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By emphasizing the analogy between mass and charge as sources of 6elds, we are led to examine the
mechanical structure of a particle in terms of the matrix elements (p ~8 e(0) ~p), where 8 e(a) is the total
energy-momentum tensor, just as the matrix elements (y'~ j (0)

~ p) of the current operator j (a) detme its
electromagnetic structure. Although the off-diagonal matrix elements (p'~8 e(0) ~p) are not accessible to
direct experimental observation, the diagonal element (p~8 e(0) ~p) is just proportional to the total mass.
Consequently, we can study the contributions to the total mass in terms of vertex functions instead of propa-
gators and, using the techniques of dispersion theory, relate the contribution to the total mass to integrals
over physical scattering processes. We examine electrodynamics and the pion-nucleon interaction in per-
turbation theory and show how the mass divergences emerge as a consequence of the high-energy behavior of
the Coulomb amplitude and the nucleon-nucleon scattering amplitude. Finally, using elastic unitarity, we
can relate mass splittings in a multiplet to integrals over the differences in S-wave phase shifts.

I. INTRODUCTION
'
ASS makes its appearance in physics in two funda-

&- mental ways. Inertial or dynamical mass is a
measure of how a physical system responds to the
inQuence of external forces and it is this mass that
appropriately appears in Newton's equation of motion
and the equations describing the interactions of
quantum-mechanical systems. The second way that
mass makes its appearance in physics is as a measure
of the source strength of the gravitational Geld in
analogy with the electric charge as a measure of the
source strength of the electromagnetic field. The equiva-
lence principle then asserts that for any physical sys-
tem these two measures of the mass must be the same
and that no experiment can be devised that dis-
tinguishes them. '

It is the concept of inertial mass that plays the
central role in modern particle physics in relation to
questions pertaining to mass renormalization or mass
splittings in a multiplet. For example, it is the inertial
mass that appears in the Lehmann representation of
the propagator function or the dynamical equations of
the S-matrix approach to strong interactions. Rather
than emphasize the concept of mass as a dynamical
term in the equations of motion, the approach we pre-
sent here examines the role of gravitational mass and
emphasizes the analogy between mass and electric
charge as sources of fields. No new physics can emerge
from this investigation which is not available from con-
ventional approaches; however, techniques enabling one
to simply relate mass splittings to physical scattering
processes are presented in this on-the-mass-shell
approach.

In examining the electromagnetic properties of a
quantum mechanical system our interest is in the matrix
elements of the total current operator j (x) which acts
as a source for the electromagnetic Geld A (x). For
example, the response of a single-particle state

~ p) of
momentum y to the probing electromagnetic potential

f Supported in part by U. S. Air Force Contract No. AFOSR-
153-64.

' S. Weinberg, Phys. Rev. 138, B988 {1965);135, 81049 (1964).
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(x) is given in terms of the transition matrix ele-
ments (p ~ j (0)

~ p) which contain the information about
its charge and possible magnetic structure in terms of
form factors which are accessible to experimental study.
Similarly, the mechanical structure of a particle is given
in terms of the matrix elements of 8 p(x) the total sym-
metric stress-energy tensor taken between single-particle
states. The tra, nsition matrix elements (p'~8 p(0)ip)
describe the response of the system to a probing
gravitational field, g p(x). Contrary to the case of
electromagnetism, there is very little hope of learning
anything about the detailed mechanical structure of a
particle, because of the extreme weakness of the gravita-
tional interaction. However, just as in the limit of
zero-momentum transfer, P' —P=0, (p ~ j (0)

~ p) is
proportional to the totally renormalized charge of the
system, so (p~8 p(0)

~ p) is proportional to the totally
renormalized mass m. This is easily seen by going to
the rest frame of the particle p = (m, 0), where all com-
ponents of (p=O

~

8 p(0)
~
p=0) vanish except (p

=0
~

8pp(0)
~

p=0).' Since the Hamiltonian is given by

8pp(x)d'x,

so that (p'
~

H
~ p) = (2pr)'8'(p' —p) (p'

~ 8pp (0) t p) and since

H( p=0)=m~ p=O), we must have (p=0(8pp(0) i
p=0)

In spite of the fact that the off-diagonal matrix ele-
ment (p'~ 8 p(0)

~ p) has little opportunity to be experi-
mentally investigated we can nonetheless make use of
its analytic properties as a function of the invariant
momentum transfer ps= (P' —P)s. The techniques of
dispersion theory then enable us to express the con-
tribution to the total mass in terms of integrals over
physically measurable scattering amplitudes similar to
the treatment of the matrix elements (p'

~ j (0)
~
p).' Of

course, the success of any such approach to determine
the effect of interactions on the mass of a state depends

This is implied by Lorentz invariance as we show in Sec. II.
' S. Drell and F. Zachariasen, Electromaguetic Structure of

Nucleons (Oxford University Press, New York, 1961).

1250



FORM FACTORS OF PARTlCLES 1251

crucially on the asymptotic behavior of &y'l8 p(0) I p)
as Iq'I~~ just as does any dispersion-theory tech-
nique which purports to calculate physical constants
rather than simply 6nd relations between them.

Consequently, stressing the analogy between mass
and charge as sources of fields suggests an examination
of the problem of mass renormalization and mass
splittings in terms of vertex functions rather than
propagators. This has the advantage, as we will see
in the sequel, that utilizing the analytic properties of
this vertex it is possible to relate mass differences to
differences in phase shifts of physically measurable
scattering processes thus permitting a direct investiga-
tion of the relation between mass splittings and the
forces responsible for the scattering process.

In the next section we will consider the implications
of Lorentz invariance and energy-momentum conserva-
tion for restricting the form of the vertex &p'

I
8 p(0) I P).

Here we also examine some the consequences of the
fundamental Schwinger equal-time commutation rela-
tion sg8pp(x), 8pp(y) j= I 8ps(x)+8ps(y)$8s8'(x —y) which
is a general implication of Lorentz invariance. 4 In Sec.
III, using quantum electrodynamics as a model, we
compute the matrix elements &p'

I
8 e(0) I p), where

I p)
is a single-electron state of momentum p. Using the
analytic properties of Feynman graphs we relate the
renormalized mass to the bare mass in terms of an
integral over the Coulomb scattering amplitude. Here
the characteristic mass divergence is seen as a direct
consequence of the high-energy behavior of the Coulomb
amplitude as calculated in perturbation theory. We
examine the pion-nucleon system in the same way.
Here, the contribution to the nucleon mass is expressed
as an integral over the pion-nucleon and nucleon-
nucleon scattering amplitude. Finally in Sec. IV we
examine the implication of the unitarity condition for
the matrix elements of 8 e(x) taken between single-
particle states. Here a relation between the total mass
or mass splitting and the S-wave phase shift emerges.
It is also possible to incorporate in a simple way the
idea of octet enhancement into this approach to mass
splitting. The implications of the tadpole hypothesis'
as a mechanism for octet enhancement is brieQy
discussed.

In the following paper we use the ideas and techniques
here presented to calculate the neutron-proton mass
difference.

II. IMPLICATIONS OF LORENTZ INVAMANCE

Our purpose in this section is to examine the restric-
tions that invariance under the Lorentz group and the
conservation of energy-momentum

8.8.,(x) =0

impose on the general form of the matrix elements

4 J. Schwinger, Phys. Rev. 130, 406 (1963).' S. Coleman and S. L. Glashow, Phys. Rev. 134, B671 (1964).

&prl8 e(0)l ps), where lps) and &prl are initial and 6nal
single particle states of momentum p2 and p~. We as-
sume that 8 s(x) transforms like a tensor of the second
rank under proper Lorentz transformations and spatial
rejections and that the matrix elements are time-
reversal invariant. Then, once the spin of the system
is specified, the matrix elements can be written down in
their most general form in terms of the invariant me-
chanical form factors G, (q') which are functions of the
momentum transfer q'= (pt —ps)'. For illustrative pur-
poses, we will examine only the case of systems of
spin 2 or spin 0.

The ma, trix elements of 8 p(x) between one-particle
spin ~ systems have already received intensive investi-
gation in connection with the self-stress of the elec-
tron. ' ' From this work we find that the most general
form for the matrix elements &prl 8»(0) I ps) consistent
with the above requirements may be written as

&irl8" (0) ll )
= ( '/Po'Po )' 't s7(Pr sr)/4m jar�(q') (ll y,+l,y„)

+Go (q')l„l„/m+Gs (q') (q'g„„—q„q„)/mug (ps, ss), (2)

where l„= (p&+ps) p qs= (p$ ps)s and m'= pP=ps' is
the total mass of the particle. Here m(p, s) denotes the
Dirac spinor satisfying the Dirac equation (P—m)
)&I(ps) =0 and normalized according to +,I(p,s)N (p, s)
= (P+m)/2m. The G, (q') appearing in Eq. (2) are the
mechanical form factors describing the mechanical
structure of the spin ~ system. The condition of energy
momentum conservation Eq. (1) implies that Eq. (2)
must satisfy qp&p& I 8„,(0) I ps) =0 which is easily verifmd

using the Dirac equation. In fact it is a necessary re-
quirement that the expression within the bracket of
Eq. (2) be syrnrnetric with respect to the interchange
of p& and ps for conservation of energy momentum to
hold. ' In the limit of zero momentum transfer q„=o,
Pt=Ps ——P the general form of the diagonal matrix
element is seen to be

&1 I 8,.(0) I p&= (~'/Pp'Po')"'~(P, s)~(P,s)

X(p.p,/~)«. (0)+G.(0)j
Going to the rest frame of the particle p=o, one sees
from Eq. (3) that only the components &p=OI 8pp(0) I p
=0) survive, and consequently the self-stress auto-
matically vanishes as is required by Lorentz invariance
and the conservation of energy momentum. Since
&p=OI8pp(0) I y=0)=mN(P, s)N(p, s) we have from Eq.
(3) the condition

(4)G, (0)+G,(0)=m

P A. Pais and S. T. Epstein, Rev. Mod. Phys. 21, 445 (1949).
r F. Rohrlich, Phys. Rev. 77, 357 (1950).
F. Villars, Phys. Rev. 79, 122 (1950).' S. Borowrtz and W. Kohn, Phys. Rev. 86, 985 (1952).

in analogy to the condition Fr(0) = e in the case of the
electromagnetic form factors. 2

Often it will be sufBcient to examine the matrix ele-
ments of the trace 8(x)=8 ~(x). Here the general form
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We have used the translational invariance of the theory

&p, l8„„(x)ly,&=e'is~-s i *&p, l8„„(0)lp,) and s« &=0.
Hence one obtains a sum rule for the matrix elements

&p I8"(o)
I y &:

(2~)s E.&y l8oo(0)~&(~I8 (o) I p )
x I

ss(p„- p,—I)—&'(y.—ys —q)g
=(l.-q.)&p l8'"(o)

I y.), (14)

where pi ——ps+I+ q. In Eq. (14) we may set q=0 and
from the conservation of energy momentum, (Pi,

'—Pss)

X&pil8 "(0)
I
ps&= (p' —p )o&pil8oo(0) lps&, one obtains

(2~)' &-&pil 8oo(o) I +&&+ I 8«(0) I ps&

X9'(y.—pi) —8'(y.—ys)j
= (p' —p').&y I8 (0) I y ).

Equation (15) imposes a nonlinear constraint on the
form factors G, (qs) as a consequence of Lorentz invari-
ance. We will not use this sum rule to calculate but
simply note one consequence of Eq. (15) obtained by
approximating the sum by including only the single-

particle intermediate state. Inserting either the general
form Eq. (2) for the spin-srcase or the general form
Eq. (8) for the spin case one finds that Eq. (15) is an
identity provided that Gi(0)+Gs(0)=m in the spin--',

case or Gi(0) =2p' in the spin-0 case. So the commuta-
tion rule 6xes the boundary values of the G;(q'). Using
this information on G;(0) we have

2 &pil8oo(0) IN&&+l8es(0) I ps&
ng1

XI8'(y.-p)-8'(y--y)3=0, («)
where the sum does not include the single-particle
state. Equation (16), which incorporates inelastic ef-

fects, then gives relations on the G, (q') for q'WO. Conse-

quently, we see how the Schwinger commutation rela-
tion Eq. (13) serves to impose additional restrictions
on the matrix elements &pi I 8„„(0)I ps&. We will not here
investigate these implications further but rather, in
the next section, relate the G, (qs) to dispersion integrals
over scattering amplitudes using quantum electro-
dynamics as a model.

III. ANALYTICAL PROPERTIES

In this section we will illustrate explicit methods for
calculating the G, (q') from their analytic properties.
We are motivated to use this approach, which leads to
dispersion relations for the G, (q), since it enables us
to relate the matrix elements (pil 8„„(0)I ps& to physical
scattering processes. Thus, we will not be committed
to a perturbation-theory technique when considering
the strong interactions. For definiteness we examine
the electrodynamics of electrons and photons as a
model and will simply follow the already established
methods for computing the electromagnetic form factors
F, (q') of the electron. 's Although we make use of dis-

"S. D. Drell and F. Zachariasen, Phys. Rev. 111, 1727 (1958).

Fxo. 2. Ana-
lytic properties of
G;(q').

Req~

Imq~

e
G (q +ie)

persion relations which presuppose certain analyticity
properties of the G;(qs) we will not attempt to rigorously
prove these properties but rather choose to take first-
order perturbation theory and the analytic properties
of the corresponding Feynman graphs as our guide.

8„„(x)=8„P(~)+8„„&(x)+8„„r(*),

where the electron Geld contributes

8...(*)='-:L~(*),~.8.~(*)j,
the photon field

(18)

8„„~(x)= ', (F„)F„~+F„iF-„" ,'g„„F„F")——(20)

and the interaction term is

where
.8'(~) = si (.A.) (21)

F„„(x)=B„A„(x) 8„A„(x), j„(x—)= A„(x)

and we have introduced the notation (pi )=pi+ vp. The
self-stress problem of the electron, showing that the
form of the diagonal matrix elements does not change
when one takes the radiative corrections into account,
has been extensively studied' — and we have nothing
to add to this investigation. We simply point out that
this work showed that the net e6ect of the radiative
corrections was to shift the mass.

Our aim here is to relate the G (q') to scattering
processes with the end in mind of examining the diver-
gence of the electron self-mass 8m=m —mo in terms of
the asymptotic behavior of these scattering processes.
We will proceed heuristically rather than with strict
rigor and begin by assuming that the G, '(qs) are analytic
functions of q' in the cut q' plane with a branch cut
extending from q'=0 to q'= ec (see Fig. 2). This prop-
erty of the G,'(q') explicitly follows from 6rst-order

A. Electrodynamics

As an explicit illustration of our calculational methods
we will compute the matrix element

&y I8"(0)ly)=( '/popo')"'L (p, )/4 ~
XLGi'(q') (l„y,+l,v„)+Gs'(q') l„l„/4m
+Gs'(q') (q'g„„q„q„)/m—)N(ps, ss) (17)

of the total stress-energy operator of the electron-
photon system between single electron states of mo-
mentum pi and ps. Here l„= (pi+ps)„, q„= (pi —ps)„,
Pis=Pss=m' and the G'(q') are the mechanical form
factors of the electron. The total stress energy operator
is given by
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perturbation theory and the analytic properties of the
corresponding Feynman graphs and we shall assume it
as a property of the G, '(q') independent of perturbation
theory. Furthermore 6rst-order perturbation theory
reveals that as

I
q'I —+~, Gl'(q')/q' Go'(q') and Go'(q')

all vanish. We may summarize the asymptotic behavior
and analytic properties by the following dispersion
relations:

q' " ImGl'(q")dq"
G~'(q') =Gi'(0)+—

q"(q"—q' —io)
(22)

1 "ImG,'(q")dq"
G (q')=- i=2, 3,

o (q
—

q
—io)

(23)

where 2i ImG, '(q'-) is the discontinuity of G (q') across
the cut. The dispersion relation for Gl'(q') required a
subtraction in virtue of the prescribed asymptotic
behavior as

I
q'

I
~ oo which we have made at q'= 0. We

note that the total mass m, the constant Go'(0) which
can be computed from (23) and the subtraction con-
stant Gl'(0) are related by Gl'(0)+Go'(0) = rg, Eq. (4).
In writing a subtracted dispersion relation for Gla(q'),
we then give up all hope of calculating the Inass m
from a knowledge of the absorptive part ImG, '(q').
Later we will return to the question of subtraction con-
stants, for it is essential to any examination related to
the calculation of masses in particle physics.

In virtue of the prescribed analytic properties of the
G,'(q') we may analytically continue the scattering
vertex &p&le„„(0)I po& to the physical region for produc-
tion of electron-positron pairs and the corresponding
amplitude,

&y y' 'le. (o)io)
=( '/Po'Po')'"[ (P, )/4 3[G '(q')(4 .+f. ,)

+Go'(q') l„l„/m+ Go'(q') (q'g „„q—„q.)/nz$

&& (p.,"), (24)

where Pl and Po are the four-momenta of the electron-
positron pair and the total energy is qo with q„= (pl+ po) „
and l„= (Pl —Po)„. The Dirac spinors of the electron
and positron are denoted by u(P&, sl) and v(P2 sg) and
satisfy (po+m)v(po So) =0, (pl —ns)u(pl, s&) =0 and are
normalized according to u(p) u(p) = (p+ m)/2m, v(p) v (p)
= (P—m)/2m. Here &plyol ~

I
denotes the state of the

fi.nal electron-positron pair with outgoing boundary
conditions. The G,'(q') appearing in Eq. (24) are the
same as those in Eq. (12), but now continued to the
region q'&0.

We may rewrite the amplitude Eq. (24) in a different
form using the LSZ reduction formalism" which reveals
the branch cut and reality property G,'(q'*) = G *(q')
of the form factors required by the representations
Eqs. (22) and (23). Contracting the electron state
vector from &plyol & I, one obtains

t
mq'~'

0"(o) lo&= —il —
I

kpo')

where q(x)= (iV' —llv)lPa(x) and 0(xo)= —'(1+xo/ixoi)
In writing Eq. (25), we have dropped the equal-time
commutator 5(xo)[ling($), 8&„(0)j of the renormalized
Heisenberg operator lP~(x) with 0„„(0)since it does not
effect the calculation of the absorptive part or the
analytic properties. The equal-time commutator has a

d'~ ~'""0(~o)&poi [u(P,)g(*),0„„(O)]IO&)

bearing on the issue of subtraction constants and we

will return to it later. By inserting a complete set of
states (which for convenience we chose to have in-

coming boundary conditions) in the commutator of Eq.
(25), one can perform the above integral and thus
obtain

&yo I u(p~)n(o) I
~'+'&('+'~

I ~..(o) I
o&

&»yo' '
I 0"(o) I

o&= —(~/Po')'" Z. (2~)'~'(y~+yo —p-) . —(2~)'~'(y~+ p.)
po po po

p I 0"(o) I
~&+'&(l+'ul N(p, )~(0) I

0
X

po"+po'
(26)

g= Pi+ Pp
i I I I I l I I l I I I Q I I n I I I I

FIG. 3. Diagrammatic repre-
sentation of the intermediate-
state contribution to the ab-
sorptive part lmG; (g').

which shows the branch cut in the first term which is
singular whenever p~+po=q=p„. This is satisfied for
q'= 0 corresponding to a two-photon intermediate state.
The second term has no singularity. The discontinuity
across the branch cut can then be related to the ab-

sorptive parts ImG, '(q') using the reality condition for
the G,'(q') =G,'*(q'*),

G»= [u(p~, sl)/4m][ImG~'(q')l&„y„l+ImGo'(q')l„l„/m
+ImG (o)q(q'g„„q„q„)/m5—v(p2, so)

=-[(2-) /»(p /-)" Z.&'i-(p.).(0) I- »
&&&"'~

I 8"(o) I
0»'(P.—P~—Po) (27)

=g G„„".
"H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo

Cimento 1, 425 (1955).
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We diagrammatically represent this expression for
ImG (q') in terms of the scattering amplitude & p2 I

u (Pi)
Xr)(0) I

n(+» and the production vertex &n
+) I8„,(0) I 0)

in Fig. 3. The expression Eq. (27) for the absorptive
part and the dispersion relations Eqs. (22) and (23)
then provide us with a basis for calculation.

No approximations have been made so far. However,
to proceed to actual calculations it is necessary to make
a judicious choice of intermediate states

I
22& and trun-

cate the sum on e. Usually such a choice of states is
dictated by the recognition that the higher mass inter-
mediate states will not contribute as much to the low
q' va, lues of G, (q') from the dispersion integral as the
lower lying states because of the weighting denominator
q"—q' —ic appearing in the dispersion integral. This
conjecture depends on both the high-energy behavior
of the scattering amplitude and the production vertex,
something which is not at all known. Including only
the lower lying states is making a virtue of a necessity
since we cannot calculate with confidence in the high-
energy region. Although this becomes a real problem in
strong interactions, for our present considerations in
electrodynamics we can appeal to the viability of per-
turbation theory and as a 6rst approximation keep only
those states which contribute to the absorptive part to
order(r= 1/137.

To lowest order in n we may approximate the sum
in Eq. (27) by keeping only two intermediate states
22= ee and n= 27 (see Fig. 4). The state I=ee7 does not
contribute to this order. We write the truncated sum

q
III I llllll lgl I I IIIII I

q e
q+ I I I I I IIII+ I I I I I II I I I I

q-, = 4m2 2 qr=o2

FIG. 4. Lowest order contribution to Irn&p p(qs).

as G„„=G„„-+G„„2)',where

Q ee
pv

(2 )'(p ')'(' d'q d'q

2 (m j spin (22r)2 (2)r)2

x8'(pi+ p2
—qi —q2) (p2 I 2I(pi)n(0)

X I
qiq2'+ )&

+ qiq2I8„„(0)IO&, (28)

(22r) (pp 2)'(2 dsi

2 (2I2 j p (22r)2 (22r)2

x8'(Pi+ P2 —li—Z2)(p2I ~(pi)~(0)

X
I
li12'+'&('+'lils I8p„(0) I0&. (29)

Here q& and q2 are the momenta of the intermediate
electron and positron and li and 12 are the momenta of
the intermediate photons. In Eqs. (28) and (29) we

recognize &ps I u(Pi)2) (0) I
qiq2&+» as the Coulomb scat-

tering amplitude for electron-positron pairs, e+e —+

e+e, and &p2 u(Pi))&(0) I
lil2&+» as the production ampli-

tude 27 —+ e+e. To lowest order in (2, corresponding to
Born approximation, these amplitudes are given by

N(P1)7 2E(qi)t)(q2)7 tl(P2) N(Pl)7 E(P2)t)(q2)7 22(qi)
&p2I ~(pi» «) I

qi»2"'& =e'(~'/Po'qo'qo')'"
(p+p.)'

(30)

j.
&p2IN(pi)))(0)Ilil2(+»=e2(2)22/4PI)2ZII'ZE2)'(2N(pi) (7 E') 7 E'+7 E' (7 E') tl(P2), (31)

li P2 2)2 Pi l] 222

corresponding to the diagrams of Fig. 5. Consequently
the contribution to the G (q2) to first order in (2 arise

directly from two processes, in one case the graviton
probing the electron beneath the photon cloud and in
the other case probing the photon cloud about the
electron. The contribution to the absorptive part com-

ing from the rescattering of ee pairs begins at q'=4m'
the threshold of this process while the 2y intermediate
state 6rst contributes to the absorption at q'=0.

There also appear in Eqs. (28) and (29) the vertex
functions «+&qiq2I8„„(0) Io& and «+'li12I8„„(0)Io). To
lowest order in n these are given by

&'+'» «. I8,.(o) Io&=&"'q q I8..~(0) Io&

= (2)22/q(I'qs2)'(2 —'u (qi) Z'(„7,&tl (q2), (32)

l'.= (qi—q2).

('+'l, l, l8„„(o)Io& = &(+)1,1,I8„,~(o)
I o&

( 2E ~ qE q)= (1/4ZE'Zo2)'"X-' a"q'I E'E'—
q' i

—(q pq p Zplli) El ' E2 2E ' ZE (Iil p)+ 2E ' lE (Iil p)

Z„= (li—l2)„,

q„= (li+l2) „,

q E (pE ) (33)

and are diagrammatically represented in I"ig. 6. In Eq.
(33) E„' and E„' refer to the polarization of the photons
of momentum /„' and /„', respectively, and it is easily
established that Eq. (33) has the property of invariance
under the gauge transformation Eip —+ Eip+)iilip, E2p ~
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FIG. 5. Pole terms contributing to scattering amplitude.

e2&+4l2&, vanishing trace (l+&1~12I8~(0)l0)=0, and the
required conservation of energy q"(I+&1&12lg»(0) l0)=0.

From these basic ingredients we may now calculate
the ImG (q'). Since the contribution of G„„"and G„„'&
to G„„separately conserve energy we may write our
form factors as G;=GP+G, ~ indicating the separate
contributions from the e|,'and 2y intermediate states.
Inserting the scattering amplitudes Eqs. (30) and (31)
and the vertex terms Eqs. (32) and (33) into Eqs. (28)
and (29), performing the integration over intermediate
scattering angles and summing on the intermediate spin
states using standard trace techniques we may identify
the contributions to the ImG;e(q') and ImG, ~(q'). The
results of this calculation are

-17 ii
ImGP (q') = —nc (q') —q' ——m'

12 3

1 (q' —4m')
+—(2m' —q') lnl I, (34)

2 )
ImG2 (q') = —-,'nm'C (q'),

ImG8e(q') = (5/3)am'L1 —(4m'/q') )4 (q')

4 (q') =ml q'(q' —4m') j—'~',

and
1

ImGP (q') = a'Q~(a) --Qo(a)--
2 (4m' —q') a 3

0!g 8$1 5
ImG, (q ) =— -Q,(.)+ (5"-6)Q~(a)—,

(4m' —q')' a 3

a consequence of the fact that the electron is sur-
rounded by a cloud of low-energy virtual photons the
contribution of which we have not properly included.
To further examine this divergence, we must examine the
matrix elements (e I 8„„(0)I e, many photons) which takes
us out of the scope of the present investigation. "We also
note that the annihilation diagram Fig. 5A2 can not
contribute to ImGP(q') since the operator 8„„can not
connect the vacuum with a state of J=1. Finally we
note that as q' -+~ ImG2, 3~(q') and ImG2 ~~(q') vanish
while ImGP (q') ~ lnq2 and ImGP(q') —+ constant and
the dispersion integrals Eqs. (22) and (23) are well
defined.

The form factors for all values of q' may now be
obtained from the expressions for the absorptive parts
Eqs. (34) and (35) and the dispersion integrals Eqs.
(22) and (23). In particular, we may calculate the static
values G2'(0) and Ga'(0) from the representations

00 dq' 1 " dq'
G2'(0) =— ImGP (q')—+— ImG2" (q )—, (36)

4m' 7l 0

00
dg

G3'(0) =— ImGae (q')—+-
4m' g Ã 4y2

In writing the expression for G3'(0) we have inserted
a threshold of 4X' in the second term corresponding to
the threshold to produce two mass=3 photons. We are
required to do this since ImGq~(0)=em/6 does not
vanish. Hence G3'(0) is an infrared divergent quantity;
however, it does not eGect the diagonal matrix elements

(ylg„„l p) since Gg'(0) has a coeflicient proportional to
the momentum transfer. Computing G2'(0) from Eq.
(36), we find G2'(0) = nm/37r+—nm/37r= 0 so that
G2'(0) vanishes to this order.

Considerable simplification is achieved if instead of
considering the matrix elements of the full stress tensor
8„„(x)we restrict our attention to just the trace 8(x).
The diagona1 matrix elements are a11 that are experi-
mentally accessible and since (pl8„„(0)I

y)= (p„p„/2m)
X(pl 8(0)

I p) we need consider only the properties of a
single analytic function G(q') with

ImG3P (q')—.(37)
gl2

&y~l8(0) I p2) = (m'/po'po')"4p»N(p2)G(q'),

where G(0) = m, the total mass. Applying the reduction
formalism to the production amplitude (pqp2& & l8(0) I 0)
by contracting out the electron state vector we obtain

Qss 1 1
ImGP(q') = -Q.( )-(2-")Q ( )—,(35)

(4m' —q') a 3
IlllllllIIQ«ullllllll IlllllllllPII IIIII II III II I

where a'=q'/(q' —4m') and the Qg(a) are Legendre
functions of the second kind. In the expression for
ImGP(q') there appears the quantity PP((q' —4m', a
finite photon mass which we have placed in the pole
term of Eq. (30) according to (p~—q»' ~ (p&

—q»' —X'.
As X'~0, ImGP(q') has an infrared divergence as a
consequence of the divergence of the Coulomb ampli-
tude in the forward direction. This divergence arises as

~ q, q, Igp, Io&lo) ("I, &, Igl .Io& lo)

FIG. 6. Lowest order vertex for electrodynamics.

"D. lennie, S. C. Frautschi, and H. Suura, Ann. Phys. 13,
37'9 (1961).
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q7~=4p, ~ q~2= 4M

I'rG. 7. Contribution to Imo~(q2) from 2x and 1'
intermediate states.

just the trace of Eq. (25)

(y,y, '-'l8(0)lo)

/m q'/'

(ppr)
dpx e'» *8(xp)&ps I Lu(Pr)r)(x), 8(0)1 I 0)

+ (m'/Pp'P p')r/'mpu(Pr)s(Pp), (38)

1 "ImG'(q")dq"
G'(q') =mp+- —

g
—Ze

(39)

and we could calculate the mass shift 5m=g'(0) —mp
=m —mo due to interactions. Finally, there is the
possibility that G'(q') ~0 as qs~po. Then we may
calculate the mass from'4

1 "ImG'(q")dq"
G'(q') =-

0 g
—

q
—Ze

where we have included the term arising from the equal
time commutator. " Here mo is the bare mass of the
electron.

Various alternatives suggest themselves with respect
to the issue of subtraction constants in the dispersion
relation for G'(q'). If, as is suggested by perturbation
theory, the integral in Eq. (38) implies only that
G(q')/q' —+ 0 as q' —+pe, then we must use a subtracted
relation and give up all hope of calculating the mass
G'(0) unless we can fix in advance the value G'(q') at
some other value of q'&0. It is also a possibility that
the integral has the property that as q' —+Do it vanishes.
Then we may write for G'(q') the representation

There is no contribution from the 2y intermediate state
since in this perturbation approximation &ltlpl8(0) I0&
=0, a consequence of the vanishing of the trace of the
photon stress tensor. So ImG'(q') depends only on the
Coulomb amplitude and in particular only on the J=0
channel. The high-energy behavior of ImG'(q') is a
direct consequence of the high-energy behavior of the
Coulomb amplitude. Of course, substitution of Img'(q')
given by Eq. (41) into either Eqs. (39) or (40) will lead
to a divergence in the quantity G'(0)=m. This is
simply another way of expressing the failure of quantum
electrodynamics to yield a 6nite self-energy of the
electron.

&pr I8(0) I pp) = (~'/Pp'Pp')'"~(Pt)~(P )GN(q') (42)

with q'= (Pt—Pp)s and GN(0)=M. Furthermore, we
assume that GN(q') has a representation

1 "ImGN (q")dq"
GN(q') =Mp+—

g
—

g
—ze

(43)

similar to Eq. (39) for the electron form factor. Here
ufo is the bare mass of the nucleon.

To calculate the absorptive part ImGN(q') we follow
a procedure completely similar to that for the electron.
Here to lowest order the contributing intermediate
states will be the 2m state with a threshold at q'=4p, '
with p the mass of pion and the Xg state with a
threshold at q'=4M'. We diagrammatically represent
this contribution to the absorption in Fig. 7. In this
approximation, we then obtain

B. Pion-Nucleon Interaction

As a final example we consider the pion-nucleon inter-
action in perturbation theory. We will assume the
validity of an expansion in the pion nucleon coupling

g N and will calculate the matrix elements of 8(x)
between one-nucleon states &yr I8(0) I pp), where pre= ps'
=M' and M is the mass of the nucleon. The general
form for this matrix element is as before

This dispersion relation could be interpreted as implying
all the mass arises as a consequence of interactions.

For our example of electrodynamics to compute
ImG'(q'), we simply have to take the linear combina-
tions of the ImgP(q') given by Eq. (34) according to
Eq. (6) with the result

Img'(q')
= —nC'(q') (2m'+ sr (2m' —q') 1nl (q' —4m')/X'$}

-+ —,'nm lnq' q' ~~ . (41)

"The trace operator is pl(x) =mpZpps(x)ps(x), where the re-
normalized Heisenberg 6elds obey the equal-time relation
)Ps(x'),&Ps(x)]+=yoZ2 'S'(x' —x) so that S(x,)[gs(x),e(0)g=m, v
&(Pz(x)54(x), which gives rise to the second term of Eq. (38).

'4 This can be obtained from Eq. (39) by setting ms =0. In the
case of electrodynamics only one parameter with the dimensions
of a mass appears and we may set m = 1 to deGne the scale. Then
Eq. {40)with g~ =0 is a sum rule.

gs w (qs)

GNN (qs)

(2s)'
(p s/~)r/2

ds1r d'1,
X Q 5'(Pr+ Pp

—lr —ls)
(2s.)' (2pr)P

X&ppl~(Pr)~(0) llrlp'+')&'+'l, l, l8(0) Io) ~

(2s-)'
(p 2/~)1/2

2

d'q& d'q2
X P 5'(Pr+ ps —qt —qs)

(2pr)' (2pr)P

(45)

(46)

X&p, l ~(p,)&(0) I qrq, t+&&&&+&~,qsl8(o) Io),

sp(pt)II(ps) ImgN(q2) —gsw(q2)+GNN(q2) (44)
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G(0) =2p'. Furthermore, we shall first assume G(s) has
the representation

"ImG(s')ds'
G(s) =2yp'+-

7/ p S $ Zt
(52)

1 " 5p(s')ds'
G(s) =2p, p exp-

el 4@2 S S
(55)

where p, p is the mass of the particle in the absence of all
interactions. The absorptive part ImG(s) appearing in
Eq. (52) may be obtained from the unitary condition
which implies

ImG (s) = —rs (2s-)4 (2Pps) r~s P (Pp
~

+{0)
~

yz&+&)

&&(""10(0)10)~'9--~ -~.), (53)

where J(x)= (HI+ p')p(x) and the sum is over a com-
plete set of intermediate states. Here (pp~ J(0) j

xi+') is
the amplitude for the process 2P —+ n, where e is any
allowed state.

In the approximation of elastic unitarity, we k.eep
only the 2g intermediate state. Then Eq. (53) yields
for the absorptive part

ImG (s) = p (s)G*(s)A p(s) 0(s—4p, '), (54)

A p(s) = e'pp&'l sinlp(s)/p(s),

where A p(s) is the S-wave 2p ~ 2p scattering amplitude
and 8p(s) the S-wave phase shift. Here p(s) = (s—4p, '/s)'~',
the phase shace of the intermediate state. Equation
(54) implies that for s)4p, ' that G(s) has the phase
bp(s). This information along with the assumed dis-
persion relation (52) then allows us to write the Omnes
representation" for G(s)

u I I I I I I I I I I It I I I I l I I I (s) e 0 sinS (s)
p(s)

FIG. 10. Contribution of Coulomb scattering to p~p/ypp.

equation similar to Eq. (56) for the ratio p"/+ps in
terms of the S-wave phase shift 8p'(s) for the process
2p' —+ 2p'. Then it follows from this equation and Eq.
(56) that the ratio p"/p, ' is given by

/2 1 ds—=exp — —[Bp (s) 8p(s)]
p m' s

(57)

To obtain Eq. (57) for the mass ratio p"/p, ' it is not
necessary to assume the representation Eq. (52) for
G(s) and a similar representation for G'(s). Instead one

may make the weaker assumption that J(s)=G'(s)/
G(s) ~ 1 as s~~ so that either G(s) or G'(s) may
diverge as s~~ in which case we can not write the
representation Eq. (52). If G(s) has no zeros then j(s)
is analytic except along the cuts of G(s) and G'(s).
Elastic unitarity implies the phase of J (s) along the cut
is just 5p'(s) —6p(s) so that the asymptotic behavior of
J(s) and the fact that J(0)=p,"/p' together imply
Eq. (57).

Let us identify Q' with a charged pion ~+ and P
with the uncharged x' and denote the x+ mass by p+
and that of the ~' by pp. Neglecting all but the Coulomb
interaction as a possible source for the pion electro-
magnetic mass difference the phase-shift difference,
&P+(s) —&p" (s)=4 "'(s) is just the S-wave Coulomb
phase shift (see Fig. 10). Then Eq. (57) implies

where we have assumed that Sp(s) -+0 as s-+po. In
particular Eq. (55) implies that in this approximation
of elastic unitarity

2 ds
exp — Bpo'"'(s)—- 2

Pp il 4p, ~ s
(58)

p2 1 ds—= exp — bp(s)—
Pp r 4&2 S

(56)

I I I I I I I I I I I I I IGNI I I II I

G(s)

FIG. 9. Application of elastic unitarity.

"R.Omnhs, Nuovo Cimento 8, 316 (1958).

so that the ratio y'/pp' is directly related to an integral
over the S-wave phase shift (see Fig. 9).

I,et us consider the existence of a second scalar field
p'(x) which has the mass p'. In the absence of inter-
actions we assume that its bare mass is pp the same as
that of the previous particle. If g(x) and p'(x) are not
identical then we may consider the problem of relating
their mass difference to differences in their interactions.
If we assume elastic unitarity, then we will have an

Because of the attractive nature of Coulomb forces
8p '"'(s))0 and hence we conclude that p+') pp' as is
observed.

The purpose of this example was to illustrate how
mass splittings are related to differences in the forces
in the rescattering amplitude. Similar considerations
can be expected to apply to the splittings among mem-
bers of SU(3) multiplets. In general, in the approxima-
tion of elastic unitarity the mass splittings of particles
may be so related to the S-wave phase shift. This phase
shift is not well known for strongly interacting systems
since it contains information about the core of the
particles. In calculating mass splitting among members
of a multiplet one need know only the difference of the
S-wave phase shifts, and to a first approximation the
effects of a common core do not enter. Here one would
have to assume that in the high-energy limit the dif-
ference hap(s) of the S-wave phase shifts would vanish.
The major feature of the present approach is that it
enables one to relate mass shifts to experimental
observables.
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FIG. 11.Tadpole contribution to the absorption lmGP(s).

As a final example we consider the mass splittings
among the members of the baryon and pseudoscalar
octets. For each of the eight members of the baryon
octet we define a form factor GP (s) so that G,a(0) =M;,
the masses of the baryons and similarly for the eight
pseudoscalar mesons we have the form factors G;~(s)
with G;~(0)=2p,s. Then unitarity implies in the ap-
proximation of keeping only the BB and M3f inter-
mediate states

&mG. ($)=E I:p ($)Gs*'($)~s" ($)

p sr($)G'a'M($)g MB ($)$"
(59)

& G' ()=EL '(%*'()~ ~ "()
+p.sr(s)G.asr(s)g JPsr(s

where A;;(s) are the 5-wave scattering amplitudes for
BB—+BB, MM —+BB,BB—+M3f, M3f —+M3I and
they have the property A;P~= (A,;~a)r as follows
from time-reversal invariance of the strong interactions
and p(s) is the phase space of the intermediate state.
We also assume the existence of convergent dispersion
relations

1 ImGP (s')ds'
GP (s) =Mo+—

s —s—le

1 ~G M (s')ds'
G.M($) 2p s+

s —s—zt.

(60)

Once the A;;(s) are specified, Eqs. (60) and (S9) con-
stitute a set of coupled linear integral equations which
can be solved for the G, (s) by standard methods. 'r"
From the solutions we may obtain the mass splittings
G;(0)—G;(0) which do not depend on Mo or po. We
do not engage in any such calculation here but rather
examine how some of the models of octet enhancement"
may be incorporated into this method.

The S-wave scattering amplitudes 2;;(s) will in
general transform like all the irreducible representations
contained in the product SQxS and these transformation
properties are then reQected in the mass splittings.
Various mechanisms have been proposed that would

"J.D. Bjorken, Phys. Rev. Letters 4, 473 (1960).
' N. I. Muskhelishvili, Simgular Iritegral Eqlatiorls (P. Noord-

hoff, I,td. , Groningen, The Netherlands, 1953)."R.F. Dashen, S. Frautschi, M. Gell-Mann, and Y. Hara, in
The Eightfold 8"ay, edited by M. Gell-Mann and Y. Ne'eman
(W. A. Benjamin Inc. , New York, 1964).

imply the dominance of the S dimensional representa-
tion in the product SQxS.' ' One of the simplest is the
tadpole mechanism' which assumes the existence of a
0+ octet of scalar mesons. If we write our matrix ampli-
tude in the form A(s)=E(s)D '(s), then the tadpole
hypothesis asserts that D(s) will have its zeros at the
masses of the tadpoles. The contribution of the tad-
poles to the absorptive part is shown in Fig. 1j.. The
absorption will be very large in the neighborhood of
energies close to the tadpole mass. Approximating the
scattering amplitude with the dominant pole terms, the
solutions to our integral equations will then have the
characteristic octet transformation properties. Unfor-
tunately there is little experimental evidence for the
0+ octet.

A likely candidate for the octet enhancement mecha-
nism is provided by the recently discovered nonet of 2+
rnesons. Assuming that the Q=O, I"=0 members of
the nonet couple universally to the gravitational field

g, s(x) and a pole dominance model, then the matrix
elements of the full stress tensor, which transforms like
2+, and in particular the space integral of 8s, s(x) which
gives the Hamiltonian, would have the desired octet
transformation properties.

Another suggestion to account for octet dominance
has been that of spontaneous breakdown of SU(3)
symmetry. ""Here we note that the amplitudes 2;;(s)
depend on the baryon and meson masses and coupling
constants in some complicated way which could pre-
sumably be calculated using some model for the strong
interactions. Then there may be two solutions to Eqs.
(59) and (60), one corresponding to the symmetric
solution, the other a nondegenerate solution corre-
sponding to the observed splittings.

V. CONCLUSION AND SUMMARY

By emphasizing the analogy between charge and mass
as sources of fields we see how it is possible to de6ne
mechanical form factors G;(q') in analogy with the
electromagnetic form factors F;(q'). By exploiting the
analytic properties of the G;(q'), the contributions to
the total mass may be related to dispersion integrals
over on the mass shell scattering amplitudes. In this
way, for example, the self-mass divergence of the elec-
tron is directly related to the high-energy behavior of
the Coulomb amplitude. Furthermore, the magnitude
and sign of dynamical contributions to the mass can be
seen as consequences of the forces in the rescattering
amplitude. In the following paper'4 we shall use these
ideas and techniques to suggest a simple picture of the
origin of the proton-neutron mass difference.

~ Y. Ne'eman, Phys. Rev. 134, 31355 (1964)."R. E. Cutkosky and P. Tarjanne, Phys. Rev. 132, 1354 (1963)."R.Dashen and S. Frautschi, Phys. Rev. 137, 81331 (1965).
~ S. L. Glashow, Phys. Rev. 130, 2132 (1963).
~ H. Pagels, following paper, Phys. Rev. 144, 1261 (1966).


