of the effective' coupling constant.
Except for this, it, is found that there is no very marked
dependence of the position of the bound state (or
resonance) on the choice of the coupling constants. In
other words, if we require that the self-consistency in

6 By "effective" vie mean the combined eBect of the Z and A.

terms.
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position and residue be good to say 5—10'Pc, then for any
choice of coupling constants in the above range and for
input values of the position in a reasonable range Lsay
(140—180)m 'j, one can pick an input value of Ir for
which the output values of sg and ~ are consistent with
the corresponding input values. The input values of sg
that give rise to self-consistent output values are found
to lie within the range

s,=(140-175)m,'. (22)

Above this range the self-consistency becomes poorer.
Depending upon the choice of the coupling constants
the corresponding self-consistent solution for A: is found
to lie within the range

8—16. (23)

Of course, if one demands a better degree of self-
consistency (say, better than 1% in both residue and
position), the self-consistent solution for a given choice
of coupling constants gets restricted to a narrower
region. This is part of the reason for the quantitative
discrepancy between Kane's results' and ours. Qualita-
tively the results agree. We feel that it is hard to judge
a priori how good a self-consistency one should really
expect in such an approximate method. So it may not
be proper to disregard solutions which are not exactly
self-consistent but are so within, say, 5 to 10%%uz. The
other reason for the discrepancy is the neglect of the
Z-A. mass difference in Kane's work.

(3) Again as in the * problem, with the self-
consistent value of lr and g'/4'(5 (say), the effective-
range pole terms giving the far-left-hand-cut contribu-
tion (cV&r&) are found to be larger than the nearby-cut
contribution (Xt„&) by at least an order of magnitude.
Similarly, in the fixed-energy dispersion relation the
2-A. contribution to g~+ is found to be smaller than
that of the bound-state term (gt+&n'"" ').

sg (85—135)m '

7.5—11.. (24)

Above 135m ' the self-consistency becomes considerably
poorer.

Thus one should expect not only a bound state (or
resonance) in the J=ss+, I=O X" system (i.e. , 0 )
and I=1 E s stem (i.e., s, s, s'), but also in the

' It is hard to investigate what happens below this range because
of the singularity structure.' G. L. Kane, Phys. Rev. 135, 3843 (1964). The I=1 X
system is also considered in this paper. But it drops the 2-A mass
difference, which leads to some quantitative discrepancy between
the results of Kane and ours.

J= ~3+, I=1, KN System

The qualitative aspects of the results (1), (2), and (3)
mentioned above also hold for the EE system. The
self-consistent solutions for the position and residue
are found to lie in the range

J= ss+ E+P system. The latter two are yet to be found
Their exact locations cannot be predicted very ac-
curately in the present framework. . However, s is
predicted to lie roughly in the range 1650—1870 MeV
while the E+p bound state (or resonance) is predicted
to lie in the range 1300—1600 MeV.

IV. DISCUSSION

The I= 1 E" system (s,s,s') and the I=1 ICE
system (E+p, etc.) belong to the 27-fold representation
of SU(3). One would expect, on the basis of the present
calculation and from the point of view of unitary sym-
metry, to observe a host of J=as+ 27 fold bo-urld states
(or resonances) in the baryon-meson system in addition
to the already observed ten-fold representation. So far
there is some indication of the existence of only one
system which belongs to the 27-fold representation, i.e.,
the resonance in the Z x system around 1415 MeV. '
From the experimental point of view the detection of
s (I=1, 1'= —2), if it were produced in the E p
experiment, would be considerably easier than that of
0 . Since it has not been detected as yet, one would
guess that it lies, if anywhere, quite a bit higher than
0 . As regards the E+p system, there are already strong
experimental indications" of the absence of any bound
state or resonance in this system. At this stage we only
note that if experiments were to confirm the absence
of any bound state or resonance in the J= ~3+, I= 1 E
and/or XX system, one would seriously question the
success of the methods and the results in the previous
dynamical calculations. These remarks are related to a
general feature of the Balazs-type bootstrap procedure,
which we note in the following section.

V. A TYPICAL FEATURE OF THE
BALAZS-TYPE PROCEDURE

We observe that various types of J=—,'+ systems,
such as Xs~,*,"Pre ' Z*,' 0, 's, E+P and Z 7r, ' etc. ,
subject to the bootstrap procedure as outlined in the
present note, have all yielded self-consistent bound-
state (or resonant) solutions. From this one might guess
that perhaps the analysis is not so sensitive to the
choice of the system, its strangeness, isospin, and SU(3)
respresentation, and that it will lead to a self-consistent
bound-state or resonance solution in any J= 2+ baryon-
pseudoscalar-meson (HP) system, except when the
Born terms may be very strongly repulsive. "We show

' Y. L. Pan and R. P. Ely, Phys. Rev. Letters 13, 277 (1964)."L.Lyons and O. I. Dahl, Phys. Letters 14, 225 (1965).Earlier
references may be found here.

"V.Singh and B.M. Udgaonkar, Phys. Rev. 130, 1117 (1963)."Even if one considers a system with repulsive Born terms it is
quite possible to obtain a self-consistent bound-state (or resonant)
solution in the Bal6zs-type procedure. For example we tried, just
as a test, negative values of gran (i.e., g'/4s = —4, say) in the
present calculation and still obtained self-consistent solutions.
Kane (see Ref. 1) also noted a similar situation. Of course, for
large negative values of gr-. Q/47r it is not possible to obtain a self-
consistent solution.
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in this section that this situation is typical of at least
the Balazs-type bootstrap procedure, in which the
Yukawa coupling constants play a role in a rather in-
conspicuous way.

Typically in a problem involving (8+P) scattering
one has: 8= (6.5—10)rr8, P= (1—4)8)8; one is interested
in studying the occurrence of bound state or resonance
in the range of (8+P)8&508)8 ' (say); thus (8+P)'
—50m 8((sB); ((8+P)8+508)8 '; sMi and sM8 (the
two matching points) are roughly (20-60)r)8 ' below
threshold. Under these circumstances one can check
quite generally that irrespective of the choice of the
Yukawa coupling constants (confined within a reason-
able range), one has to take in the first place a value of
K; which is at least 6—12 to have self-consistency in the
POSitian [i.e., (SB)ou»=(SB);„].FOr SuCh Value Of K;„ it

is found by explicit calculations in various systems that
the over-all conclusion on the existence (and perhaps
even the location) is hardly affected by varying the
Yukawa coupling constants by more than an order of
magnitude (gp/4m. =0—16, say). Furthermore, at least
when the Yukawa coupling constants are not very large
(gp/48r=1, say) one finds that in general 1)/(f) and

~ +{Bound) are bigger than P and ~
(Born) respec

tively by an order of magnitude or more. Given this,
one is led to ask what would happen if one had, to start
with, set

bg -—b2=0,
(25)

g
+(Born) 0

One then needs to solve for b3 and b4 from the matching
equations given by

b8/(8 —8 )+b /(8 — ) (W+8)'—P'
K'in

4 [(WB),.+8]8—P8 W—(W,),„
1—[(s—sp)/7r] Q b:F(s s Sp)'

(26)

b8/[(~B). t—~8]+b4/[(~B). t—8'4]
Kout-

ReD'[(sB).„»] 2(WB). »

(27)

Choosing 8, P, and (sB);„ in the range mentioned
above, one can now check quite generally the
following:

The above equality is expected to hold in an appropriate
regiort (see discussion on this in I), within which one
chooses the two matching points sM& and s3II2. By
matching the right and left sides of the above equation,
we can evaluate b8 and b4 in terms of K;„and (sB);„.We
can then compute the D function, the zero of whose real
part gives (sB).„», the corresponding value of K.„t is
given by [see Eq. (18)]

(A) First, starting from Eq. (26) one can solve for
the value of K;„ that leads to (sB).„»——(sB);„.It is found
that there always exists a value of K;„, typically in the
range of 8—12, which yields (sB),„»=(sB);„,chosen in
the range mentioned above.

(B) If one next asks what is the value of K,„» cor-
responding to K;„so chosen as to yield (sB).„»=(sB);,
[as mentioned in (A)], one finds [as may have been
expected from Eqs. (26) and (27)] that if (sB); is
chosen in a certain range below the physical threshold
(corresponding to a bound-state solution), where the
fixed-energy dispersion relation is expected to hold to
the same extent that we used it to determine b3 and b4,
then K,„& is ideetica/ty equal to K; . This may be seen
as follows. For values of (sB);„asmentioned above we
»may put

+(~B)out
~

(sB)sos~(sB)is
b3 b4

—(&B)out &8 (&B)out &4- (sB)oss-» (sB) is

Kin

D(sB). t[(WB). »+8)'—P'

[(WB).+8]'—P' (WB)-»—(WB) ~ (.B)- -(.B) ~

—K;.(2WB).„»D'(sB),„». (28)

Using Eq. (27) it follows that Ko »=K~. This would

imply that in the Balazs procedure, insofar as the Born
terms and E( ) are much smaller than g~+(B'""~) and

3T(~), respectively, one is almost guaranteed to obtain at
least bound-state self-consistent solutions for any J= ~+

(8+P) system "In som.e cases (especially when the
relevant Yukawa coupling constants are large) the
Born terms and S(„)are appreciable. These may make
"%e have not checked yet whether a similar situation holds for

other values of angular momentum and parity.

some quantitative diBerence in the results. However, in
actual practice, it is found by explicit calculation in
various systems (Refs. 1, 2, 5 and the present note,
etc.) that there do exist very good self-consistent solu-
tions even for a very wide range of values of the Yukawa
coupling constants (gp/48- 0—20, say). Thus it appears
that even with the inclusion of the Born terms (gi+(B""'
and 1V(„)), the over-all qualitative conclusion regard-
ing the existence of self-consistent solutions corre-
sponding to either a bound state or a low-lying reso-
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nance" in every J=ss+ (B+P) system will still be
maintained, barring the situation where the Born terms
are strongly repulsive. "

We note that the above arguments regarding self-

consistency need not hold for resonant solutions

L(s~);„)(B+P)'), since the representation of the
partial-wave amplitude by the fixed-energy dispersion
relation is not expected to hold in the physical region.
$1n other words we cannot directly use Eq. (26) to judge
the self-consistency in «.$ From this one might guess
that the self-consistency may get worse as one goes
sufliciently above the physical threshold L(stt);„)(B+P)'+50m ', sayj. This is found to be the case

by actual calculation in various systems.

' In view of the role played by the nearby singularities (E(„))
and g1+( " & and the fact that the self-consistency cannot quite
rigorously be judged on the basis of Eq. (A.2},it is quite possible
to obtain a low-lying Plow-lying compared to the physical thresh-
old (B+P)'j resonance rather than a bound-state solution. This is
what happens in the case of the (3,3) e.sV resonance, (Ref. 11) for
example.

VI. CONCLUDING REMARKS

In the present work we have ca,rried out explicit
calculations for l=1 E and ES systems using the
Halazs-type N/D method, and found that self-con-
sistent bound-state (or resonant) solutions exist for
both systems. On considering the general case of
arbitrary baryon-meson systems, we found a typical
feature of this procedure that in almost any J=2+
baryon —pseudoscalar-meson system, one would obtain
self-consistent bound-state or low-lying resonant solu-
tions. This is a remarkable and somewhat awkward
result, it it corresponds to reality. It leads one to
wonder about the physical implications of the results
in such a scheme. At any rate the most interesting ques-
tion is: Will experiments confirm such a conclusion?
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All the isobar-pion coupling constants are calculated using the Lie algebra LSU(2)SSU(2))XTe of the
strong-coupling theory. The X*~ Xm reduced width comes out to be in agreement with experiment. %'e
also calculate isobar magnetic moments in terms of proton and neutron magnetic moments. The results
obtained are also compared with SU(6) and reciprocal-bootstrap predictions.

I. INTRODUCTION

ECENTLY the Lie-group structure of the strong-
coupling theory of baryon-meson scattering'~ has

been deduced in the framework of the dispersion rela-

tions satisled by the static models. ' Various possible
irreducible representations of this Lie group provide
the possible isobar spectra. The number of isobars
turns out to be infinite for any irreducible representa-
tion. Mathematically this is due to the group involved

being noncompact, so that it has no finite-dimensional

unitary representations. It is physically understandable
that in the limit of very large baryon-meson coupling
an infinite number of isobars would occur. More and

' C. J. Goebel, Proceedings of the International Conference on
High Energy Physics, Dubna, 1964 (Atomizdat, Moscow, 1965);
Proceedings of the 1965 Midwest Conference on Theoretical
Physics, Ohio State University (unpublished).

'T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15,
35 (1965) (to be referred to as CGS).

e G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

more poles of the scattering amplitude, representing
isobars, move onto the physical sheet as the coupling
constants are increased to larger and larger values. In
the physical case all the coupling constants are finite
and only a few of these poles would have approached
the physical sheet. So in the physical case one would
observe only a few low-lying isobars. It should be
emphasized that in this model only the scale of various
isobar coupling constants tends to infinity; the ratios
of these remain finite.

I'or the case of symmetric pseudoscalar-meson theory
it was shown by Cook, Goebel, and Sakita that the Lie
group G of this theory is G=(SU(2)QxSU(2))XT, .
Further, using group contraction on the SU(4) group
with respect to its subgroup SU(2)QXSU(2), it was
shown that the only irreducible representations (IR)
of group G are given by the SU(4) IR with Young-
tableau characterization (eo,) s,Xs). The mass spectrum
was shown to be of the form

M (I,J)=3/Is+ M tJ(J+I)+Mrl(I+1),


