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Asymptotic Form of the 8 Matrix for Large Angular Momentum in the Left Half-Plane
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Starting with the Schrodinger equation, we prove that for all energies, 5 (X,s) approaches e'*'"~ as ~X
~

be-
comes large in the direction —',~&argX &$7r, for a class of potentials. These include the square-well potential,
the cut-oB Coulomb potential, a single Yukawa potential, and a superposition of Yukawa potentials of the
form J~"(e &'"/r) e &' dp'. The asymptotic forms of the Regge-pole parameters a and P„are derived. We
found that argP „approaches &m or $7f. as n ~~, and p„ is proportional to 1+e' ' ~, which grows expo-
nentially for the Regge poles in the lower half plane. The asymptotic forms for the Jost functions and
the F function are also given. A general proof for the asymptotic formula S(X,s) -+e"'" as ~X(-+~,
2m &argX&$7i. , is also outlined.

I. INTRODUCTION Since we have

Hing(Z)=(J i(Z) —e "~'Ji(Z)j/(i sinks. ), (4)

Hqi'l(Z)=Pe" 'Ji(Z) —J i(Z)]/(i sin)vr), (5)

J i(Z)/(i sinX7r), ——,'x (argX(-', m.

—e " 'Ji(Z)/(i sink~), sr~(argX(-,sa-

—J' i(Z)/(i sin)ts), —isa. (argX(-', a.

e" 'Ji(Z)/(i sinks), —',s.(arg)%. (sss.

' '0 answer several crucial questions in the theory of
complex angular momentum, it is necessary to

know the asymptotic form of SP,,s), the S ma, trix of
complex angular momentum l=X——,', as ~X~

—+oo in the
we get, as )I. ~oo,

direction —,'m(argX(~x. These questions include the
distribution of Regge poles in the left hand X plane, the
representation of the S matrix by the Regge-pole H), &" (Z) ~
parameters, and the possibility of eliminating the con-
tour integral in the Sommerfeld-Watson transform. The and
first question is studied in this paper, while the answer
to the latter two questions is presented elsewhere. ' Hi, &'& (Z) —+

II. CUTOFF POTENTIALS

We start by considering a simple example, the square-
well-potential case, which offers the suggestion that

S(z,s) —+ e"' ~)
~

—+~, -', s (arg) (-,'s. , (1)

where S(X,s) is the S matrix of complex angular mo-
mentum /=) —-', .

For the square-well potential

V(r)=Vo, r(a
=0, r&a

we have

We then easily obtain (1) for all k.
We note that this asymptotic form of S(k,s) is inde-

pendent of Vo, a, and s.
The same asymptotic form for S(),s) is obtained for

cut-off Coulomb potentials. The proof is similar and
will not be repeated. In fact, if we take any potential
which has the power series expansion g„ i a„r"at the
origin so that the wave function is meromorphic for all
1, and have the potential cutoR at r=a, one can prove
that (1) always follow trivially from (3), (4), and (5).

III. POTENTIAL OF YUKAWA TYPE

The radial Schrodinger equation readsr)Hit'& (ka) Jg'(rfa) —kJg(r)a)Hgi'&'(ka)
S()~,s) =— (2)

riHqoi(ka) Ji'(ria) —kJi(ria)Hanoi'(ka) f (3+1)—V(r) %(k,l,r)=0,
d—+k'—
dr'

(6)
r2where r) = (k' —Vs)'~s and Jq'(xs) = (d/Ch) Ji(x) ~, „,

etc. As
~

X
~

~~ with Z fixed, we have

(-', Z)'
Jg(Z) ~ (-', Z)" 1— +

1 (7)4 (k,f,r) -+ r'+' r ~ 0.

where rV (r) has power series expansion at the origin.
The wave function%'(k, l,r) is defined by the boundary

I'(1+),) . (3) condition
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We note that for Ref( —rs, (7) is insufficient to de-
termine a unique solution for (6). Instead we have to
analytically continue the solution from the right half
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plane. To avoid this diKculty we de6ne

Z= lnr,

y(k, i,Z) =r- ~2+(k, t,r);
then we have

d2
+k'e' 'A' e—2 V—(e, ) y(kl Z)=0

dZ
(9)

where X=i+22. From (7) the boundary condition for
g(k, l,z) is

P(k, l,z) ~ e"s ReZ —& —oe, (10)

which strongly resembles the scattering problem of the
one-dimensional Schrodinger equation, with P playing
the role of ik. If we take a path such that

Re(XZ) &O

as Rez~ —oe, then (10) is a well defmed boundary
condition since ~e" ~&&(e "

~

in this limit. The WKB
method developed for the high-energy scattering prob-
lem of the one-dimensional Schrodinger equation' can
almost be directly applied.

metric equation with parameters u and c.' This particu-
lar solution is chosen since'

@(a,c,x) —+ x—, ~x(~ee, ——222r(argx(-222r,

and as a result, (14) is consistent with the boundary
condition (10).We note at this point that' %(a,c,x) has
a branch point at x=O.

To get the S matrix, one has to obtain the solution at
~r

~

= N), and in terms of Z, at Z= ~. To continue the
WEB solution from ReZ= —~ to Z= ~, we have to
take a path which stays on the correct sheet. Let us 6rst
consider ~~~&argX(m. Then in the shaded region of the
figure, arg(XZ)&0, ReZ(0, and g(k, l,z) can be ap-
proximated by

y(k, l,z) =y+(k, l,z),
which satisfies the boundary condition (10). Since we
are not allowed to pass through the branch cut, to get to
Z= ~ we have to pass the imaginary axis somewhere
between i2r and ix..We hav—e to match (14) and (15) at
Z=i2r. Now, from (14) and the asymptotic form for
+(a,~,x) when argx&-'22r, we obtain, when Z is in the
right half plane

A. Suyerposition of Yukavra Potentials

We erst take the potential
y(k, t,z) ~ e"~—(2ri Voe&/X)e2 '"e "s, -

and hence

(16)

"e ~"
V (r) = Voe)' e )' dp = Vo

(+1)
Then we have

+kst, ss—X2—Vo @(k)l)Z)=0
dZ (es+1)

As
~

X
~

—+~, the WKB solutions

Q~(k, l,z)

y(k, l,z) = aiy+(k, t,z)+as& (k,l,z),
where ai and as can be determined from (16) and (12).
We may observe, however, that when P„))Voe"/li2, the
potential can always be neglected and P~ are simply the

(11) WKB approximation for J'~i(kr). Thus we conclude
that

r 'I'P(k, l,r) —+ (—'k) "r(1+X)Jy(kr)
—2riVoe)'e2~'"(-'k)9, 'r(1—X)J q(kr). (1'7)

Z

fy2 k2&2t+ V s se)st/(e)+ 1))1/2d(—=exp
0

[P' k'e' +Voe "' e /—(e +1)J" (12)

hold, excluding the neighborhoods of Z„=(2n+1) i2r,

m=O, ~1, ~2, ~, where the potential has a pole, and
the turning points. Near Z, we have

From the asymptotic form for J~q(z) as ~z~~oe, and
the definition of the Jost function f(t,k)

P(k)l,r)-+ (2ik) '[f(t)k)e'2' f(l)ke ~')—e '2"j) r~~ )

we get, as
~

I
~

—+oo, —2,2r&argl&-222r,

f(l,k)~2r(1+X)(-'k) '2r 'e &' '

+2~'~ Voe~e -9; (-'k) +'r(1 ~)e~'- (1S)

dZ

Vpe"
y(k, i,z) =o,

f(l ke ~') &2r(1+X—)('k) 'vr "se&-' '

22r'&2 Voe)'—e'~'9 '(-'k) '+'I'(—1 ),)e & * '—(19)'

where P„=Z—Z„. We may solve (13) to obtain

Voe~

2X
(14)

where %(a,c,x) is a solution of the confluent hypergeo-

' T. T. Wu (to be published).

S(X,s) =f(l,k)e"~/f(l, ke ~') ~
1+&t)2)))i V t)s(ik)sxr2( ) ) ~ ~2)) ix (20)

1+', Voe~( ,'k)2"r-s( y)-—
'Bateman Manuscript Project, Higher Transcendental Func-

Hons, edited by A. Erdelyi (McGraw-Hill Book Company, Inc. ,
New York, 1953), Vol. 1, Eqs. 6.5(2), 6.13.1(1),and 6.7.1(13).
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S(X,s) ~ 1+-,' Vpe~(-', k)'"r'( —X)

1y-'e-"i"Vpe~(-'k)oxl'o (
~ co+A (21)

valid for lXl~op, 7r(argX(ocr, and for all s.
The P function, dered by

The last step of (20) is justifmd as long as the term 1
both in the numerator and in the denominator can be
neglected. This is true as long as

l

'A
l

—+~ in the direction
—', x —e &argX&sr and for all O'. It should be noticed that
e can be arbitrarily small but cannot be zero. In fact,
we shall show in Sec. IV that there are infinitely many
Regge poles in the direction arg'A= —',x and arg) = ~x.

We may repeat the same argument and obtain

)I
5 7T/j

37K &I
(

(
I

(

)-5' i

z plane

FIG. 1. Position of
the poles of the
potential and the
branch cuts of the
solution.

y'() $) /sxeiwx
S(x,s) =

V (y s)+.$'lLe—krx

takes the asymptotic form, as lXl~oo

22K+1

or

1 tt' —&'l 2e7ri
ez =——ln

4 Vo)

We plot the curves

m=0, +i, +2,

V(X,s) —+ e '"e ~ —,'z. (argX(z. , (22)
Vol'( —X)

22k+I

~ g7I 'bhe —Jll

Vpl'o (—X)
z (argX(-oz . (23)

We note that the right-hand sides of (22) and (23) are
independent of s.

The potential has no poles and the WEB solutions are
valid everywhere excluding the neighborhood of turning
points. This problem can be treated in a way similar to
the case of the one-dimensional Gaussian potential. '
There are two sets of turning points. The first set occurs
at

$2g2Z ~ ),2 )

with Vot. &' e~ small. For example, when k&0 and X in
the left-hand plane, they are

ez X

B. Single Yukawa Potential

Next, we take the potential

()= o( ""/),
then in place of (11), we have

d2
+k'e'z —X'—V e P' e P(k i Z) =0. (24)

dZ

1 t' X'~ 23~i
ez ln

p k Voi p

in Fig. 2. The turning points correspond to 3= m at these
curves.

Near the turning point Z„, we have

d2

+V lnPP)g. y(k, l,Z) =0,
d( o

(25)

z plane

where $„=Z—Z„. Solving (25) we get

P(k l Z)= $ ~
Hippo~ (—(X ink ) ~ $o I e )(2'6)

Equation (26) satisfies (25) as well as the boundary
condition (10).We shall first concentrate on the region
—,'x(argX(m-. Then in the shaded region of Fig. 2,
p+(k, l,Z) is a good approximation to the wave function.
To continue this solution to the region Z= ~, we pass
by the turning points where the WEB solutions fail,
and we should match (26) with the WEB solutions at

These turning points have nothing to do with the
potential. They exist even when V(r) =0 and matching
Q+(k, l,Z) at those points gives us the known asymptotic
form for J+(kr) a,t large r. The other set of turning
points is at

9+V,e—~"ez=0 FIG, 2. Position of the turning points for single Yukawa potential.
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each of the turning points. We shall only do this at the
turning point which gives the largest correction, the
others being smaller as

~
X

~

—e ~.This occurs at the point
Zp where the tangent to the curve is parallel to the line
arg Z= 22tr —argX, since

~

e"z~ takes the largest value at
this point of the curve. We have

t1
Ztt=ln( —ln j X2/V/I[ )+z(argX —tr) .

Ep

Now, as p-+at1, (26) gives

@(k,l,Z) ~ exp/ —i-', (X lnz2)'/'P/'j

+i expt i2 (X' ink')'/'t'" 1. (27)

a,symptotlc form

ln(22rk 'e 'e '*'
) lnin/2

n„-+ ttvri(inn)
—' 1— +

lnm

+0~ ~, as 22 —+ +~, (31)
(
E(lnt2) 2)

and

lne

+0~ ~, as n ~+, (32)
42

k(in~) )

ln(22rl'2 'e e~t) ln lntt
ResS(lb, ,s) ~q 1, ~ (2 lnl) ' 1— +

lne

We obtain

y(k, l,Z) =y+(k, t,Z)+i
ZQ

Xexp 2
0

(X'+ V2e &"e' Pe"—) /2dt—

and in the lower half-plane, take the asymptotic form

1n(22rk 'e—'e"~/') ln 1nt2
n„+ ——Ntri(ln/2)

—' 1—
l

where

(P t Z) P 2+ V ~ pezrz— $2~2z)—1/4

Xy (a,t,Z), (2S)

and

+O~ ~, ~~~ (33)
/'

k(inn. )2)

ln(22rk 't:24~/2)

ResS(l1,s) ~1, &,
„-+e2~'~ (2 lnl) ' 1—

lne
Xexp (y2+ V &

—
brett, t $2~2t)I/2dt

0

Again, et'~(t/t, l,Z) may be regarded as J~z(kr), and,
estimating

ZQ

ln lnt2 ( 1
+O~ (, ~~ (34)

1n/2 k(lnt2)2)

which blows up exponentially as g —+~.
We also see that as m —&~

()12+V e—Pe t, t $2~2t)1/2dt l Z

we obtain, for ~l~
—e~

+i (argX —~),
argn„—+ ~m, upper half-plane,

—+ ~m, lower half-plane.

f(l /l) —+2tr "'(-'k) 'I'(1+),)e '~'/'+27r '/'( —0)'+'

X I'(1—X) (ln
~

X
~

)2"e241 "g"e 24~1/' (29)

f(l lte ~') +2tr '/'( —'t/t) —'I'—(1+X)e'~'/' —22r '/'(-'tt)'+'

)(p(1 g) (1 i
l

~ ) X 'X gX —5 'ee / (30)

valid for —',m. (argl (x and all k. Similar expression can be
obtained for m (argl(~z.

The S matrix again approaches

S(y ~) ~ X 424ee

valid for -', m(argX(-,'m, and for all s, as can be easily
obtained from (30).

IV. THE ASYMPTOTIC BEHAVIOR FOR
THE REGGE-POLE PARAMETERS

The Jost function differs slightly in each separate
case, as we have seen. However, the qualitative features
of the Regge pole parameters are the same in all cases.
We shall therefore base our discussion on (20) and (21).

The Regge poles in the upper half-plane take the

V. SUMMARY

We have succeeded in establishing Eq. (1) for two
potentials of Yukawa type. Although our calculation
may appear involved, it is actually rather simple. For
the purpose of clarification we shall reiterate the few

key arguments by applying them to a general potential
of Yukawa type.

Let us consider a potential of the form

CO
g
—

lit, f'

p(p')dp'.

There are two possibilities: (1) p(hatt) vanishes faster than
any exponential function e t'~ as /4

—+~; then r V(r) has
no singularity in the entire r plane. (2) p(/4) vanishes no
faster than e-t" for some a; then rV(r) has singularities
in the complex r plane.

In the erst case, r2V(r) is not bounded as r ~00;
otherwise, the entire function r2V (r) will be a constant.
Therefore, turning points, given by r2 V (r) =—X2, can be
found. There may be many turning points. Let rp be
one of these points, and Zp=lnrp.
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with

1 /'

exp~ ~
v'p(z)

2

p(t)dt i, (36)

P (Z) P2+ esz P'(ez) ksesz jl/2

The solution P~ continues to be a good approximation in
the region Re(liZ)&0, until a turning point Zs is
encountered. In the neighborhood of Zs, Eq. (9) is
approximated by

Ld'ldP+~G4 =o, (3'1)

where )=Z—Zs, and

~= —(d/~Z) I:e"I'(e') 3 I z=z, .
Equatjon (32), just like Eq. (25) can be solved to give

y —gl/2gf (sgl/2(s/2e —iw) (38)

which satisfies (35) in the limit $ ~ee, and we obtain an
equation similar to (28):

+st zop (39)

If there are many turning points, we should match the
solution at each turning point. As a first approximation,
however, we only need to do so at the turning point
which gives the maximum contribution. From (39), this
turning point occurs at the point Re(XZs) is maximum,
while satisfying Re(XZp) &0.

Afterwards, P~ can be replaced by (sik)+"I'(1~X)
XJ~&, (kr), and we obtain

(-,'k)-&I (1+X)J,(kr)
+se" 0(-',k)"I'(1—X)J x(kr). (40)

If ~Zp~&(~X[, as I) )~en, then (40) shows that P is
essentially proportional to J x(kr) in the region kr))

~

X
~

.
Therefore the asymptotic form (1) holds. The single
Vukawa potential belongs to this case.

In the second case, V(r) has singularities in the
complex r plane, and the WKB solution fails in the

As before, we shall consider the Schrodinger equation
in the form (9), with the boundary condition

(35)

as ~Z~~~, in the direction Re(XZ)&0.
When

~

X ~~ee, the WEB solution g+, satisfying (35),
is a good approximation, where

neighborhood of these points. We may match the
solution at each singular point. However, as in the first
case, we only need to do so at the singular point which
gives the maximum contribution. If the singularity is a
simple pole, it is identical to the case presented in
Sec. IIIA, and (1) is verified. If the singularity is a
double pole, the differential equation in the neighbor-
hood of the singularity Zp takes the form

8—X'——&=0

where P= Z —Ze. Equation (41) can be solved to give

4 = P/ &&i/4+.&'"( s/ 5—)

As )~+De, (42) is matched by

y =y+ 2/',e"zo —cos(~(-,'+//)'/')y

(42)

(43)

and (1) is again obtained.
The asymptotic form (1) is therefore rather general.

It is essentially due to the fact that J~x(kr) is related to
r+" by a gamma function, which goes faster than
exponentially as ~X~~ . However, Eq. (1) may fail to
hold in a few exceptional cases. One such case is given
elsewhere. ' Another example is provided by (44); if

~(-'+e)'/s= (m+-,')z, /s=0, a1, a2,
then the second term in the right side of (44) vanishes,
instead of being the dominant term. It may happen that
the coefficient of J x(kr) vanishes exactly for some
potential; in this case (1) would fail. This phenomenon
is related to the reQectionless potential: if for some
potential no scattering occurs, then SP,,k) = 1 for all X.
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As before, p~ can be replaced by (sk)+"I'(1&X)J+x (k/'),
thus

y= (-,'k)—"r(1+X)Jx(kr) —2ie" o

Xcos(7r(is+a)'/')I'(1 —X)(sk)iJ y(kr) (44)


