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The electromagnetic form factors of the electron and muon neutrinos are evaluated using an intermediate-
vector-boson theory. The vector bosons are treated by a Feynman-propagator theory in which all divergent
integrals are renormalizable by conventional means. Implications of the renormalization of the weak by the
electromagnetic interactions are discussed; it is pointed out that the usual procedure of treating such a
theory by using regulators might not be consistent with its conservation laws.

I. INTRODUCTION
' 'N consequence of the speculation that the weak inter-
- - actions are mediated by a charged, massive, vector
boson, ' and also that such bosons may exist, ' numerous
calculations have been made using this intermediate-
vector-boson model. ' One of the factors that inhibits the
successful execution of a program of calculation using
this model of weak interactions is the absence of a con-
sistent and completely satisfactory theory of electro-
magnetic interactions of charged vector bosons. 4

The Proca theory, ' in which a subsidiary condition is
used to eliminate the spin-0 component of the vector
Geld, has fields, p (x), which in the interaction picture
obey the commutation rules

where * indicates Hermitian conjugation and
= (+ rp, t, —y4t) . The derivative terms in this equation
result in highly divergent boson propagators and a
calculation based on this theory is not renormalizable
by conventional means.
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If, on the other hand, the subsidiary condition is
eliminated, and both spin-0 and spin-1 components are
accepted, then the energies of the two diferent spin
components enter subtractively into the free field
Hamiltonian and the latter is not positive semidefinite.
A number of theoretical procedures, based upon the use
of an indefinite metric, have been developed, in the past,
to deal with this type of dilemma. ' In an indefinite-
metric theory, a Hermitian, unitary metric operator p
is defined so that it commutes with spacelike and anti-
commutes with timelike field components. Matrix
elements of operators 0 are defined as (4'e

~

0
~
4), where

(%*~ = (%~ rt, so that expectation values of y t transform
like four-vectors. This allows us to use a formalism
which leads to a positive semidefinite Hamiltonian, and
which yet provides us with expectation values of p and

p t that transform like four-vectors.
One must then invent a rule for eliminating those

state vectors that have negative norms, from the sub-
space of physically admissible state vectors. In electro-
dynamics, the condition BA„&+&/its„~@)=0se1'ects such
a set of admissible states. ~ It then becomes important
that the S matrix, which is necessarily unitary in the
entire space, also be unitary in the subspace of physical
states. This is only the case if the norm of the physical
component of the state vector remains unity, i.e., if
there is no "leaking" of probability out of the physical
space. This is automatically true in electrodynamics,
since the dynamical behavior of state vectors is such
that they never move from the physical into the un-
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Maksimov, Zh. Eksperim. i Teor. Fiz. 36, 465 (1959) (English
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A. Uhlmann, Nucl. Phys. 12, 103 (1959);H. J.Schnitzer and E. C.
G. Sudarshan, Phys. Rev. 123, 2193 (1961);E. C. G. Sudarshan,
Phys. Rev. 123, 2183 (1961).

r J. M. Jauch and F. Rohrlich, The Theory of Photons and Elec
trons (Addison-Wesley Publishing Company, Inc. , Cambridge,
Massachusetts, 1955), Chap. 6.
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II. CALCULATIONS AND RESULTS

A,

/

FrG. 1. Feynman graphs for the electro-
magnetic form factors of neutrinos. Wavy
lines indicate neutrinos, solid lines mas-
sive leptons (e or 44), and dashed lines
vector bosons. Diagram C represents the
interaction of photons and bosons via a
phenomenological magnetic moment not
included in the Lagrangian that originates
from the minimal-coupling rule.

The Lagrangian density for the vector boson inter-
acting with the electromagnetic Geld, used in this work
is given by

[(D,t—W„t) (D,W„)+M2W„tW„5
+iejrF„,W,tW„, (2)

where D„= r)/r)2r, „ieA—„and indicates the Hermitian ad-

joint for q-number quantities and complex conjugation
for c-number quantities. sc denotes a phenomenological
magnetic moment. This leads to a theory in which the
usual Feynman rules apply with 8„„[M2+ks ie5—' for
the boson propagator. The interaction with the leptons
will be taken to be the t/ —A interaction term

physical part of the space. ' The same effect is achieved
in the theory of Lee and Yang' by making the un-

physical states (in the limit )=0) energetically in-

accessible. In other work, "it is presumed, without much
further examination, that there is some appropriate rule
that can be invoked to eHect a proper separation of
physical and unphysical subspaces.

It seems to us that the problem of designing a "leak-
proof" physical subspace is not a simple one and one
that we intend to discuss further elsewhere. In the
present work, however, we also intend to take the same
point of view as in other work based on this
Lagrangian, " that at least as a Feynman-propagator
theory, the full four-component theory can be used to
calculate the form factor of the neutrino. None of the
very substantial difBculties of the renormalizability of
the Proca theory or of the limiting process in the
$-limiting theory arise in that case. All diagrams, in-

cluding the ones involving a phenomenological rnag-
netic-moment term, give rise to renormalizable matrix
elements.

It is, incidentally, of interest to note that this theory
cannot possibly contribute any magnetic-moment terms
aside from the ones included phenomenologically, since
for the case of magnetic-moment interactions the two
field components in the Lagrangian have diBering sub-

scripts, and the minimal coupling terms in this theory
can never have this structure.

The neutrino form factor is given by the matrix
elements for the diagrams in Fig. 1; the matrix element
is given by

(v'~ J„(0)~
v) = 24„.t+'y„(1+ps)u. &+&F(q2),

where q= (v' —v) and utu=1. The form factor F(q') is
written

F(q') =F~(q')+F (qn')+aFo(q')

where the subscripts denote the diagram in Fig. 1. The
individual terms are

—epgo
u, &+& (1—ys)y„(1+ps)u„&+&Fg = u, '+'

(22r) 4

d4k yg(1+ps)[m~ iy (v' —k—)5y„[m~—iy (v—k)5&z(1+ps)
u (+)

(M2+k2)[mP+ (v k)25[mP+ (v k)25
(4a)

—zeogp
u, &+& (1—ys)y„(1+ps) u„&+lFn= u„ t+&

(22r)'

d4kyq(1+ps)[m4 iv k5yq—(1+ps)(v+v' —2k)„
u„&+~,

[M'+ (v' —k)'5[m P+k'5[M'+ (v —k)'5

eogo""'(1—v)v. (1+&) .&».=
(22r) 4

X{~q(1+~,)[m, i~ k5~„(1+—~,)+. ~„(1+~,)[m, i~ k)~ q(1+—~,).}u„+

o& &(mP+k2)[M2+ (.'—k) 25[Ms+(v —k)25)-r (4c)

'See Ref. /.' T. D. Lee and C. N. Yang, Phys. Rev. 128, 888 (1962). T. D. Lee, Phys. Rev. 128, 899 (1962).
"Z. Biaiynicki Birnla, Nuovo-Cirnento 21, 571 (1961);G. Dortnan, iMd 32, 1226 (1964.).



ELECTROMA GNETIC FORM FACTOR OF NEUTR&NO 1173

where ep and gp are the unrenormalized, rationalized
semiweak charge and coupling constant, respectively,
and where 3f and m~ are the boson and lepton mass,
respectively (the latter is the electron mass in the case
of v. and the muon mass in the case of v„., I(: is a phe-
nomenological magnetic moment).

To obtain the form factor in terms of observable or
"dressed" parameters, as well as in a form that contains
convergent integrals only, we therefore define $(q2)
=F(qs) —F(0), where the subtraction is carried out
under the integral sign. The charge and coupling con-
stant are then taken to be their renormalized values. In
the case of the charge, only the lowest order terms in e
are taken and the change from ep to e is the only con-
sequence of renormalizing. The weak interaction is
renormalized by the electromagnetic one and that fact
is reQected in the subtraction indicated above. The re-
normalized semiweak. coupling constant g is the one
given by low-energy P-decay data, because all weak-
interaction vertices are modi6ed by radiative correc-
tions so that gp is not the coupling constant observed at
low momentum transfer. There of course remains then

the unanswered question of why the semiweak coupling
strength is universal in view of the fact that the "weak
vector" current is not conserved when the electro-
magnetic effects are included. There seems at the present
not to be any satisfactory answer to that question.

Some authors" apparently in an attempt to maintain
a more satisfactory foundation for the universality of
the weak interactions have chosen not to renormalize
the form factors and have evaluated the matrix elements

by a cutoff or regulator method. As we shall see, such a
procedure, unless extreme caution is exercised, can at
times lead to results which are sharply at variance with
the conservation laws inherent in the theory. The
present authors prefer the previously described pro-
cedure. The use of unrenormalized expressions is based,
among other things, upon an improper identification of
asymptotic wave functions for the interacting systems. "
It has been pointed out, for example, that, in order to
be identi6able with empirical data, field theories would
require renormalization even if all integrations over
internal lines were finite. "

The renormalized form factors are given by

ml'g'e m/2M2 (M2~ ' [(1—x/2)'+D' —mP/q2] D+x/2
r~(q') = —-', — +—— lnl I+ dx ln —,(5a)

82rs M2 —m 2 (Ms —m ')' km 2) D D x/2—
gse i &+x/2)

!+i/(q') = ——,'+ dx 6 ln
kr' p ~-x/2)

where

and

—g'e ' x /6 jx/2)
Fc (q') = dx —ln!

162r2 2 6 kA —x/2

D = ([M'(1—x)/q']+ [m 'x/q']+x'/4}'"

dk=([mP(1 x)jq']+[M—'x/q]+x'/4}"'

(5c)

The integrals in Eq. (4) have been. evaluated. on an electronic computer and are tabulated in Figs. 2 and 3. In the
limit m22/Ms and q2/Ms ~ 0 but qs/mp remains arbitrary, the expressions for the renormalized form factors can be
evaluated in closed form and are given by

g2e g2 11 p2 1 ((1+p2)1/2 1p2q2p2
[Pg(qs)]i&~= —+ —+—[(1+p )

8z' M' 18 4 12 k(1+p )'/ +1 12 2M 2

m2 (1+p2)1/21)q2'p2
+ [(1+ps)'/2 —1] ln !+in —+1+(1+p )'/ —1, (Sd)

M' (1+p')'/'+1) 2M' 2

A(P~(q')]i'-=
Sxs E1SM2)

(Se)

g'e( q' )[~o(q')]i -=
8~2&4M2)

'

"G. Barman, Ref. 10.
&2 H. Gelman and K. Hailer (to be published); L. Van Hove, Physics 21, 901 (19SS)."G.Chew, Phys. Rev. 94, 1749 (1954).
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In our own work, which is completely renormalizable
in the customary sense, there is no ln(rr) term.

(2) A term proportional to ln(M'/mP) appears in
BI,, MS, CB as well as in our work, and is identical in
all of these four results.

t3~ A( ) term independent of the masses (except for the
trivial appearance of g'/2M in the role of the weak-
coupling constant) arises in all of these calculations and
is diferent in each.

III. DISCUSSION

In the renormalized expressions given above, the
quantities Fz(0) and Fz(0) have been subtracted in the
renormalization process; Fc(0) disappears primitively.
t might be argued that it is irrelevant whether the

renormalized or unrenormalized expressions for F(q')
are used, since Fg(0)+F~(0)= 0 in order that the total

charge of the neutrino vanishes. In addition to th f to eac
at this point bears on the previously discussed uni-

versality of the weak coupling constant, however, there
is a computational consequence of the use of un-
renormalized values of F. If one computes by the usual
techniques of Feynman integration, in which one uses

Q)G2 ' 0

1 &1 &n-9

= (m —1)! dxt dxs
0 0 0

X——

[~»~ t+s(x~s —x~-r)+ &~(1—xi)7"

and interchanges the orders of integration over the sy
and over the internal lines in the diagrams, then one
o tains
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The discrepancy between this result and the proper one,
namely,

Fg(0)+Fts(0) = 0

is due to an error in the zero-momentum-transfer parts
that arises from the usual Feynman integration tech-
niques, as can readily be seen by examining the neutron
form factor for a pseudoscalar nucleon-pion interaction. "
To lowest order in e and in the nucleon-pion coupling
constant, fe, Fsr(0) defined by Ftr(0) = LFtr(0) jz
+ )Fir(0)fn, when evaluated as the q' —+ 0 limit of the
integral evaluated by Feynman techniques, is given by
Fiv(0)= (2sr) 4sfe'. However, when evaluated directly

"ll. D. Fried, Phys. Rev. 88, 1142 (1952).

as the matrix element taken between two nucleons at
rest it is correctly given by F&(0)=0.

Therefore, unrenormalized expressions for the neu-
trino form factor, evaluated by Feynman techniques,
incorrectly impute an electric charge to the neutrino.
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The vZ/~h. branching ratio of the Y&~(1385) is significantly smaller than the phase space estimate. The
fact that in the —,'+, I= 1 m.Z state the force is repulsive, while in the corresponding mA state it is attractive,
is shown to be important in bringing this about. A general analysis of n-channel diagonalizable systems, and
a number of speci6c diagonalizable and nondiagonalizable models, are presented to establish that this im-
portance is not model-dependent.

I. INTRODUCTION

NOTAI3LK feature of the Vr*(1385 MeU) reso-
nance, which decays into m. +A and sr+2, is its

small branching ratio. Experimental measurements of
P (I'i*—& vi Z)/1'(I"&* —+ s-A) have yielded values of
0.04+0.04)' 0.09~0.04,' and 0.16~0.04.' While these
results are not in complete agreement, they all indicate
that the branching ratio is smaller than the phase space
ratio of 0.25. LWe use the phase space factor q'/(q'+X')
of S. Glashow and A. Rosenfeld, Phys. Rev. Letters 1Q,
192 (1963). q is the c.m. momentum of the decay
products and X was determined in their paper to be
350 MeV.)

This deviation from phase space can be interpreted
in terms of unbroken SU(3) symmetry, which predicts
a branching ratio of -', X (phase space) =0.17. However,

*This work was supported in part by the U, S. Air Force OfBce
of Scienti6c Research, Grant No. AF-AFOSR-232-65, and in part
by the U. S. Atomic Energy Commission.' P. Bastien, M. Ferro-Luzzi, and A. Rosenfeld, Phys. Rev.
Letters 6, 702 (1961).

«D. Huwe, Lawrence Radiation Laboratory Report O'CRL-
11291 (unpublished) .

s R. Armenteros et al. , Phys. Letters 19, 25 (1965).

it is desirable to be able to understand it dynamically as
well. 4 In this paper we note that while the force in the
3/2+, I= 1 state of the srA. channel is attractive, that
in the corresponding state of the m.Z channel is repulsive.
VVe try to show that this circumstance is one of the
important reasons why the I'&* branching ratio is less
than the phase space estimate.

II. FORCES IN THE ~ A. AND eX CHANNELS

The forces in the J~=3/2+, I= 1 states of the m.A
and xZ channels are estimated on the basis of the Born
amplitudes for exchange of all possible stable particles
and low-energy (below 1500 MeV) resonances, namely

4 Dynamical predictions for the F1~ branching ratio have been
given by A. Martin and K.. Wali, Phys. Rev. 130, 2455 (1963);
P. Tarjanne and R. Cutkosky, ibid 133, 81292 (1964);.K. Wali
and R. Warnock, ibQ. 135, B1358 (1964); E. Johnson and K.
McChment, ibid. 139, B951 {1965);M. Swiecki, Phys. Letters 19,
333 (1965); and R. Dashen, Y. Dothan, S. Frautschi, and D.
Sharp, Phys. Rev. 143, 1185 (1966). AII these authors except
M. Swiecki start with an SV (3) symmetric situation and then
introduce symmetry breaking. They all Qnd that the breaking
causes the branching ratio to be reduced substantially below the
unbroken 5U(3) prediction of 0.17.


