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We express the Smatrix of complex angular momentum and positive energy by Regge poles, proving that a
knowledge of the Regge poles enables one to determine the S matrix uniquely. The background integral in the
Mandelstam-Sommerfeld-Watson transform cannot be made to vanish by closing the contour to the left.
Furthermore, one cannot express the scattering amplitude by an in6nite-series sum of Regge-pole terms
where each term is given by the Khuri representation.

I. REPRESENTATION OF Sg, ,s) BY
REGGE POLES

I~INK of the most important questions in the theory
of complex angular momentum is whether the

scattering amplitude 3 (s,t) is determined if the location
of all Regge poles and the residue functions are given.
This may point to a new way of constructing the
S matrix.

We give here a representation of the S matrix of
complex angular momentum by the Regge poles,
proving that the scattering amplitude is uniquely deter-
mined once the Regge poles are given.

The unitary condition is

S(X,s)s*(X*,s) = 1, s&0,

where S(X„s) is the S matrix of complex angular mo-
mentum /='A ——,. This implies that if )„ is a pole of

S(k,s), then X„* is a zero of SP.,s). Furthermore, for
positive energy, S(X,s) takes the asymptotic form'

We may integrate (5) from an arbitrary point X, to X,
obtaining

S(X,s) X—X„"(s) X,—'A„(s))
ln =i~() -) .)yP ln

S()„s) ),—X„*(s) X—X„(s))

or
/X —X„*(s) X,—X (s))

S(X,s)=s(X„s)e' &" ~ 'g
~ ~

. (6)
- 4) .—) „*(s) )~—) .(s) )

Equation (6) requires, in addition to X„(s), one sub-
traction constant S(X,s), for the representation of the
S matrix. We may take X, to be a large positive real
number, and make use of (1) to obtain

X—X„*(s)R—X„(s))
S(X,s)=lim e' t" "&g ~. (7)—X„*(s) X—X„(s)/

S(z,s)
IXI ~co ~2j) 7r

Dining

—sr/2 &arg'A &sr/2,

sr/2 (argX(3sr/2.

then
0,

From (3), we obtain

—sr/2& argX& sr/2,

sr/2 (arg) (3sr/2.

1 T(Vs) dV

2i~ ,

T()E,S)= LBS(h,s)/l9XjS(X, S),

Equation (7) shows that S(X,s) can be constructed once
all ) „(s) are known. s

We may pause to consider how (5) can be consistent
with (3). When ~X~

—+~, we may neglect any finite
number of terms in the surrnnation of (5), since they
contribute only to the order 1/X. Therefore, we may
start with e large enough for the asymptotic form of

(3) X„(s) to be valid.
Take the potential

V(r) = Vp

where c is a circle with its center at the origin and with
infinite radius. If S(X,s), considered as a function of X,

has poles at X (s) and zeros at X„*(s), then (2) shows
that T(X,s) has poles at X„(s) with residue —1 and poles
at X„*(s)with residue 1. Computing the left side of (4)
by the Cauchy residue theorem, we get

then for the poles in the upper half-plane their asymp-
totic forms are given by'

X„(s) ln(2X„(s)e '/ke) =nsri,

and for those in the lower half-plane, they are given by

X „(s) ln(2) „(s)e' '/keg= nsri—
T(X,s) = isr+Q

X—X *(s) X—X„(s)

*Work supported in part by the U. S. Air Force Qflice of
Scientific Research, under Contract No. AF 49(638)589.

H. Cheng and T. T. Wu, preceding paper, Phys. 144, 1232
(1966).

' lt is trivial to generalize (7) for the case when s is complex.
Instead of (1), we make use of

S(h,s): 1+SB(Xs), —s./2 ~&argX &~n./2,
~/2 &arg7, &3~/2,

with Sg(X,s), the Born approximation, which is not small.
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The sum in (5), for large
~ X~, can be approximated by

1 1 1 1
dy +

X—X*(y,s) X—X*(—y, s) X—P, (y, s) X—X(—y~, s)
(10)

where X(y,s) and X(—y, s) satisfy (8) and (9), respectively, with n replaced by y, a continuous variable. For the
first term in (10), we change the independent variable to X*(y,s) = is, and similarly for the other terms, obtaining,
after neglecting terms of order 1/X,

—Z
'A —X *(s) X—X (s)

1

KX—ix ) +ix)

—ix, Reh&0,

ix, Reh(0,

which together with (5), given (3). result, their expression is similar to (6), but requires
Equation (7) may be a little clumsy to use. We may two subtractions.

obtain another representation for S(X,s) by noticing that Equation (13) may be written in more familiar form.
The incomplete gamma function is defined as

SP,,s)—1=0(e "&&''/QX), Reh ~m,
with r(a, x) = e 't 'dt.

cosh/(s) = 1+y'/2s,

p being the lowest mass in the Yukawa potentials. Thus Then (13) can be expressed by r(0,x):

1nS(X,s) =O(e "&"/QX), Re)t ~~ . lnS(X, s) =P Lr(0, $(s)X—$(s)X„(s))

Consequently, we have

27ri

e'~" 1nS(X',s)
=0, (12) IL A FORMULA SATISFIED BY S(X,s)

where c is a circle with infinite radius. Now inS(X, s) is
an analytic function of X, with branch points at the
zeros P, *(s) and the poles X„(s) of S(X,s). The branch
cuts are chosen to lie from —~ to those branch points.
Then we may evaluate the left side of (12) to obtain

The representations for S(X,s) given previously were
obtained with the aid of the unitarity condition. It is
not known if one can obtain a representation of the
Mittag-Lefner type for S(X,s), based on the rneromorphy
of S(X,s) and the asymptotic form (1).Nevertheless, we
may make use of the mirror property

1nSP„s)=e "&'& P
e) '$(8) S(N, s) =S( is, s), e—=0, 1, 2,

(13)
to obtain a formula satisfied by S(X,s). We have

(15)

In (13), if X lies on any of the contours, we may add or
subtract an infinitesimal quantity to it to take it off the
path. This is because adding 2vri to 1nS(X,s) does not
change the value for S(X,s). Equation (13) again enables
one to construct S(X,s) once all X„(s) are given. Now,
the contribution of a Regge pole X„(s) to S(X,s) can be
crudely estimated to be proportional to e&') ~'~"(', thus
the contributions of Regge poles in the left-hand plane
are cut off rapidly. Furthermore, (13) automatically
incorporates the asymptotic behavior for Reh —+~ and
the threshold behavior for s —+ 0. Therefore, (13) may
be convenient to use for practical purposes.

A representation for S(X,s) in infinite product form
was obtained by Desai and Newton. ' They did not have
the asymptotic form (1) and had to make a guess. As a

VS(V,s)e-"""

2m i „sinX'~(Vs —X')
dX'=0, (16)

where c is an infinite circle as before. Applying the
Cauchy residue theorem to evaluate the left side of (16),
and making use of (15), we have

S() s)e
—ized S( ) s)ea 7r

X„(s) sinker r (s)e '"" "i

where r„(s)=ResS(X,s) ~»„t,&. Equation (17) relates
S(X,s) to S(—X, s) by a sum of Regge pole terms.

4 A. Bottino, A. M. Longoni, and T. Regge, Nuovo Cimento 23,'3. P. Desai and R. G. Newton, Phys. Rev. 129, 1445 (1963). 954 (1962).
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%e also know that4

g(y s)e
—tx~ g( ), s)e&w

f(Xke ' )f(—)t, ke "")

Combining (17) and (18), we get

f(X,ke ' )f(—X, ke ' )

1 sinXsr r„(s)e ~"t' X (s)
(19)

2k sin), „(s)sr ),„'(s)—Xs )

III. CONSEQUENCES ON THE SCATTERING
AMPLITUDE A(s, t)

With the asymptotic form (1), it is trivial to show

that the background term in the Mandelstam-Watson-
Sommerfeld transform equation' cannot be made to
vanish by closing the contour to the left. The infinite-

series sum of Regge-pole terms, with each term given

by the Khuri representation, ' is not convergent.

& 8. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962).
' N. N. Khuri, Phys. Rev. 130, 429 (1963).
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The implications of off-shell unitarity on the structure of the off-shell, nonrelativistic, two-particle part' 1-

amp"«des are investigated. It is found that the unitarity conditions a]ong with time revers

variance i~ply certain useful factorization properties of the oB-shell amp»tudes

' 'T has been established in two quite distinct ways
- ~ that in potential scattering the oR-shell,

particle partial-wave amplitudes exhibit certain fac-

torization properties with respect to the oR-shell

momenta. ' ' The possible usefulness of these features

in constructing approximations in three-body problems

has also been suggested. ' ' '
Both existing treatments' of this problem have a

common defect in that the factorization appears to

emerge in a somewhat accidental manner. Moreover,

both derivations are couched firmly in the language

*This work was supported, in part, by the U. S. Atomic Energy
Commission.

' H. P. Noyes, Phys. Rev. Letters 15, 538 (1965).
' K.L. Kowalski and D. Feldman, J.Math. Phys. 4, 507 (1963);

K. L. Kowalski, Phys. Rev. Letters 15, 798, 908 (1965).
'lt has been pointed out (Ref. 4) that great care must be

exercised when employing approximate o6-shell amplitudes in
I"addeev-type three-body calculations. The crucial requirement is
that these amplitudes satisfy the unitary condition in the un-
physical region as well as in the physical region. The (separable)
approximations considered in Refs. 1 and 2 satisfy only physical
unitarity; the further application of unphysical unitarity leads
to restrictions on the analytic properties of the (approximate)
quantities (in Refs. 1 and 2) which correspond to the functions
F and R in the present article.

4 J. L. Basdevant (private communication). See also J. L.
Basdevant and R. E. Kreps, Phys. Rev. {tobe published).

~ The factorization properties were exploited in an impulse
approximation calculation of nucleon-deuteron scattering. See
K. L. Kowalski and D. Feldman, Phys. Rev. 130, 276 (1963).

and formalism of potential scattering theory and thus
the Possible generality of these results is obscured "

In the present note we will show that the factorization
properties of the complete oR-shell partial-wave ampli-
tudes follow from oR-shell unitarity8 and time-reversal
invariance, while the factorization of the half-off-shell
amplitude follows from slightly weaker conditions. This
analysis constitutes something analogous to the phase-
shift parametrization which follows from on-shell
unitarity and has the mutual advantage that no
reference to potentials, wave functions, or (dynamical)
integral equations is necessary.

Let us introduce a partial-wave decomposition of the
matrix elements of the transition operator in the c.m.
system"

(It'I l
I I)= (1/'4 ) &t (2t+ 1)t.t(P', P)Pt(cost)),

6 +le have in mind here the extension to the relativistic problem.
See Ref. 7 and the works cited therein.

~ P. A. Alessandrini and R. L. Omnes, Phys. Rev. 139, 8167
(1965).

8 The 6rst clear formulation of oB-shell unitarity appears to
have been given by Lovelace (Ref. 9). See also Ref. 7.' C. Lovelace, in Lectures ut the 163 EdirIburgh Summer School,
edited by R. G. Moorhouse (Oliver and Boyd, London, 1964);
Phys. Rev. 135, B1225 (1964).I In the entirety of this paper we will be concerned only with
the scattering of two massive, spinless, nonrelativistic particles.
The extension to more complicated nonrelativistic two-particle
scattering problems, for example particles with spin, is, for the
most part, primarily a matter of introducing an appropriate
matrix notation. %'e presuppose translational, Galilean, and
rota, tional invariance and we use units (2 / ts)=h1, where ts is the
reduced two-particle mass.


