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The problem of oB-shell pion-nucleon scattering is investigated under the assumption that the self-support-
ing dynamical system made up of the nucleon and $*(1238) continues to exist when one of the pions is
virtual. Partial-wave amplitudes satisfying oG-shell elastic unitarity are constructed from the oft-shell
Pets sts nucleon exchange and Pq~s, its N*(1238) exchange Born terms, although ambiguities arise in handling
the high-energy behavior of the amplitudes. The reciprocal bootstrap requirement then leads to explicit
expressions for the oB-shell pionic form factors of the 7l-ES and 2i-XE* vertexes.

(i) While absorption effects have been found to be
of major importance in explaining the failures of the
unmodified OPK model, the possibility of significant off-
shell corrections or form factors is not excluded. One
may now argue, in fact, that the new respectability
given to the OPE model by the success of absorption
effects makes it highly desirable that quantitative pre-
dictions of off-shell corrections be found and incorpo-
rated into the model.

(ii) An appealing variation, motivated by its success
in the on-shell pion-nucleon problem, of the approach
developed by Ferrari and Selleri' who made off-shell
modifications of the one-dimensional dispersion relation
solution of the pion-nucleon problem, lies in the use of
partial-wave dispersion relations implicitly based on the
assumed existence of a Mandelstam representation for
off-shell scattering. This variation is exploited here in a
way that resembles that of Ferrari and Selleri.

(iii) The success of certain kinds of bootstrap cal-
culations" suggests a systematic program for predicting
off-shell effects. The idea will be illustrated in this paper
by considering the case of double-pion production on
the basis of the Drell model, " and isolating the pion-
nucleon elastic-scattering part of the appropriate Drell
diagram.

Since the higher order corrections to the pion propa-
gator and the px+x vertex exactly cancel, " the effect
of the off-shell nature of the pion is entirely contained
in treating the pion-nucleon problem with one pion
off-she(l. The particular bootstrap in mind is that which
exists between E, the nucleon, and X*(1238).Here we
appeal to the fact that the existence of one particle in a
channel seems to provide the principal dynamics for
explaining the existence of the other particle in a crossed
channel. We conjecture that this reciprocal relationship
is maintained even when a pion goes off-shell. When the
principal dynamics in a particular channel are identified,
it is a systematic task to determine the consequences of
off-shell modifications which are essentially kinematical.
Thus, the P3/g, 3/2 pion-nucleon scattering amplitude will
depend in a dednite way on the mass of the off-shell pion
when the kinematics of the nucleon-exchange Born

1. INTRODUCTION
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'HE one-pion-exchange (OPE) model' has been
generally accepted as a moderately successful

phenomenological scheme for explaining a number of
high-energy reactions. However, the failure of the model
to account satisfactorily for certain features of these
reactions has stimulated the theoretical investigation
of two kinds of modifications of the basic OPK model.
These are:

(i) Form factor corrections due to the off-shell nature
of the exchanged meson. The principal result2 of this
investigation, a prescription for incorporating an empiri-
cal form factor into the analysis of pion-production
data, has been applied, for example, to analyses of
single-s and double- pion production in nucleon-nucleon
collisions, off-shell pion-pion scattering and pion pro-
duction in pion-nucleon collisions, double-pion produc-
tion in proton-antiproton collisions, and double-pion
production in photon-nucleon and photon-nucleus
collisions. ~ For further applications and references see
also Ref. 8.

(ii) Absorption effects in the initial and final states
due to the existence of strongly competing inelastic
channels. Such corrections have met with considerable
success in a number of cases."

This paper is concerned with reopening the question
of the first of the above-mentioned modi6cations, for
the following reasons:

*Supported in part by the National Science Foundation under
Grant No. GP5172.
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amplitude is modi6ed to take into account that a pion
is virtual.

The input off-shell Born amplitudes are calculated in
the usual way within the framework of perturbation
theory with the X* treated as an elementary particle.
These amplitudes are not yet consistently off-shell since
they are calculated with the coupling constants evalu-
ated conventionally with all particles on-shell. Upon
inserting unknown form factors to describe the off-shell
extrapolation of the coupling constants and applying the
crossing relations, a set of linear equations is established
which is easily solved, giving the form factors and
allowing one to write down consistent off-shell Born
amplitudes.

In Sec. 2 kinematical quantities are de6ned and the
isotopic spin crossing relations and forms of the off-shell
partial-wave elastic-scattering amplitudes are discussed.
The unitarization of the Born amplitudes and the closely
related problem of the high-energy behavior of the
partial-wave amplitudes are discussed in Sec. 3. In the
next section, the off-shell Born amplitudes for nucleon
and S*exchange are constructed and partial waves are
projected out. The I'3/2 3/2 RIll I'j/2, ]/2 partial-wave pro-
jections of the nucleon and E~ exchange amplitudes,
respectively, are singled out for closer scrutiny because
of the role they play in the nucleon, S~ bootstrap. In
Sec. 5, we obtain the form factors mentioned in the
preceding paragraph by comparing the partial-wave
Born amplitudes with the corresponding pole ampli-
tudes they are supposed to generate in the bootstrap
sense. Finally, in the last section, our results are sum-
marized and the use to which they may be put in
further work is brieQy discussed.

s= (P~+a)',
N=(8 —Ps) ~

(2.1)

PP=Ps' ——M', q)s=LV, and qss=1.

If the total energy in the s channel is W=gs, then

kg= f(W+M)' —6'7L(W —M)' —LV7/4W' (2.2)

ks'= ((W+M)' —17L(W—M)' —17/4W' (2.3)

2. KINEMATICS

We consider the process s.,+S-+ ~+X which may be
thought of as a part of an OPE diagram where m, is the
exchanged or off-shell pion. Let p~ and ps be the four-
momenta of the initial and Anal nucleons, respectively,
and q~ and q2 be the four-momenta of x, and the final
pion, respectively. We de6ne the usual scalar invariants

Es (W——'+M' —1)/2W,

respectively. We further find that

(23)

N(P )P+lBV (A+q )7N(p~) (2 7)

gives the off-shell physical amplitudes'

f&= P(E&+M)(Es+M)3"'EA+(W M)B7/—87rW (2.8)

Rnd

f2= t (El M) (Es M)71/s

&& L
—A+ (W+M)B7/8s W, (2.9)

where A and 8 have two components of isotopic spin.
If A and 8 are the amplitudes in the I channel, then

the corresponding amplitudes in the s channel are

XA and —XB, (2.10)

respectively, where

x=-/
3 (4 —1i

(2.11)

the familiar isotopic spin crossing matrix. Here we have
assumed that the two-component forms of the ampli-
tudes are

A= and B=
+ 1 /2)

(2.12)

where the superscripts are the isotopic spins in either
the s or u channels. Since (&X)s=1, (2.10) applies as
well in taking the s-channel amplitudes back into the I
channel. Note that the above relations hold inde-
pendently of crossing symmetry which is of course not
possessed by the Born amplitudes considered here.

The partial-wave amplitude projections are

1

f„(W,/)s) =- (f,P,+f,P„,)d cose. (2.13)
2

It is easily seen that the MacDowell' reQection
symmetry,

I=Ms+-,' (1+LB—W')

+ (M' —1)(M' —6')/2W' —2kiks cos8, (2.6)

where 0 is the center-of-mass scattering angle of the
pion.

The two-dimensional reduction of the off-shell in-
variant amplitude,

are the squares of the center-of-mass momenta in the
initial and final states, respectively. The energies of the
initial and final nucleons are

f~+(—W ~') = —f(~+~)-(W ~')

still holds for the off-shell amplitudes.

(2.14)

Eg (W'+M' —5')/2W—— (2 4) "S.W. MacDowell, Phys. Rev. 116, 774 (1959).
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3. OFF-SHELL UMTARITY AND ANALYTICITY

A partial-wave amplitude may be written in the form

f(W 6') = p'(W d')F'(W 6') (3.1)

where p' is a kinematical factor chosen to absorb
kinematical zeros and singularities; e.g., F'(W, A') ap-
proaches a nonzero constant as W ~M+1. The indices
describing the angular momentum, parity, and isotopic
spin of the amplitude have been omitted. We then write

F'(W 6') =E(W 6')/D(W LV) (3.2)

where, in the usual way, E(W,h') carries only the dynam-
ical cuts and D(W, d, ') has only the unitary cuts in the
complex 8' plane. According to the prescription" for
incorporating elastic unitarity into the off-shell ampli-
tude, D is determined by the requirement that its
phase on the unitary cuts is the same as the on-shell
phase shift. The form of D is given by its phase
representation, "

D(W 6') =F~(W &')Do(W)/&2(W Q2) (3 3)
where

Do(W) = exp —(W/~) dW'

X B(W') PW'(W' —W)7' (3 4)

5(W') is the on-shell elastic-scattering phase shift
defined always such that 0&5&m, J'~ denotes the
integral over both unitary cuts, and I'& and I'2 are
arbitrary, real polynomials in 8'. The phase just above
the left-hand uriitary cut is actually x —b„where 8„ is
the physical phase shift of the partial-wave amplitude
associated with the left-hand cut according to (2.14).
Since we may always define an elastic physical phase
shift to lie between 0 and ~, it follows that we may con-
sistently require 0&8(s.over both unitary cuts in (3.4).

The presence of the polynomial F~ in (3.3) permits the
insertion of poles or bound states into the amplitude.
In case the amplitude in question is the one with the
quantum numbers of the nucleon, it must possess a pole
at 8'=35.

Unlike the bootstrap calculation where the position
of the nucleon pole, or equivalently, the zero of the
conventional denominator function is regarded as a
derived quantity, the position of the zero in our calcula-
tion must be inserted in D(W, h') as part of the input
information which generates, among other things, the

variation with 6' of the residue at the pole, It is clear
that the position of the pole should be independent of
6' since the production amplitude for a process involving
a Anal pion and nucleon of combined total energy 8"will
have a pole at W=3f regardless of the values of the
other invariants describing the process. It is also clear
that the amplitude should have no other poles since
they would correspond to nonexistent bound states.
Thus, P~(W, A') must factor into (W—M)Q(h') where
the function Q(6') may be absorbed by X(W,h') with-
out changing the singularity structure of the latter.

The only other amplitude under consideration is the
one which communicates with the S*.Since the S*pole
is on the unphysical sheet of the complex 8' plane, it
cannot appear in F~. [Rather, it makes its presence
known by causing Do(W) to become purely imaginary
when W equals the mass of the $~.$ F~(W, LV) for
this amplitude then reduces to a function of A2 only
and may be absorbed by E(W,A'). Thus, we have
P~(W,6') =F~(W) = W—M' for the 1, 1 amplitude while
F~(W)=1 for the 3, 3 amplitude.

Finally we observe that the polynomial F2(W,A') is
superfluous since it may also be absorbed by lV(W, E')
without changing the latter's singularity structure.

The above considerations enable us to rewrite (3.2)
in the form

where

F'(W, D') =E(W,LP)/D(W),

D(W) =F,(W)DO(W) .

(3 3)

(3.6)

Let fs(W, D') be the partial-wave Born amplitude
and, just as for the complete amplitude, let us factor
out the kinematical singularities and zeros, defining an
amplitude

F's(W, A') = f~(W, A')/p'(W, d, '), (3.7)

which, like E(W,h), contains only dynamical singu-
larities. We now write

F's(W LV)+C(W 6') =cV(W 6')/D(W) (3 8)

where C(W,A ), in part a continuum contribution, is a
term which must be added to the Born term to give the
correct amplitude in an exact theory; i.e., in a diagram-
matric approach it would correspond to the sum of all
other diagrams contributing to the dynamics which
drive the partial-wave amplitude.

Consider the Cauchy integral for C(W, LP)D(W),
setting aside temporarily the question of convergence.
We And

C(W A')D(W) = dW'D(W') DiscLC(W' 6')jt 2'~(W' —W)) '

dW'F's(W', 6') ImD(W')Lvr(W' —W)$ ' (3.9)

'5 S. Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111,329 (1957).' M. Sugawara and A. Tubis, Phys. Rev. 130, 2127 (1963).
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where the first integral is over all the dynamical cuts V, and the discontinuity of C(W', 6,') on V is denoted by
Disk/C(W', 5')), the details of which will be of no concern to us except in one important respect discussed near
the end of this section.

Using (3.5) and (3.8) in (3.9), we obtain

F'(W 6') =F'~(W 6')+LmD(W)) ' dW'D(W') Disc/C(W' 6'))$2i(W' —W)) '

dw'F' (W'5') I D(w')(W' —W) ' . (3.10)

In particular, the on-shell partial-wave amplitude is

f(W, 1)=f (W, 1)1'Lp'(W, 1)/mD(W)) dW'D(W') Disc|C(W', 1))L2i(W' —W)) '

dW'f (W', 1) ImD(W') $(W' —W)p'(W', 1))—' . (3.11)

a dynamical cut along its entirety, and (3) it should be
possible to choose the parameter e so that the new
singularities are situated far enough from the interesting
physical region to correspond only to some untenable
short-range dynamics. Hopefully the end results gener-
ated by this arbitrary cutoff will not be greatly sensitive
to the actual value of the parameter which plausibly
should have a value of the order of, or a few times larger
than, the mass of the nucleon.

Now that the Born amplitude has been modified to
display a realistic asymptotic behavior there must be in
addition some guarantee that the asymptotic behavior
of the integral terms in (3.11) does not dominate over
the behavior of fP (W, 1) Again we .suppose that in an
exact calculation this would occur through delicate
hidden cancellations between the two integrals of (3.11)
if they individually diverged. It is therefore desirable to
exhibit explicitly the high-energy behavior of the inte-
grals by making subtractions, consistent with the as-
sumed cancellations, in such a way that the apparent
asymptotic behavior of the integrals matches or at least
does not overshadow that of the (modified) Born
amplitude. Thus, with

At this point we are faced with an arbitrary choice in
handling the high-energy behavior of (3.10) or (3.11).
Since the partial-wave Born amplitude diverges asymp-
totically for the exchange of systems with spin &—',, the
high-energy behavior of the above expressions may
diverge in a highly unsatisfactory way unless there
should turn out to be cancellations between the Born
amplitude and the integral terms. This possibility seems
unlikely in a practical calculation, assuming some
reasonable approximation is made for C(W', 6'), in view
of the special conditions necessary for such a cancella-
tion. A way around this diKculty is to modify the Born
amplitude so that it displays a realistic high-energy
behavior. If this is accomplished by a simple cutoff, the
dependence of the cutoff on the mass of the off-shell
pion may be ambiguous. We may simply choose the
cutoff to be independent of 6', an arbitrary choice, and
hope that the results are not sensitive to the cutoff in the
low-energy resonance region. On the other hand, a
Regge behavior for the exchanged system would also
accomplish the desired result and would furthermore
cause the cutoff to depend on 6' in a nontrivial way.

To take a de6nite stand, with simplicity uppermost
in mind, we introduce a 6'-independent cutoff factor
and replace the Born amplitude for the exchange of a
system of spin J)0 by

g= p'(W, 1)/D(W) f~(W, 1)W'" ~&,

f ~(w ~') =Zmz(w &)f~(w ~')
we define J to be the smallest non-negative integer

(3 12) greater than or equal to

where

Z2J(W 8)—(L1+(M+1)'/a')/L1+W'/u')}~ '*. (3.13)

8' dg
hm~+"gdW (3.14)

This is the minimum cutoff in the form of poles required
to make the amplitude go to zero at high energy. The
normalization is chosen so that Z2&=1 at the physical
threshold. The cutoff corresponds to poles at 8'= &ia
if u')0, an appealing feature since it satisfies the re-
quirements that (1) the real-symmetric property of the
amplitude should be preserved, (2) the new singularities
should lie on the imaginary axis which already contains

The significance of L is that it is the smallest number of
subtractions necessary to ensure the requirement stated
above. It is easily shown that J has the same value on
both the left-hand and right-hand unitary cuts. Taking
the limit as t/t/ —+% ~ is therefore not an apparently in-
consistent procedure and, accordingly, both cuts are
treated in a uniform manner in the following para-
graphs. The value of L will clearly depend on whatever
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high-energy behavior is assumed for the on-shell phase
shift. "

Consider the identity

h(W) =— dxp(x)/(x —W)

= W i dxx~p(x)/(x —W)

L—P W—x xx—'p(x)dx. (3.15)

Relation (3.15) shows that h(W) W ~' for large W if
the zeroth to (L—1)th moments of p(x) vanish. )The
—1th moment of p(x) is defined to be zero.) Again,

f(W~1) =f'(W~1)+p'(W~1) L~D(W) (1+W'/&') "] '

choosing ~iu as subtraction points, if the zeroth to
(L—1)th moments vanish, we may write

/g(W) —(1 +W2/g2) —g'L dx(1+x2/g2) iL

Xe(L,x,W) p(x)/(x —W), (3.16)

where s(L,x,W) is 1 if L is even. If L is odd,

s(L,x,W) = (x'+a') '"
X (x+u'$W+ (W'+a')'"] ') . (3.17)

Since the cancellation of the divergent parts of the
integrals in (3.11) is equivalent to the vanishing of the
zeroth to (L—1)th moments of the integrand, we may
perform L subtractions of the form (3.16) to obtain

X dW'(1+W"/a') **~e(L,W', W)D(W') DiscLC(W', 1)][2i(W'—W)] '

dW'(1+W"/a')'zs(L W' W)f. (W' 1) ImD(W')L(W' —W)p'(W' 1)] ' . (3.18)

The choice of ~ia for the subtraction points conveniently keeps the results thus far in one-parameter form.
For brevity we define

p(W iV) =p'(W LV)(1+W'/a') ' /Ft(W)

F(W,hs) =f(W, hs)/p(W, hs),

F (W dP) =f (W A )/p(W ds)

and the off-shell extension of (3.18) becomes

(3.19)

(3.20)

(3.21)

F(W,hs) =F s(W, As)+LsDs(W)] r dW'(1+W"/as)'z e(L,W', W)D(W') DiscLC(W', As)]I 2i(W' —W)]

dW'e(L W'W)F, (W' A') ImDs(W') (W' —W) ' . (3.22)

In accordance with the discussion in Sec. 1 concerning
the conjecture of the identification of the most im-

portant oR-shell dynamics, we now maintain that
C(W', LV) is not strongly dependent on 6s, at least in
comparison with the dependence of F,s(W, hs), and
hence we set

AC(W', A') =C(W' 5') —C(W', 1)=0. (3.23)

Using the notation de6ned in (3.23), we may write the
change that occurs in (3.22), when the virtual pion
goes oR-shell, as

DF(W A') =hF ~(W,A') —fsDs(W)] '

X dW'e(L, W', W) ImDp(W')

XhF~~(W' LV)(W' —W) ' (3 24)

'7 Using the expression for p33' found in $ec. 4, the parametric
form Sr&(W) =tan '[kr'/(uo+ark2'+asks')] due to J. M. Mc-

At this point it is worthwhile to consider the question
of the convergence of the unitary integral in (3.24). We
find that the integrand behaves asymptotically as

If g does not go to zero at infinity, we have g 5"~,
apart from logarithmic factors, and the integral clearly
converges. If g

—+0, then L=O and (3.25) becomes

Ft(W') sin8(W')
~

De(W')
~

lnW'/W". (3.26)

Here we have used the facts that the cutoff Born ampli-
tude f,~ lnW'/W' and that p' W" as will be seen
in the next section. Inspection of (3.4) shows that
tDs(W') ) ~

W'~ &ss '»~, aPart from logarithmic fac-
tors, if the phase of Do approaches a constant —8~ on

Kinley, Rev. Mod. Phys. 35, 788 {1963),and neglecting the right-
hand unitary cut controlled by the small phase shift of the f&,
isotopic spin-~ projection, we 6nd L=1 for the 3,3 projection of
the nucleon-exchange off-shell Born amplitude.
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the right-hand unitary cut and a constant —bi, on the
left-hand cut. At worst, bii ——s., 8r, =0, Pi W', and
(3.26) reduces to W' '

where again we have dropped
unimportant logarithmic factors, and we conclude that
the integral still converges.

After some further manipulations, we can bring (3.24)
into the form

AF(W, iV)=e"&~& DF, (W,dP) cosh(W)

+[s.h(W) j .'P dW'A(W' )e(1 W' W)

We defme

R+= f:[(W~M)'—1j[(W&M)'—~'3} "'. (4.4)

Making use of the relations listed in Sec. 2, we hand that
the partial-wave projections are

t' 21gi
fran(W, E') =

I ~

—[(W—M)E Qi(si)
5—1)Ss

+ (W+M)~Qigi(si) j, (4.5)
where

si ——R+R [(M'—1)'—W'(W' —2)

+ (6'—1)(W' —M'+1)j, (4.6)

Xsinb(W')AFP(W', 6 )/(W' —W) (3.22)

where

A(W) = iD, (W) )

1 1

Qi(zi) =- dx Pi(x)/(si —x),
2 -1

the Legendre function of the second kind.
We now choose

(4 2)

= exp —(W/ )sP dW'6(W')/W'(W' —W) (3.28)

and I' denotes the principal value operator.
Equation (3.22) is quite similar to Eq. (52) of Ref. 2.

The di6erence lies in the method of subtractions, the
structure of Ii ~, and the existence of the left-hand
unitary cut in (3.22).

Finally, introducing the factor p(W, E'), we obtain
for the oG-shell partial-wave amplitude,

f(W, LP) =p(W, A')

X[&F(W,r9)+f(W, 1)/p(W, 1)j (3 29)

4. BORN AMPLITUDES

A. Nucleon Exchange

With the usual pseudoscalar pion-nucleon interaction

fr~a(W, A') ~lnW/W

as in the on-shell case.

(4 9)

B. N* Exchange

We will calculate the pole diagram in the I channel,
in which the S*exists as an intermediate state, and then
apply crossing to determine the exchange amplitude.
The DES* vertex in the pole diagram is

g84'N+VN(pi+qs)s y (4.10)

p (W 6')=(4W'R+R )-'(1+W'/u ')-i'» (48)

which has the same kinematical zeros as (4.5) for the
fi+~ projection and includes the subtraction factor as
defined in (3.19).

The high-energy asymptotic behavior of the partial
waves (4.5) is found to be

A(s,u) =0,
(4 2)( 2) gi'

B(s,u) =
i

E—1) (u—M')
where If.=pi qs, N is the mas—s of the N*, and I' is the
width of the S*.The pole diagram amplitude is then

where gi /4s =14. The corresponding physical ampli- lt'x(ps)l ~ (&,u)+'Y'( qi qs)& " (&~u) jAr(pi)
tudes are

~gsV'N(ps) (ps+qi) "P..(pi+qs)VN(pi) (4 12)
(0)2) gis [(Ei+M) (E,+M))'I' W—M

2$' u —3P The invariant pole amplitudes A&» and 8&» are

(43) identiied upon carrying out the reduction of (4.12).
Crossing, according to (2.10), may then be applied and

and

2)gi' [(Ei—M)(F. —M))'I' W+M

4—1)4s- 2W e—M'
"S.Mandelstain, J. E. Paten, R. F. Peierls, and A. Q. Sarirer,

Ann. Phys. (N. Y.) Ls, 198 (1962}.

where g3 is related to the width of the S*.Our choice of
zgl 'rsr '

the nucleon-exchange Born amplitude turns out to be
pv L tv p v p v/

+(y„K„y K+y KK„y„)/N'j
X (y E+N)/(K' N'+iNF), (4—11)
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with

X I V1///P/&, +W2+ F2&1+1O/I, LW2

+2T1R Q/(s8)+21'2R+Q/~1(z8)], (4.13)

V1=A" (A2)+8" (A2) (W—M),
V2= ~"(A2)+~" (A2) (W+M),
F 1 —A (s,A )+8 (s,LV) (W—M)

I 2
———A'(s, d2)+8'(S, A2) (W+M)

(4.14)

(4.15)

(4.16)

(4.17)

A'(s, dP) =6SN'(1V+3II)+2C 1V'—21V (2M'+1)
—2MN'(1 /M')+21V (M' —1)—M (M' —1)']
+ (A2 —1)L

—21V'—2MN2+ 21V (M' —2)

+2M (M' —1)], (4.18)

A" (A') = 21V(N' M'1 1)+—(A' —1)(N+M) (4.19)

8'(s, A2) = 6sN' 2$—2N'+ 2—MN' 4N'—
+2M (M' —1)N —(M' —1)']

+ (A2 —1)(4N'+2MN), (4.20)

(4.21)8"(A2) = —4N'+62 —1,
and

s8 ——z1+2W2(M2 —N2)~ .

It is further found that" "
(4.22)

g '= 162rl'N8L(N —M)' —1] 8/2

X((N+M)' —1] "'. (4.23)

For the same reasons mentioned in justifying (4.8)
we n1ake the choice

p11(W,A2) = (4W2~ ) '

X(1+W'/a ') '*i»(W —M) ' (4.24)

for the f1 B projection.
On the other hand, the off-shell Ã* exchange ampli-

tude diverges as F' inn/' at high energy. This result and
the corresponding one for the nucleon-exchange ampli-
tude are the justifications for the implicit assumption
that I. is independent of A in writing down (3.22). The
consequences of I.depending on lV, possibly due to a 6'-
dependent cuto8 on the Born amplitude might seriously
complicate the arguments leading to the subtracted
Eq. (3.22).

the partial-wave projections of the S* exchange Born
an1plitude are found to be

1
f„(W,A ) =

i i(g8/48~N )

In the above equations we have dered

~—(4M2 A2) 1/2

P= (4M2 —1)'",
X1= $4M2 (1+M2/a112) li"] '

(5 5)

(5.6)

III
Xexp — dw'811(w')/W'(W' —M), (5.7)

X =I4N'(1+N'/a ')' »] '

g exp— dW &88(W )/W(W —N), (5.S)

a.= L(N+M)2 —A2]1/2,

= t (1V+M)'—1]"',
/8= $(N —M)' —A2]1/2,

v= L(1V—M)2 —1]"',

(5.9)

(5.10)

(5.11)

(5.12)

J.(A') =

and

A1(W)e(I.11,W', M) sinb11(w')

XH 1B(W', A2)Z8(W', a11)

XL(w' —M) p11(w', A2)] 'dW', (5.13)

where C1(A2) is the form factor describing the depend-
ence of the USE vertex on 6'. Similarly we write the
P&i2, &i2 partial-wave projection of the S exchange
Born amplitude as

f11 (W,A') g8'C'8(A')1I1 (W,A')+8(w all) (5 2)

where C3 is the pionic form factor associated with the
xEÃ* vertex. H& and H3 are known functions already
determined in Sec. 4. In (5.2) we have included the
cuto6 factor appropriate for a spin-~ exchange.

Equating the residue of the unitarized Pii2, ~i2 partial-
wave projection of the X* exchange amplitude at the
pole O'= M with the residue of the off-shell nucleon-pole
amplitude, we have, omitting some algebraic detail,

L(A')"'~/~]{ —3g1'/16M'P

+g8'~1PLC'8(A') J.(A') -J1(1)]}
3 (A2)1/2g 2@ (A2)/16~M2 (5 3)

Similarly, equating the value of the unitarized I'3/2 3/2

partial-wave projection of the nucleon-exchange ampli-
tude at O'=S with the value of the off-shell S~ pole
amplitude at the same energy, we have

(8«»/~) {.g, /81 N +g,9.8Lc, (A') q8(A') —q8(1)]}
=2m'r'/2/ g 'C 8(A')/82rl'N' (5 4)

S. COUPLED N, ¹ EQUATIONS
j8(A2) =1' A8(w') e(I.88,W', N)Let us write the PS~2, 3i2 partial-wave projection of the

nucleon-exchange Born amplitude as Xsinc„(W')a, B(W',A )

f B(w A2) g 2@ (A2)II B(w g2) (5 1) XL(w' —N) p88(w', 62)] 'dW'. (5.14)
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The quantities 8» and 8» appearing in (5.7), (5.8),
(5.13), and (5.14) are the physical phase shifts defined
as discussed in the remarks following (3.4).

Equations (5.3) and (5.4) are readily solved for the
two form factors. We get, using (4.23) to eliminate g32,

C i(h') = (3gPnv'or'+256~F3PX'nP'4L ji(1)o—ji(h')r]
+128Fgi'3II'iV nP v'r9. &X&j &(6')j3(1))/gi'Pv'r p

(5.15)
and

C 3(LV) = (6irlVPr +3gi v r X3Ln ja(LV) —Pj3(1)]
+256aFX'M'nP XiX3ji(1)ja(A') }/27rlVP&, (5.16)

where

y =3or+ 1287M'X'nPXiX3 ji(dP) j3(6') . (5.17)

We may observe that the on-shell reduction of (5.15)
and (5.16) yields, as it should, C i (1)= 1 and C'3(1)= 1.
This actually amounts to nothing more than a check on
our algebraic manipulations since such a reduction is
inherently built into the calculation.

6. SUMMARY

The important results of this paper are:

(i) the expression (3.29) for the unitarized off-shell
partial-wave amplitude;

(ii) the input off-shell Born amplitudes for nucleon
and N~ exchange, Eqs. (4.5) and (4.13), respectively;
and

(iii) the form factors (5.15) and (5.16) which, when
combined with the input Born amplitudes according to
(5.1) and (5.2) and the unitarization procedure is carried
out, finally yield the off-shell partial-wave amplitudes.

The assumptions which led to these results are:

(i) the basic conjecture that the Z and N~ exchanges
are the principal forces responsible for off-shell eRects
and that their self-supporting relationship continues to
exist when a pion becomes virtual. This conjecture was
appealed to in setting AC(W, A') =0 in Sec. 3 and again
in Sec. 5 when the pole amplitudes were equated to the
appropriate Born amplitudes;

(ii) the existence of an exact theory in which cancel-
lations occur between the diverging parts of (3.11).This
assumption was implemented in two steps: (1) the Born
amplitudes were multiplied by cutoff factors, and (2)
subtractions on the integrals were performed so that
their asymptotic behavior matched the modiied Born
amplitudes.

Since the oR-shell eRects are partially obscured by the
integrals arising from the unitarization procedure, it is
dificult to see how our results can be put to immediate
use in their present analytic form. Also, the answer to
the question of how sensitively the form factors depend
on the arbitrary parameters a» and a» is not readily
apparent upon casually inspecting (5.15) and (5.16).
In particular, since X~ and X3 seem to depend not in-

sensitively on these parameters, serious difhculties may
arise which can only be clarified by further investiga-
tion. This suggests the importance of carrying out a
numerical evaluation of our results which may shed
some light on the above question, and which entails
facing up to the problems of the choice of parametric
forms for the input phase shifts, and the evaluation of
principal part integrals, the subjects of forthcoming
work. .


