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Proton-Neutron Mass Difference
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Incorporating the methods of the preceding paper we examine the electromagnetic contributions to the
masses of the nucleons in terms of the graviton-nucleon vertex. Using the methods of sidewise dispersion
relations, we consider this vertex as a function of the mass of one of the external nucleons, which enables us
to express the contributions to BM'= M„—M„ in terms of integrals over scattering amplitudes. Applying the
hypothesis of threshold dominance, we Gnd that a simple explanation for the observed mass difference
BM=—1.3 MeV emerges. In the low-energy region to which we restrict our attention, the only contributing
states are the intermediate Ey and Sm states. For the photon contributions we 6nd the usual unsuccessful
result 83II&~+0.5 MeV as a consequence of the dominance of the Coulomb over the magnetic energy in the
threshold region. However, in calculating the contribution of the nucleon mass shift back on itself from the
Em states of energy lV, there is a term under the dispersion integral proportional to the difference of nucleon
pole terms (Wz —M„) '—(W' —M„') ~—2MSM (W' —M')~, implying a large contribution due to the
enhancement at threshold W' —+ 3P. Including this contribution we have 835=+0.5 MeV+1.38M or
bM —1.7 MeV, which suggests how the nucleon mass difference emerges in spite of the sign of the photon
contribution.

I. INTRODUCTION

'HE purpose of this paper is to suggest a simple
physical picture of the origin of the proton-neu-

tron mass difference. Usually the mass difference
5M=M„—M„=—1.3MeV has been thought of as
arising purely as a consequence of the difference in the
electromagnetic interactions of the proton and neutron.
Here one may consider separately the erst order con-
tribution to 8M arising from the presence of photons
5M&, which is proportional to a= 1/137 and the con-
tributions arising from differences in proton-neutron
kinematics, electromagnetic shifts in strong interaction
couplings, etc., which are denoted by bM~.

The first attempts to understand the magnitude and
sign of the mass shift centered around estimating the
photon contributions 5M& while neglecting the effects
of higher mass states given by 5MB. The photon con-
tributions to the proton mass arise predominantly
from the interaction of the Dirac current ey„gey„ to
produce a Coulomb contribution proportional to e' and
the Dirac current interacting with the anomalous mag-
netic moment current ey„&(ef(:„0-„„q"giving a contribution
proportional to e' z wzohere «„=1.79 is the anomalous
moment of the proton. There is also a contribution to
the zt-p mass difference proportional to zz„'—zz

' but
this is relatively small because of the small isoscalar
static anomalous moment Ks=-', (zzo+zz„)= —0.06. Be-
cause of the attractive nature of the Coulomb force the
e' contribution is positive, thus implying a proton
heavier than the neutron in contradiction with experi-
ment. But, as was first pointed out by I'eynman and
Speisman, ' the magnetic energy e'I(:„results in a con-
tribution of opposite sign. Consequently, if one picks a
high enough cutoff the extra factors in the momentum
arising from the derivative coupling of the anomalous-
moment current to the photon will dominate thus

* Supported in part by U. S. Air Force Contract AFOSR-153-64.' R. Feynman and G. Speisman, Phys. Rev. 94, 500 (1954}.
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yielding the correct sign for Bf from the photon con-
tributions alone.

Subsequent investigations using dispersion-theory
techniques related Bf& to integrals over the nucleon
electromagnetic form factors. ' ' The experimentally
observed form factor could then be used to provide a
strong natural damping of the high-frequency e'z~ con-
tribution so that the e' contribution, which dominates
at low energy, gave the major contribution with the
result 6M& +0.6 MeV. ' Only if one assumed a patho-
logical behavior of the charge distribution near the
core of the nucleon, corresponding to high-momentum
transfers, could the sign of 5M& be reversed. Various
attempts to account for the observed mass difference
without relying on the high-momentum transfer de-
pendence of the form factors have been proposed.

The tadpole mechanism suggested that the radiative
correction to a virtual 0+ meson disintegrating into the
vacuum would provide a dominant contribution to 5M
and with the correct sign. There is, however, little
experimental evidence for the 0+ octet.

More recently Dashen, ~ using the S-matrix perturba-
tion method, '' was able to obtain the observed bM
and in particular found for the photon contribution
8M~= —1.6 MeV. The major hypothesis of this calcu-
lation is that the nucleons are bound states of the pion-
nucleon system. It would appear that as a consequence
of the composite nature of the nucleons the Coulomb
term is dominated by the magnetic term, resulting in a
negative sign for 5M&. The relation between this
approach and the examination of the low-energy con-
tributions to the self-energy diagrams is consequently

'M. Cini, E. Ferrari, and R. Gatto, Phys. Rev. Letters 2, 7
(1959).' S. Sunakawa and K. Tunaka, Phys. Rev. 115, 754 {1959).

z H. Katsumori and M. Shimada, Phys. Rev. 124, 1203 (1961).
5 A. Solomon, Nuovo Cimento 27, 748 (1963).' S. Coleman and S. L. Glashow, Phys. Rev. 134, 8671 (1964).
7 R. Dashen, Phys. Rev. 135, 81196 (1964).' R. Dashen and S. Frautschi, Phys. Rev. 135, 81190 (1964).
9 R. Dashen and S. Frautschi, Phys. Rev, 137, 81318 {1965).

1261



HEI NZ P AGE LS

not clear. Moreover it has been shown by Shaw and
Wong" that the Dashen calculation of bM depends
sensitively on the details of the strong interactions and
that even the sign of the mass difference cannot be in-
dependently established by this method. " It is this
criticism of the Dashen calculation which has provided
the motivation for the present investigation.

In the alternative approach adopted here we will not
assume a necessary composite nature for the nucleons.
We will instead assume that the major contribution to
Wf arises from the low-energy region, and thus appeal
to the method of threshold dominance already success-
fully applied to the calculation of the electron, nucleon, "
and baryon magnetic moments. " Incorporating the
viewpoint of the preceding paper, '4 we will relate the
mass shift 8M to dispersion integrals over scattering
amplitudes. Convergence properties of these dispersion
integrals will also be assumed, as is spelled out in the
next section.

The calculation we present considers the contribution
to bM arising from virtual nucleon excitations to the
Np and Nm. states, the only states which can contribute
at low energy. We find for the photon contribution
oM +0.5 MeV as a consequence of the dominance of
the Coulomb energy over the magnetic energy at low

energies. We accept this result for the sign of the photon
contribution. However, in estimating the N~ contribu-
tion to 53fa there is a large effect of the nucleon mass
shift @II back on itself, M8 1.38M. In the present
calculation this is seen to arise from the virtual
transitions

e ~~P+s-
P ~~ e+s-+,

which contribute to 53fa a term proportional to a
difference in nucleon pole terms

g' g' —2g'3AM

W2 M 2 W2 M 2 (W2 M2)2

where 8' is the total energy and g the pion-nucleon
coupling constant. The usual single pole now has an
extra factor of 8"—3P in the denominator and strongly
weights the low-energy region, 8'=3f, under the dis-

persion integral, thus yielding a large contribution. The
other contributions to 8318 are found to be small so
that the total contribution may be written as 8M +0.5
MeV+1.38M or 8M —1.7 MeV in approximate agree-
ment with experiment. Here a simple picture of the
neutron-proton mass difference emerges on the basis
of the hypothesis of low-energy dominance.

In the next section we present the method of calcula-
tion followed by the section in which we calculate 5M.

II. METHOD OP CALCULATIOH

We will make use of the viewpoint presented in the
previous paper' and examine the matrix elements
(p~0(0) ~p+1) of the trace 0(x) of the total energy-
momentum tensor 0„„(x) taken between single-nucleon
states of momentum p and p+/. In the limit of
zero momentum transfer t~0, we have (p~g(0) ~p)
=Mu(p)u(p), where M is the total mass of the nucleon
and u(p) is the Dirac four-component spinor satisfying
(P—m)u(p) =0. In the previous paper we considered
the analytic properties of the matrix element

(p~8(0) ~p+I) in the variable P Ass.uming the con-
vergence properties of a dispersion integral, we were
then able to relate the contributions to the mass M to
scattering processes. Here, instead of analytically con-
tinuing the graviton-nucleon vertex in the variable P,
we will set P=0 and examine the analytic properties of
this vertex as a function of the mass of one of the
nucleons, W'= (p+i)2. This leads to the sidewise dis-
persion relations first studied by Bincer in connection
with nucleon electromagnetic structure. "We are moti-
vated to apply this approach to estimating the low-

energy contribution to the mass splitting because of the
direct examination of the threshold behavior it oRers.
The approach here is similar to that already exploited
in calculating the static electromagnetic properties of
of the electron, nucleon, " and baryons" but instead
of examining the transitions induced by the fermion
source operator ri(x) = (iy 8 M)f(x) to—the one-
photon —nucleon state (1Vy~r)(0) ~0), we consider the
transitions to the one gravitation-nucleon states
Pale(0)Io).

Contracting the graviton out of the final state of
the matrix element (1Vg~r)(0) ~0) one finds from the
Lehmann-Symanzik-Zimmermann reduction formalism
that the vertex shown in Fig. 1 may be written"

)p& 1/2

u(p)Z(W') =
~

— i d4x

X."*e(~s)(pIP(*),e(0)ll 0), (1)

where 8(xs) =2 (1+ms/~ xs~) and P'=M', P=O and
W'= (p+l)2. Assuming invariance under the Lorentz
group, parity, and time inversions, the most general

'0 G. L. Shaw and D. Y. Wong, Phys. Rev. (to be published).
"G. Barton has also shown that in Dashen's calculation the

infrared divergence was incorrectly subtracted resulting in the
wrong sign for bM. G. Barton, Phys. Rev. (to be published)."S.Drell and H. Pagels, Phys. Rev. 140, 8397 (1965).

~3 H. Pagels, Phys. Rev. 140, B1599 (1965).
"H. Pagels, preceding paper, Phys. Rev. 144, 1250 (j.966).

(p+i) = w
2 2

p =M

FIG, 1. Graviton-nucleon vertex
with virtual nucleon.

"A. Bincer, Phys. Rev. 118, 855 (1960).
"We refer the reader to Appendix I for details.
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form for the vertex is

u(p)~ (W')
P+f+M P+/ M-

=u(p) G(W') +Gi(W')
2M 2M

=u(p) pG(W2)+G2(W2)1J, (2)

I' = u(p)8"'—M2

~~ith the property"

Q u(p)Z(W2)P=G(W2).
HP1IIS

I'rom Kq. (1) we obtain for G(lV2)

|'pol
G(W') =

~

—
~

i d4x e" "8(xs)

X 2 (pl&(~),

~(0)halo)Z

(u)
SP 111

In order to calculate the nucleon mass difference we
will make use of the analytic properties of G(W') as a
function of the complex variable W'. Although it was
not possible to prove dispersion relations for the func-
tion G(P) introduction in Ref. 14 as a function of P,
it is possible to prove dispersion relations rigorously for
G(W') in the variable W2 starting from the representa-
tion Eq. (6). Here the proof is identical to that given
by Bincer" for the electromagnetic form factors and
we will not repeat it here. SuSce it to say that if we
assume G(W2)/W2~ 0 as

~
W2~~~, then the analytic

properties of the proton and neutron form factors
G„,„(W') are specified by the subtracted dispersion
relations

TV' —M„'
G~(W2) =M„+

ImG„(W")dW"
(&)

VI t (W2 M 2)(W2 W2 se)

O' —M„'
G (W')=M„+

IrnG„(W")dW"
(g)

2 (W&2 M 2) (W~2 PP'2 ze)

"Here we have normalized our spinor according to
Z.2; u(P)u(P) = (P+M)i21rI.

where from u(p)Z(M2)u(p) =Mu(p)u(p) we recognize

G(M') =M

as the total mass. We may extract the form factor
G(W') from the general vertex, Eq. (2), by using the
projection operator

Here we have written the dispersion relation for the
proton form factor G„(W') subtracted at W'=M„',
where G~(M~2)=M~, and a similar relation for the
neutron form factor G„(W') subtracted at W'=M„',
where G„(M„')=M . The thresholds of the dispersion
integrals begin at the square of the energy of the lightest
state that can be formed from the virtual nucleon, the
Ãy state.

To calculate Elf=M„—M„ from a knowledge of the
absorptive parts ImG~(W2) and ImG„(W'), one intro-
duces the further assumption that G~ (W') —G„(W') -+ 0
as ~W'1 —+eo." Prom this prescribed asymptotic be-
havior we may subtract Kq. (8) from Eq. (7) and take
the limit W'-+eo, obtaining

" ImG (W')dW' 1 " ImG„(W')dW'
bM=- (~)8"—M„' x gg„~ 8"'—M„'

This is the basic equation from which we will compute
SM from the absorptive parts.

Finally we introduce the assumption of low-energy
dominance, namely that it is the difference in the inter-
actions of the lighter states in the cloud surrounding
the nucleons that generates the major contribution to
to the mass difference. Hence it will be the threshold
contributions to ImG„, (W) that will give us the
dominant part of 5M. To incorporate this hypothesis
into the calculation we include only the low-energy
part of the dispersion integrals, Eq. (9),

1 "'~r ' ImG„(W') dW'
bM=-

O' —M„'

1 ""' ' Im.G (W')dW'
(10)8"—M„'

where X'&1 serves to define the low-energy region.
Furthermore, to estimate X' we can appeal to a previous
calculation of the nucleon anomalous moments" which
used the same method of sidewise dispersion relations
in the variable 8" and yielded the correct sign and
approximate magnitude of the nucleon moments by
including intermediate states of energy 8" with
M& TV&1.5M corresponding to a X2=2.3. Thus we are
motivated by this success to pick the same low-energy
range for the present calculation and set )' 3. In this
way the only contributing states to SM are the Ãp
and gm states.

III. CALCULATION OF THE LOW-ENERGY
CONTMBUTION TO SM

Now we turn to the task of calculating the absorptive
parts ImG~, (W') in the neighborhood of threshold. By

' This asymptotic behavior is vitally necessary for our calcula-
tion. If the difference G~(W2) —G„(W') diverged as W2~~ or
approached some arbitrary constant, value we could not. hope to
calculate RV using this method.
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FIG. 2. The E& and iVw contribution to the absorption IrnG(W').

x(pl 8(o) l,p")(,p" In(0) I o)

+P 2i,8(—i,)8(t +M.. )(pl &(0) I

~' —l)

X(~' —II8(0) Io)/F. (11)

The sum over the states e' cannot contribute, since
I2=0 and thus the delta function vanishes unless
M„.2=0. The only state e' with M„=O is the vacuum
and it cannot contribute since (pit)(0) I0)=0. We also
note that the sum on e does not include the one-nucleon
state, again because (ply(0) IO) =0. However, zz can be
any multiparticle state with the same quantum numbers
as the nucleon. The lightest such states are the gy and
Ãx states, " and in the low-energy limit these are the
only states contributing to ImG(W') (see Fig. 2). We
proceed now to calculate the contribution of these inter-
mediate states.

A. Photon Contribution

Including only the sta. te &z =i' in the sum, Eq. (11),
we have for the contribution of intermediate photons

examining the threshold behavior of these functions
we can see precisely how the contributions to SM arise.

The absorptive part may be obtained from Eq. (6)
by the replacement i8(x&) —+ zr as follows from the
assumed parity and time reversal invariance of the
theory. " Furthermore by inserting a complete set of
states in the commutator of Eq. (6) the integral over x

may be explicitly performed with the result"

1/2

ImG(W') = —
I

zr Q LQ 2po"8(pe")8(W' —M ')
r spin n

I' IG. 3. Pole terms contributing to the scattering
amplitude for Sy intermediate state.

= (M/2qoko)'"zl (k,s) eiI' ey„Fz+(W—') (e/2M)io„q".

+q+M k+q —M~
+Fz (W')io„—„q"

2M 2M
(13)

where W'= (k+q)' and ei," is the polariza, tion vector
of the photon. Since we are interested only in the
threshold contributions to ImG~(Wz) we may, to a
first approximation, set Fz+(W') =F,+(M') = rr, the
static anomalous moment of the nucleon. We also note
that as W' —& Mz the term in Eq. (13) proportional to
Fz (W') contributes to the absorptive part at least
one-order higher in the frequency ~= t/t/ —M than that
arising from the Fz+(W') term since k+q —M vanishes
in this limit. Consequently we neglect its contribution
in this threshold approximation and write for the vertex

(ks; q)b, le(0) I0)= (M/2peko)'iz

k+ q+M-
XN(k, s)ei& e7„i(er/2M)op„q—"

2M

We will approximate the scattering amplitude for a
nucleon and photon in the initial state to scatter to a
nucleon and a graviton in the final state (see Pig. 3) by
including just the pole terms. We are assured that in
the threshold limit the contribution from just the pole
terms survives and hence we write"

elements for a virtual nucleon to go into a J=-'„one-
nucleon, one-photon state with 42=%2 and q2=0 is
given by"

(ks; q)~lr)(0) I0)

py 1/2

ImG&(W') = —
I

zr

3E) spins

d'k d'q
8'(k+ q p /)——

(2zr)' (2zr)'

(pl8(0) Iks, qiX)

= (M'/2Ppkpqp)'~'ex"tz(P) {ML1/(P+1—M) jl'„(q)
+I', (q)l 1/(P —q—M) jM)N(k, s), (15)

X8(ke)8(qe)(pl8(0) lks; q) )(ks; qXlri(0) I0)P. (12)

Here k and s are the momentum and spin of the inter-
mediate nucleon and q and X the momentum and spin of
the intermediate photon. The sum in Eq. (12) is over all
nucleon and photon spin variables. Finally to com-
pute the absorptive part we must estimate the vertex
(ks; qXlri(0) I0) and the a,mplitude (pl8(0) Iks; q) ).

The most general form for the transition matrix

"See Appendix of R. Oehme, Phys. Rev. 100, 1503 (1955).
~ Multiphoton processes contribute only higher order correc-

tions to 53f and are neglected.

where I'„(q) =ey„(e/z2M—) pro„ is the electromagnetic
current including the Dirac and anomalous-magnetic-
moment terms.

From the expressions for the vertex and scattering
amplitude given above, we compute ImG" (Wz) in the
low-energy region with the assurance that in the
threshold limit 5"—+3P it becomes exact. Inserting

"See Ref. 15. Here we have used ~q&q~=0, the transversality
condition for real photons, so terms proportional to q„do not
appear and o» 2iTy„,y„j———

22 We refer the reader to Appendix II where these pole term
contributions to the scattering amplitude are established.
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8W' /W'~—
ln/

W2 —M2 (M2)

o. 8'—M'—+ — )0 n = e'/4n. (16)
W M2

ImG~" (W') =—na„M' EV' —3P 4&V2

t
W'

Xin( —+6—
2 (2W' —M')

W' W'q
ln

~

—1
W2 —M2

(IKEY
(W' —M')'(0. (17)w' I 6~3

In the threshold behavior of the absorptive parts the
character of the electromagnetic contributions is clearly
revealed. The e' term has a positive contribution at
threshold due to the attractive nature of the Coulomb
force and it vanishes as t/t/" —M', just proportional to
to the phase space of the intermediate Ãy state. There is
a,n additional factor of 8"—3f2 in the threshold be-
havior of the e~ contribution arising from the derivative
coupling of the anomalous moment current and this
contribution we find is opposite in sign to the Coulomb
term. Because of the derivative coupling the magnetic
term is small at low energies but at high energies,
unless it is damped by including the energy dependence
of the form factor F2+(IV'), it will dominate.

Writing 8M~=8M"+5M'" we may obtain the low

energy contribution to 5M& by substituting Eqs. (16)
and (17) into the dispersion integral Eq. (10) with
the result

72
8M"=—M 7 ink'+ —1 —

S~ ink' —1
~

4m kX' —1

=+0.72 MeV, X' 2,

=+1.01 MeV X' 3

Eqs. (14) and (15) into Eq. (12), performing the spin
sums using standard trace techniques, and doing the
integral over intermediate scattering angles, one obtains
the contributions to ImG~&(W') which are proportional
to e', ez„, z„' and contributions to ImG„&(W') propor-
tional to ~ '. Since ~ ' ~„' these terms will cancel when
computing 5M&. There remain the terms e', ez„which
contribute

nM3 (W' —M2)' 2
ImG„"(W') = — 12+ — (W"+M')

4+72 @72~2 gj2

n~PI 1 4)'
—,
' (ink'+1)+ — ink'+C (1—X')

2' A.
'—1

= —0.16 MeV, X'

= —0.51. MeV) X' 3

where

»(1 3')~X/3'

is the Spence function. "The total photon contribution
from the low-energy region yields a proton heavier than
the neutron,

8M& +O.S MeV. (20)

If we had included the energy dependence of the
magnetic form factor F2+(W')BM'" would have been
smaller than the value quoted above and thus increasing
our estimate of 5M&. This brings it in approximate
agreement with other calculations' which include the
eRect of the experimentally observed form factors, and
lends additional support to our choice 'A' 3 a,nd the
hypothesis of low-energy dominance.

)(,8(ko)8(go)(p( 8(0)
~
ksq)(ksq~ q(0)

~
0)P, (21)

where k and s are the momentum and spin of the inter-
mediate nucleon and q the momentum of the inter-
mediate pion )see Fig. 2(b)j.

%e approximate the pion-nucleon vertex appearing
"K. Mitchell, Phil. Mag. 40, 351 (1949).

B. Pion Contribution

In the low-energy region to which we restrict our
attention, there also emerges a contribution to 5M
from pions in the intermediate state which we denote
by 6M . The contributions to 83II might arise from
three distinct sources, the electromagnetic mass split-
tings among the pions, the electromagnetic differences
in the pion-nucleon coupling strengths, or the mass
splittings of the nucleons. The mass splittings in the
pion isomultiplet transform like T', where T is the
isospin, and cannot contribute to the nucleon mass
diRerence which transforms like T3. Moreover, since
we are examining only the low-energy region we
will neglect recoil. and set the pion nucleon mass
ratio p/M=O, which also considerably simplifies the
calculation.

First we examine the eRect of the electromagnetic dif-
ferences in the pion-nucleon coupling constants. To this
end we must cal ulate the contribution to ImG~, „(W')
emerging from the presence of an intermediate pion.
For a single pion in the intermediate state the con-
tribution to the absorptive p;~rt is

d'k d'g
ImG~(W') = —

~
m P 8'(4+q —p —l))» ~ (2m-)' (2~)'
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W'+4W'M' —M4
x ln

fV' —M'

g' (WP —M-')'
24

The threshold dependence of ImG (IV') emerges as a
consequence of the intermediate-state phase space for
the zero-mass pion and nucleon which contributes a
factor W' —Mp and the amplitude, Eq. (23), which con-
tributes the additional factor of lV' —3P.

We can now use Eq. (24) to estimate the effect of the
first-order electromagnetic shifts of g ~ on 5M by

7r

atm,

7r

+

M giy'

in Eq. (21) by just its threshold value,

(ks, q!g(0) [0)= (M/2kpgp)'~'u(k, s)giy p,

where g is the pion-nucleon coupling constant appro-
priate to the particular vertex. For example, the vertex
for a virtual proton going into a real vr+e pair will have
the coupling constant g„+ appear in Eq. (21).

At Iow energies, the scattering amplitude appearing
in Eq. (21) is given by just its pole terms (see Fig. 4)."
Since we are neglecting recoil the diagram 4(c) which
contributes to the absorptive part, a term proportional
to (IJ/3II)p will not enter, and we have from 4(a)
and 4(b)

(p!8(0)!ks; q)
=—(M'/2ppkp4)' 'u(p) {ML1/(p+ 1—M) )gpss,

+ gpss p)1/(p q —M)]—M}n(k,s) . (23)

At threshold 0"—+3P this amplitude vanishes. This
is because the pseudoscalar pion must be absorbed by
the nucleon from a relative 8 state to conserve parity,
introducing an over-all factor proportional to the mo-
mentum q of the incoming pion.

Inserting Eqs. (23) and (22) into Eq. (21) and per-
forming the spin sum and angular integration, one
obtains for the absorptive part

g') MP
ImG (W')—

47r) 2W'

calcula, ting ImG„(W') —ImG (W'). The contributions
of charged and neutral pions in the intermediate states
leads to

gP) MB
ImG~~(W )—ImG„~(W ) = —

I
(op+ 2~+)

41r) W'

where

-W'+4W'M' —M'

4'H/'M' f4 '—2IP M'

~p= (g.-o—g-')/g,
~+= (g.-+—g--)/g g'/4--»

are the electromagnetic splittings of g ~. From the
dispersion integral one obtains

8M (g' (Ap+2+)

M pp k4~ 4m

1——+4 — &nX' —1 —3 in''
A.
'—1

= —(Ap+26~)4X10 ', X' 3. (27)

In Appendix III we estimate the electromagnetic split-
tings of g,~, however suffice it here to point out that
this calculation indicates that 8g/g is on the order of
8M/M with Ap+2A+ —6.75M/M. From Eq. (27) we
estimate bM~! p,~+0.278M.

Finally we turn to estimating the effect of the nucleon
mass shift back. on itself. First let us examine contribu-
tions of intermediate x"s to IrnG„,„(W'). Since there
are no transitions between the nucleons of different
mass in this case, we may easily obtain the absorptive
parts from Eq. (24), with the result

(g' 1 y'+4y —1
I G "(W')=M

I

—— — »y (28)
(47r 2y~ 4y y

—1

where y=W'/M„' and there is a similar equation for
ImG„(W'). From the dispersion integral, Eq. (10),
we find

W/I g'
Hf" — 1—-I-4 = —lnV —

1)
—1 InX'

8~ 4z PP X2—1

= —6M&2X10 ', 9 3 (2&)

a very small contribution which may neglected.
Now consider what happens when there is an inter-

mediate pr+ contributing to ImG„~+(W') and an inter-
mediate pr contributing to ImG„(W') (see Fig. 5).

pp

g I ')r5
+7T

rI
I !~

n
f p

77
r

I
~ s

n n p

FIG. 4. Pole terms contributing to the scattering
amplitude fOr jV7r interxnediate State. I'"zG. 5. Contributions of intermediate 7r+ to Img„+(8').
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Then the kinematics and dynamics of the vertex Eq.
(22) and the scattering amplitude Eq. (23) will be
modified. For example, the scattering amplitude con-
tributing to ImG, +(W') will be

keeping only the first-order contribution. The result is'4

q~ SM- 0—1 3—
A.
'

8M~ = —— — 5 +in)t'+ 16
4m- 8x A,

'
A,
'—1

(p ~
8(0)

~
ks, tl) = — u(p) M, gi's

2P o&oqo — P+ l—M &

1
+gi's M„m(k, s), (30)

p—q—M„

where p'=M ' k'=M ' q'=P=O. The pole terms
in Eq. (30) gives rise to singularities of the form
1/(W' —M '). A similar term from the neutron con-
tribution then leads to a term of the form

W2 M s W2 M2 (W2 M2)2

when calculating bM . From the threshold dependence
given by Eq. (24) we learn that the difference in pole
terms will imply at threshold

/ g2 (W2 M2)2
ImG~~+(W') —ImG.,~ (W') ~ —(K2)'~—

(—2M)5M g' W' —M'
X = — 5M. (31)

(W' —M') 4s 6M'

Because of the additional factor of t/t/" —M' in the
denominator, we have an improved threshold depend-
ence implying a large contribution. Moreover, the sign
of this mass counter term is such as to suggest the possi-
bility that the total mass shift bM will be negative in
spite of the positive photon contribution.

It remains only to compute the absorptive part in-

cluding all the differences in the neutron-proton ma, ss.
VVe find

g' M (y —1) —2r(r+1)
ImG+(W') =—

4x 2y y
—r'

r 1) r'(y+1) 2y lny+- 1+- ~+ + —1 (32)
y(y —") (y—")(y —1)

where y= Ws/M„', r =M„/M„and a similar equation
for ImG„(W') with the roles of M„and M~ reversed
in Eq. (32). Then from the dispersion integral

"~&r 2 IrnG ~+(W&)gW~
SM +

t/I/" —M~'

1 """~'ImG„(W') d W'
(33)

My~ t/t/" —M„2

we evaluate bM + and then expand in powers of 6M

32 ink'

() s—1)' k)t' —1

= +0.863M X' 2,

=+1.068M, )t' 3.

This estimate of the pion contribution is then added to
the effect due the shifts in the coupling constants,
+0.278M, to give our total estimate for 6M'=1.06@V
+0.225M=1.35M. Along with our estimate of the
photon contribution 5M&=0.5 MeV we may then solve
for the mass difference from 8M=bM'r+5M' with the
result

8M —1.7 MeU (X' 3) (35)

for the low-energy contribution. This is to be compared
with bM' &'= —1.3 MeV. Including a finite pion mass
in the calculation increases our estimate by only 5%.

IV. CONCLUSIONS

The purpose of this calculation has not been to
obtain precise numerical agreement with the observed
mass difference but rather to suggest how at least the
sign of this mass difference might emerge in spite of the
fact that the photon contributions alone give the wrong
sign."The success of this approach depends crucially
on the fact that we obtain RV' +1.35M; the effect of
the nucleon mass shift back on itself is over 100%.Had
the coefficient of Bf been less than 1.0 the sign of our
final result would be reversed, and this would have
indeed been the case if we chose a smaller range of
intermediate-state energies to integrate over. However,
in the threshold approximation and with our choice of
X' the coefficient of Wf is in fact greater than 1.0, sug-
gesting that a more precise calculation will not change
the general conclusions of this work regarding the origin
of the mass difference.

APPENDIX I
Here we consider the matrix element (Kg~ ri(0) ~0) for

the transition of a virtual fermion of momentum p+l
to a real fermion-graviton pair of momentum p and l
with p'=M', P=O. We do not require any detailed
dynamical theory of gravitation since we consider pro-
cesses only to first order in the gravitational coupling

and questions related to the renormalization of
gravitational interactions do not concern us. For our
purposes it su%ces to recognize that there is a field

'4In Eq. (34) we have also included the small contribution
from the xO's, Eq. (29)."A similar observation has been made using the two point
function by H. M. Fried and T. N. Truong, Brown University
(unpublished report).
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A„„(x) coupling to the total stress tensor according to

C]A„„(x)=«8„„(x). (I1)

Instead of considering all the polarization states of the
final-state graviton" we need examine only the sum on
these polarization states or equivalently the trace
A (x) =A„N(x), where

aA(x)=«8(x). (I2)

XVith this understanding we write for the general form
of the matrix element

(kg l )) (0) l 0)= (M/2 pol o)'~' «u( p)Z (W'), (I3)

where Z(W')=G(W')+. G2(W')l and W'=(peal)'. In
the threshold limit l ~ 0 from «u(p)Z(M')u(p)
=«Mu(p)u(p) we have that G(M') =M. We may write
the matrix element Eq. (I3) in another way by con-
tracting out the graviton state vector in the final state.
The result from the LSZ'~ reduction formalism is

(Xg l
)) (0) l 0)= (2lo) '"i d4x e""8(xo)

X«(p I [8(x),n(0)] I o), (I4)

where we have used the equation of motion Eq. (I2)
and ignored possible equal-time commutators. Finally
we have for the form factors G(W'), G2(W'), combining
Eq. (I4) and Eq. (I3),

/p i/2

u(p)Z(W') =
l

— i d4x e"'8(xo)

x &pl [8(x),n(0)]l o) (15)
the same as Eq. (1).

APPENDIX II

Here we establish the expressions Eqs. (15) and (23)
for the pole-term contributions to the scattering ampli-
tude. To this end we examine the matrix elements of the
fully symmetric stress-energy tensor O„„which satisfies
the condition 8„0„„=0,energy-momentum conserva-
tion. First we consider the matrix elements of 8„„(0)
between an initial state consisting of a nucleon of
momentum k with k'= M' and photon of momentum /

and polarization e satisfying q'=0 and g &=0 and a
final single-nucleon state of momentum p with p'= 3P
Then we have for the pole terms

(y l 8„„(0)l k, qe)
= (M'/2qokpo)' 'eu(p)( 'y, „(2P+l)„, —

X[1/(P+l—M)]y e+y &[1/(0—l—M)]
Xx'y(„(2k —l),)+ [2g(c" —P 2e LP)

2~"(q(.l ) 2q.q )+—2'l(g'q. +—g."q.)
—2(l—2q) "e(.(l—q).))[»/(q —l)')

——',g „y e)u(k), (II1)
' S. Q'einberg, Phys. Rev. 138, 8988 (1965}.' H. Lehmann, K. Symanzik, and 97. Zimmermann, Nuovo

Cimento 1, 205 (1955).

where (pv) =p) +vp and we have not included terms
from the anomalous-magnetic-moment current for the
sake of simplicity. We have introduced l„(k+q—p)„
the momentum of the final graviton which satisfies
P=O. The various terms in Eq. (II1) arise as follows.
The first two terms arise from the stress energy in the
nucleon field and correspond to inserting a graviton of
momentum /„ in the final and initial nucleons according
to the rule given by Weinberg" for graviton insertions
on spin--,' systems (see Fig. 3). The third term arises
from the graviton interacting with the energy momen-
tum of the incident photon ~(F(„),F„)"—-,'g„„F„F"),
and corresponds to a graviton insertion on a spin-1
zero-mass system. The final term ——,'g„,p e is the four-
point interaction of the two nucleons, photon, and
graviton. The presence of this term is required to assure
us that the amplitude Eq. (II1) is invariant under the
gauge transformation e„~e„+Xq„as is imposed by
current conservation. Furthermore one may explicitly
verify that the amplitude Eq. (II1) is consistent
with energy-momentum conservation which implies

(pli8„8„„(0)lk, qs)= (k+q —p))'(pl8„„(0) lkq, e)
=l"(yl8„,(0) lk, qs)=0.

For our calculation we require only the matrix ele-
ments of the trace 8(0) which is obtained from Eq.
(II1) by contraction, with the result

(pl 8(0)
l
k,qe) = (M'/2qpk()pp)'"

1 1
Xeu(p) M e y+e 7 M u(k). (II2)

P+l—M k—l—M

We have not included a possible anomalous moment
contribution in Eq. (II2). Including this term accord-
ing to the substitution e y -+ e),I'"(q), we have Eq. (15).

In case the initial state consists of a pion of momen-
tum q with q'=p, ' and nucleon of momentum k with
O'=M' then the pole-term amplitude is given by

(pl 8„(o)lkq)
= —(M'/2qokoP())'"u(P) 47( (2P+l) )

X [1/[P+ I—M) )giy(;+ gi's[1/(0 —l—M))
X-'v(. (2k —l).)+2[(2q—l).(2q —l).
+I'g„„l„l„][giy5/ —(q l)' p']- —

——,'g„„giy~)u(«) . (II3)

Again the first two terms arise from the graviton emis-
sions from the initial and final nucleons [see Fig.
4(a), (b)], while the third term represents the gravi-
ton coupling to the energy in the incident pion [see
Fig. 4(c)] and the last term is the four-point interac-
tion. The amplitude (II3) satisfies the requirement
l&(pl8„„(0)lkq)=0 imposed by energy conservation.
Contracting Eq. (II3) to obtain the matrix element of

' S. steinberg, Phys. Rev. 140, 3516 (1965).
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the trace, we have

~2 1!2

(p ~

8(0) i kq) =— pi(p) M gip p

2qoPo&o — P+&—M

nucleon scattering amplitude. Inserting just the pole
terms from these amplitudes which are exact in the
threshold limit we calculate the low-energy contribution.

The photon diagrams yield a contribution

2p, g'bp5

„(p) (II4) Ap= —
i
—)(1+-',~„)i in%+—1 i,

lt —1—M (q
—l)' —Iti' &4~i i V i '

In the approximation of neglecting recoil p,2=0 the
last term does not contribute and we have Eq. (23). In
case the initial and 6nal nucleons do not have the same
mass then we find for the matrix elements Eq. (30).

APPENDIX III

Pa
1————3P' —1)

1——1 i+44(1—XP)
X2

(1114)

Here we will estimate the electromagnetic splittings
of the pion nucleon couplings g ~. The method we use
is the same as that employed in calculating the nucleon
mass shift, but instead of examining the nucleon-
graviton vertex we examine the nucleon-meson vertex
with one of the nucleons off the mass shell. This vertex
has the general form"

u(p)i1(W') = u(p) LiyoK (W')+iyoK (W') l), (III1)

where p'=M' (p+l)'= W' and l is the momentum of
the outgoing pion. We recognize K(M')=g, the pion-
nucleon coupling constant for this vertex. Our interest
is in estimating the quantities

where we neglect terms proportional to Ky K„'.
From intermediate pions there are contributions

from the shifts Ap, + back on themselves and contribu-
tions from the nucleon mass shift @II. There are no
contributions from the pion mass splittings and again
we make the recoil approximation p/M=0 to simplify
the calculation. We only keep p/M&0, where it is
required to prevent a divergence, and these terms will
enter in calculating the inhuence of the nucleon mass
shift 5M. We find

g') 1—
i

—2hp 1——+ln(X')
4 is

~p= (g~- —g- )/g

~+= (g.-'—g---)/g
(III2) + S+L7 (1—1/Zo)+9 ln(Z&))

and to do this we make use of the analytic properties
of E(W') in the complex W' plane. Assuming that
K„~'(W') K„~'(W') an—d K~~ (W') K„~ (W') va—nish
as S' —&~ we may proceed as we have already shown
for G„(W') and G„(W') and write for d, p, 6+

(g' 1 1
hp" ———

i

——Ap S 1——+1n(X')
s v

+4~+51—1/XP+3 ln(~o)), (IIIS)

1
gdp=-

vr

""'i"ImK„'(W')dW'

t/t/2 ~ 2

1 "'"' ' ImK„"(W')dW'

tit/'2 —M 2

"~i"ImK~ + (W') dW'

+72 Jf 2

g') 6M
8M-

4pri 27rM

(III3) g' 5M
g 8M

4x ~M

lng—12 ln(li')+ —1

—— 1——i+12 ln
2 li') 2y/M

P2 —1 1
4 ln —4 ln(X')+—1

2p,/M

1 ""~ ' ImK„(W')dW'
The equations

~o= ~o'+&o'"+~o"",
y+ g pg+ g ppr (III6)

e here we again include only the low-energy region with
3. This implies that the only intermediate states

contributing to ImK(W') are the Ey and X7r states
so that the shifts hp, + are related to photopion produc-
tion and the electromagnetic differences in the pion- 6p+ 2Dp —6.75M/M . (III7)

are then an inhomogeneous linear system for Ap and 5+.
Setting X' 3 and p/M to its experimental value we
solve Eq. (III6) and find


