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Can Nearby Interaction Singularities Generate Observed Resonances' ?*
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The question of whether simple nearby singularities together with unitarity are generally capable of re-
producing the masses and widths of observed low-energy resonances is studied. As a specific case, we study
the p meson. We replace the left-hand cut by one or two nearby poles and ask if the interaction-pole param-
eters can be adjusted to give the known mass and width of the p. If elastic unitarity is assumed, the answer
is no. Calculations with inelastic unitarity are also made, and the observed p can be reproduced if the in-
elastic amplitude provides an important contribution. These conclusions are reached without a detailed
identificatiori between known exchanged systems and the interaction pole parameters.

I. INTRODUCTION

N the past few years, bootstrap calculations have
-- played a significant role in attempts to gain a
dynamical understanding of elementary particles. ' Such
calculations usually proceed via partial-wave dispersion
relations and the X/D technique. If one is making a
low-energy calculation, one generally adopts the view
that only nearby singularities need be kept in a first
approximation. Thus the left-hand cut is often ap-
proximated by contributions coming from the exchange
of a few low-mass particles in the crossed channel. Such
contributions comprise the long-range part of the force.
The calculation can then be made either by assuming
elastic unitarity or by including in addition one or more
inelastic channels. 2

I.et us suppose that one wishes to use such a calcula-
tion to determine the mass and width of a resonance.
Even admitting the nearby-singularity hypothesis with
regard to the left-hand-cut contributions, one is still
faced with the decision of whether to incorporate
inelastic channels into the problem. This last question
forces one to assume a basic physical mechanism for the
resonance, the correctness of which is to some extent
tested by a comparison of the calculated mass and width
values with the experimental numbers.

What we present here is not a bootstrap calculation
but a discussion of whether simple nearby singularities
can reproduce the masses and widths of observed
resonances.

The method we employ is the following: (1) We re-
place the interaction cuts by one or two nearby poles in
accord with the nearby singularity hypothesis. No ex-
plicit correspondence is required between these inter-
action poles and the known exchange forces except for
sign (i.e., attractive or repulsive) since we are merely
testing a physical mechanism, not doing an actual
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bootstrap calculation. (2) The X/D equations are easily
solved exactly in this model and one may either assume
elastic unitarity or keep also a representative inelastic
channel. (3) We then inquire whether for some values of
the parameters which characterize the nearby inter-
action poles, the experimentally observed mass and
width of the resonance be reproduced.

We develop this method by considering explicitly the
case of the p-meson resonance, first assuming elastic
unitarity. Here we find that no assignment of the
parameters of the nearby interaction pole terms is
capable of reproducing the observed mass and width of
the p. By "nearby, " we mean that the displacement
from threshold of such singularities be within several
orders of magnitude of the displacement of the reso-
nance energy from threshold.

We then introduce a second, "inelastic" channel into
the x-x problem with a variable threshold. Calling the
hypothetical second channel "num, "we test a variety of
physical mechanisms which might produce the p from
nearby singularities: (1) nonzero forces (left-hand cuts)
only in s.s- —& mm; (2) nonzero forces only in 7rs. —+ ~7r

and s.7r ~mm; (3) nonzero forces only in s.rr ~ mm
and 52m ~ ss?Qo

That mechanism (3) will easily succeed in giving the
p with a sufliciently small width is well-known because
it is possible to have an mm bound state that couples
weakly to ~x giving an arbitrarily small width. We find,
however, that mechanism (3) appears to be the only
simple way of reproducing the p within our frame-
work.

These results suggest that the p is strongly inAuenced

by inelastic states. Thus, instead of the usual picture
where one imagines the exchange of a p largely being
responsible for the p and, hence, bootstrapping itself,
one is led to contemplate a model for the p in which
forces resulting from inelastic channels may be at least
as important as the p exchange force. Further, there is
no obvious reason why these results do not apply to all
of the vector mesons.

The importance of the inelastic channels in deter-
mining the properties of the p was discussed several
years ago by Blankenbecler' and more recently by
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Fulco, Shaw, and Wong' and by Chew. The present
discussion differs from the others in that no corre-
spondence is required between the interaction poles
used and the actual left-hand-cut singularities. Thus our
results may be more general than the others. Further,
the method presented may be of use in estimating the
possible importance of inelastic states in producing
resonances other than the p.

and X~(v) has singularities only for v(0. The function
X~(v) is obtained from

1
&~(v; vo) =— ImA ((v', vp)

dv

II. ~-~ PROBLEM WITH ELASTIC
UÃITARITY

We begin our analysis of the p meson with the elastic
scattering of pions, and consider the scattering ampli-
tude with the threshold factors explicitly displayed:

2'~(v) = v'Xi(v)/Di(v) = v'M~(v), (1)

with v=~s —1, where s is the total center-of-mass
energy squared, measured in (pion mass)'= p'= 1. The
scattering amplitude 1 & satisfies unitarity when we
define the D function as usual, with a subtraction

v+vp " v'

Di(v; vp) =1- dv
p v'+1

(v') 'X((v'; vo)
X

'
, (2)

V
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ng(v') = X~5 (v'+—v, )

From Eq. (3) this gives

Zg(v,' vp) = P,Dy( —v„', vp) j/(v+v„),
and Eq. (2) yields

(4)

Dy(v i vo) = 1
XDg(—v„vo) (v+vo) "

t
v'

dv'i
7r kv'+ 1)

v

tions, we propose as a first step examining the validity
of the mechanism of elastic unitarity in producing the p.
To do this we consider a scattering amplitude which
satisfies unitarity on the right and has a simple pole on
the left as its only left-hand singularity. This pole is
taken as approximating the effects of the nearby singu-
larities, and thus must be reasonably close to the
physical region. The precise meaning of this will be
made clear later. We do not look for a self-consistent
solution here. We demand that the amplitude exhibit a
resonance at the experimental position and further
demand that the resonance have the correct width. The
essential question then concerns the possibility of
choosing the interaction pole parameters in such a way
as to accomplish these demands. In fact, the only
parameter which is responsible for the satisfaction of
these demands is the position of the imput left-hand
pole —its residue plays no important role. This happens
to be a special property of a single pole model, but, as we
shall show, the inclusion of more poles does not change
in an essential way the results of the one-pole model.

We now take 1=1 and choose

1 n((v')D((v', vp)
dv Eq (6)gvesD( — )

X;(6)
V —P P V& V Vp

where n~(v) =ImMg(v), v(0, which leads to an integral
equation which may or may not be well-de6ned de-
pending on the asymptotic properties of n~(v).

Most bootstrap calculations assume that the behavior
of the amplitude in the low-energy physical region is
determined approximately by unitarity and only the
nearby left-hand singularities. This assumption is imple-
mented by means of Eqs. (1), (2), and (3) and where
n &(v) is given by a singularity arising from the exchange
of some particle(s) in the crossed channels. In the case
of the x-z problem one often includes only the p meson
exchange. In a self-consistent problem one does not
specify the mass or coupling constant of the exchanged
particle, but determines them by demanding that, for
the p, ReD~(v, )=0 and that the input and output
coupling (g &)' agree. If, in fact, one finds a self-
consistent, bootstrap solution, a variety of questions
arise concerning the approximations made, uniqueness
of the solutions, etc. Before asking such detailed ques-

4 G. F. Chew, Phys. Rev. 140, 31427 (1965).

X(v„—vo)
"

/ v' )'~'
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1
&i(v; vo') =-
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D)(v'; vo) X&(v; vo)
Xni(v') =, (9)

D&(—vo., vo) D~(—vo', vo)

It would appear at this point that we have three
parameters: X, v„, and vp, however, T~ is independent of
the subtraction point. This is easy to see. Let us consider
a new subtraction point, v= —vp", vp') 0, and obtain the
new functions E&(v, vp'). One easily sees that

Di(v; vo') = [D~(v; vo)]/[Di( —vo', vo)].

Further from Eqs. (3) and (8) one has
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Thus

x , (»)
V P V Pp

since Di(—v„)=1. We will write the expression for
Di(v) as

Di(v)=1 —XJ(v,. v ),
where J(v', v„) is given analytically by

(
" i'" L( +v)/v~"'

orJ(v v )= )
~

ln +in
v+vvl v+1) L(1+v)/vg'~'+I

(13)

P i(v; vo)g/PDi(v; vo) j
=P'i(', vo'))/LDi(v; vo')3. (1o)

It is convenient to choose the subtraction point at the
position of the pole, i.e., Po=v~, and we shall do so.
Dropping all reference to the subtraction point, we have

Er(v) =)/(v+ v„),

X(v+vv) " ( v'

Di(v) =1— dv'I
kv'+ I]
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ln +1, (14)
2 (v„(v„—1))'" 1+(1—1/v v)'~'

for P~O.
Our analysis proceeds as follows: We choose a value

for v~ and determine ) by the demand

1/X=ReJ(vv, vv),

where v„ is the experimental mass of the p meson. We
can always find a X satisfying Eq. (15). The width is
given as

v,/(v, +v„)r(.„)= '
ReJ'(vv,. v„)

(16)

' F. Zachariasen, Phys. Rev. Letters 7, 112, 268(E) (1961).

We emphasize that with only one left-hand pole, I'(vv)
is independent of P and depends only on v„and v, . Since
v„ is fixed by experiment, as in I', Eq. (16)determines vv.
The experimental value of I' is approximately 1p', and
we demand that v„yield this value for the width. A plot
of Eq. (16) is given in Fig. 1 which shows that even for
values of vv=41(s= —160), the width is still 30 times
too large. (In fact to obtain the experimental value of
Ip' one must choose vv 10r—10''.) If this calculation
is accepted seriously, then one immediately wonders
how the initial bootstrap calculations gave anything
approaching reasonable values

I v, 0.6 (350 MeV);
I' 2—3p,'j.' We have repeated the calculation given in

FIG. 1. The p width 1 plotted against the pole position p„. The
experimental value is I' 1p,'.

Fig. 1 using the mass value P,=0.6. In this case we Gnd
that we may obtain the bootstrap value for the width
for a rather reasonable value of v„, viz. vv 3. (For a p
with a mass of 350 MeV, the branch point for its ex-
change would occur at v= —1.6.) It is important to
emphasize here that we do not conclude from these
results that a bootstrap solution mist exist at m„350,
but that it may exist consistent with the assumption of
nearby singularities.

One may object to the above analysis on the basis
that the results may depend in an essential way on the
use of only one interaction pole. To investigate this
objection we have studied explicitly models with two
interaction poles. If both poles are attractive (positive
residues), the situation is quantitatively the same: It is
impossible to make the width of the p sufhciently small
if the magnitude of the distance of the two poles with
respect to threshold is within several orders of magni-
tude of the resonance energy.

The situation changes in an important way if the
interaction pole nearest the physical region has a nega-
tive residue corresponding to a long-range repulsion. In
this case it appears that one can succeed in making the
width of the p small. This result is easily understood
intuitively because the long-range repulsion aids the
centrifugal barrier in "trapping" the particle, producing
a long lifetime or narrow width for the resonance.

The long-range part of the force in any problem is
given in terms of the exchange of particles of low mass.
This is just the part of the force which is generally
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considered as the best understood. In the case of the p
meson, no known particles that can be exchanged will
produce a long-range repulsion.

On the basis of the above analysis it would appear
quite doubtful that a bootstrap calculation performed in
the usual manner neglecting inelastic states will produce
the experimental position and width of the p meson.
There is, in fact, little reason to believe that these
conclusions will change for any of the vector mesons,
since they are all at reasonably large energies (compared
with the threshold energy). On the other hand, we have
seen that the results change markedly for lower energy
resonances (for the p, the results are much more
reasonable at 350 MeV). Thus one might conjecture
that the reciprocal bootstrap' (involving the X and X*)
in fact contains the essential force structure for that
problem. The success of the static model here also
indicates that this is a reasonable conjecture.

If we accept the above results, what forces are then
responsible for the p (and the vector mesons in general) r
We shall continue to assume the nearby-singularity
hypothesis for the left-hand-cut contributions. How-
ever, in the next section, we shall consider the effect of
including two-body inelastic channels in the problem.

III. INELASTIC CHANNELS

Having established that one cannot produce the p
meson with elastic unitarity and nearby interaction
poles, we now investigate various mechanisms arising
from the incorporation of inelastic channels into the
problem. Let us begin with a definition of terms. We
suppose that there is a single "elastic" channel which is
the only (or at least primary) decay mode of some
resonance, (e.g., 2r7r and the p) and which is described by
an "elastic" amplitude (e.g. , 7r2r~s. 1r). In addition,
there can be a number of "inelastic" channels, (e.g. ,
EK, 2'/, etc.) which are described by "inelastic"
amplitudes, (e.g., EX—& EZ, etc.). These inelastic
amplitudes are coupled by unitarity to the elastic
amplitude by "production" amplitudes (e.g. , s 2r ~EK,
etc.). Although this is a somewhat artificial language, it
is convenient.

We shall And in the problem of the p that two
mechanisms involving additional channels are of in-
terest, viz. , a strong contribution from one or more
production amplitudes with the inelastic amplitudes
playing a nonessential role, or a strong contribution
from one or more inelastic amplitudes in which the
production amplitudes only serve to connect the elastic
amplitude to the inelastic amplitudes through unitarity.
To keep the analysis simple, we shall consider only two
channels with equal masses in each channel, p, and m.
The two-channel problem is easily handled in terms of
matrices and we write for the S matrix

S= I+2ifpi/'Tg'/2=1+2ig "2M/211/2 (17)

' G. F. Chew, Phys. Rev. Letters 9, 233 (1962l.

where
N.1/2

ei=
s'/2 4 0

0

1+1/2)

and v1=4s —p' and v2= ~s—m'. Again we approximate
the left-hand singularities in all the amplitudes by
simple poles. Further, in terms of v1 we place all poles at
the same position v„and write for M,

M(v, ) =
1 dp

X+-
lvl+vv 2r 0 v v1

ImM (v'), (19)

N(vi) = (v1,+vs) 2 q D(vi) = I
In Eq. (21) we have

(21)

where
0

(22)

Vi+VV
P1

Z/2

(»' —»)(»'+V, )' Vi'+P'

V 1+VV

&2 d~2
(23)

2 [V2'—(»+P' —~')][V2'+ (VV+P' —~')]'

( V
I )1 2/

x/
kV,'+ n22)

This may be reduced to

M(V1) = (Vi+ V,)
—'[Z—'—3]—'. (24)

Now then let us consider as the first case one where
only the production amplitude is important and thus we
choose

//0 Xi)

0)
(25)

In this case, the elastic amplitude [always the (11)
amplitude] for p wa, ves is given as

V1 ltl 32(V1)

Vi+VV 1 X g (i)g1V(i)2Vi
(26)

It is clear from Eq. (26) that, as in the elastic situation,
the width of the resonance does not depend on X1. On
the other hand, the width will, in principle, depend on
the physical threshold of the inelastic channel. In fact,
F is rather insensitive to the position of the inelastic

where ~ is a 2&(2 matrix. The unitarity constraint is
given as

ImM —'= —9/. (2o)

This is satisfied if we define MD= N with
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threshold as is shown in Fig. 2, where the width of the p
is plotted against v„ for two inelastic thresholds,
s;„,i=32'' and s;„,i= 56p, '. The results are quite similar
to those given in Fig. 1.Although the situation has im-
proved somewhat, it is clear that a nearby singularity in
the production amplitude alone will not enable one to
reproduce the experimental characteristics of the p. The
two additional curves in Fig. 2 show the results of a
model including a pole in both the elastic and produc-
tion amplitudes. In this case one chooses for X

I3p

I 2 p.
2

I I p,
2

OJ
I Oy.

9p,

G =5
2

and obtains
0) Bp.

&o/)tt +32(»)

In this case the width of the resonance depends on v„
and the ratio of residues Xs/X1'= Gs, Gs= 0 being the case
of a singularity in the production amplitude alone. As
Fig. 2 shows, adding an elastic contribution worsens the
situation. Again if we include a long-range repulsive
force in the elastic channel, ) 0(0, then we may improve
the situation. But as we remark. ed earlier this is just
that part of the force which we believe we understand
best, and there is no evidence of such a repulsive force.
We conclude therefore that a model which strongly

I I I I I I I I I I

0 2 4 6 8 IO I 2 I 4 16 18 20

Vp

F1G. 3. A plot of the values for the mass in the inelastic channel
m' against the pole position p„such that the p width is 1'. Ga
determines the coupling between the inelastic and production
channels (see text).

emphasizes the production amplitude is not likely to be
the basic mechanism responsible for the p.

Let us turn now to our second possibility in which we
consider a strong contribution arising from the inelastic
channel. We choose

20—
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FIG. 2. The p width F plotted against the pole position v„ in the
presence of a single inelastic threshold at s;~81——32pP, 36pg, or 56''.
60 determines the coupling between the elastic and production
channels (see text).

() 1'/&2) 32(»)

V1+Vv 1/X2 (Xl /X2) 31(vl)32(v1) 32 (v1)
(30)

Of course, if X1~0, then T11—& 0. Here the width of the
resonance depends on the ratio X2/X12= G2, on ms, and on
v„. Figure 3 plots m' against v„ for various values of G~

such that I'= 1p'. It is no surprize that a range of values
for all of the parameters allows us to produce the correct
width; however, the figure does have an interesting
feature. The inelastic channels of interest for the p
meson are supposedly the x-co and K-E channels, and
although the vr-co channel cannot be characterized by a
single mass, ns', we should expect the e6ective mass for
these two inelastic channels to be approximately be-
tween 10'' and 12''. Taking a reasonable value for v»
say v~5, we see from Fig. 3 that G&&4 will produce the
correct width for the p. However, we also demand that
the denominator in Eq. (30) vanish at the experimental
position of the p, using G~=4 we may then calculate
that the ratio X2/Xt ——5. Since this is an approximate
measure of the relative strength of the inelastic "force"
to the production "force" necessary to yield the
properties of the p, we may argue that the inelastic
processes are of great importance in an understanding of
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the p. This of course supposes that we are confined to
nearby singularities. If we increase v„, then, as Fig. 3
shows, Gs decreases as does Xs/Xi so that the inelastic
states become less important.

IV. DISCUSSION

We have proposed here a method by which one may
determine whether a given observed resonance can
possibly be reproduced by an X/D calculation that
assumes the interaction cuts can be approximated by
simple nearby singularities. Our Inethod is only appli-
cable if the actual nearby interaction singularities are
simple enough to be approximated by a few poles.

In considering the p meson, we have concluded that
elastic unitarity is not an acceptable mechanism and
that inelastic channels are at least as important as the
elastic channel. This conclusion was reached without a
detailed consideration of the left-hand cut in terms of
known exchanged systems.

The limited validity of the elastic mechanisro. for the
vector mesons has consequences in other situations and
a few remarks are in order.

Recently, there have been several attempts~ to obtain
symmetries as a consequence of a bootstrap calculation.
A particular and relevant example is the symmetry be-
tween the pseudoscalar and vector mesons obtained by
means of pseudoscalar-pseudoscalar scattering. Since it
is just this case which we have discussed, one can argue
that the validity of such a calculation is questionable.
However, it is not clear that our analysis applies directly
to such a program. First, a rather artificial distinction
has been made here with respect to the various channels.
In the symmetry bootstrap these are treated in a
completely equivalent manner. In addition such calcula-
tions are always made for equal mass configurations; in
this case the vector mesons are low-energy resonances.
As we saw in Sec. II, reasonably narrow widths can be

produced with a nearby singularity if the resonance
energy is not large with respect to the elastic threshold.
Thus, although the correctness of including only nearby
singularities in such "symmetry bootstraps" is not
assessed here, it may be that such a mechanism is con-
sistent with the assumed properties of the octet. The
continuation of the solutions to the physical masses is a
separate question.

That rather narrow widths can be produced for
resonances where the energy is sufficiently low also has
a bearing on the 7r-X reciprocal bootstrap. ' In particu-
lar, because of the possibility of narrow widths it would
appear that elastic unitarity may reproduce properties
of the Ã and Ã*.

Finally let us remark brieRy on the inRuence of the
high-energy behavior. We have explicitly excluded high
energy effects in assuming the dominance of nearby
singularities, but it is not at all clear that this is reason-
able. This question is being treated in at least two recent
programs of calculations: the first is a relativistic
calculation which incorporates Regge asymptotic be-
havior into the problem' (a modification of the strip
approximation); the second involves work. within the
framework of the static model. ' The first work is still in
progress whereas in the second, calculations involving

(admittedly somewhat artificial) models have shown
that the high energy behavior is determined to a large
extent by the properties of bootstrap solutions. ' An
examination of the two-pole model in Sec. II shows that
a nearby pole together with a pole at a very large
distance will produce narrow widths. If one takes such a
situation seriously, then the distant pole may be
interpreted as an approximation to necessary effects
arising from the, high-energy behavior in the crossed
channels. We do not wish to emphasize this point, but
simply remark that narrow widths may occur in a
bootstrap calculation if some explicit high-energy be-
havior is included.

s G. F. Chew, Phys. Rev. 129, 2363 (1963); D. C. Teplitz and
V. L. Teplitz, iNd. 137, 8142 {1965).' K. Hnang and F. Low, J. Math. Phys. 6, 795 (1965).

7 For example, see R. H. Capps, Phys. Rev. Letters 10, 312
(1963);H. M. Chan, P. C. DeCelles, and J. E. Paton, ibid 11,521.
(1963);L. F. Cook and J.E.Paton, Phys. Rev. 137, 81267 (1965).


