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Current commutation relations and a partially conserved axial-vector current hypothesis (PCAC) are
applied to the nonleptonic K decays. On the assumption that the effective weak interactions should have
the transformation property suggested by Gell-Mann in the quark model of the chiral symmetry, and that
the axial-vector isospin charges to which the pions are related through PCAC should be generators of
U(2)XU(2), the K3 and the K3 decay amplitudes, in which the four-momenta of all the final pions are
continued to zero, are proved to obey the AI=3 rule. In the approximation of neglecting the continuation,
the decay rate of the K is related to that of the Ksr. The ratio of the decay rates is estimated and a reason-
able agreement with experiment is obtained. Only the charge independence is assumed for the strong

interactions.

I. INTRODUCTION

URRENT commutation relations' and a partially
conserved axial-vector current hypothesis?
(PCAC) have been successfully applied to the parity-
violating amplitudes of the nonleptonic hyperon
decays.? What is remarkable is that the AT=2% rules
can be obtained for the A and & decays without octet
enhancement.

We shall give here further applications to the
nonleptonic K decays. In the symmetric limit of
SU(3), all the K, decays are forbidden. But the K,
decays really occur because of the large violation of
SU(3), and are actually the dominant modes. We shall
therefore not work in the limit of SU(3) symmetry,
but assume only the charge independence for the strong
interactions. Accordingly, we shall specify the weak
Hamiltonian by the transformation property under the
chiral U(2) XU (2),* which is generated by

Fi= /dsx Fao(x), Fi5=/d3x Fio® () ,

(1=0,1,2,3), (L1)
where §;, and F,,5 are the vector and the axial-vector
isospin current densities, respectively. It should be
understood at the outset, however, that we will not
assume an SU(2)XSU(2) symmetry of the strong
interactions. Our results come from the assumption
that the weak Hamiltonian belongs to a sum of irre-
ducible representations >, (#,1) (=2, 4, ---) of
U(2)XU(2) and from PCAC which relates 9,F,5 to
the pion field.

With these assumptions, we can show that the K,
and the K, decay matrix elements with all the pion
four-momenta successively going to zero obey the
AI=3% rule. If these four-momenta are continued to
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the physical values, the AT=% amplitudes might arise.
However, the final pions are in an s wave in the physical
process of K., and dominantly in an s wave in the
physical process of K3, Therefore, the nonphysical
amplitudes (zero four-momenta) should be a good
approximation to the physical ones. Further, we can
relate the rate of K3, to that of K,,.

II. ASSUMPTIONS
We enumerate the assumptions here as follows:

(1) The effective weak Hamiltonian should have the
following transformation properties under the chiral
U@2)XU(2);

H@O=H®2,1)+H®4,1), (2.1)

where the entries denote the dimensions of the irre-
ducible representations to which H® belongs. The
weak Hamiltonian is of the currentX current type, and
the strangeness-conserving and changing currents
belong to the (3,1) and (2,1) representations, respec-
tively, under the chiral U(2)XU(2) as in the quark
modelt H®(2,1) and H®(4,1) contribute as the
Al=3 and the AI=% spurions, respectively. By
definition, the commutator of H®(2,1) with the
generator of U(2)XU(2) always gives back the (2,1)
representation, and similarly for H® (4,1).

(2) Partially conserved axial vector current hy-
pothesis (PCAC) or the generalized Goldberger-
Treiman relation.’

(3) The axial vector currents to the divergences of
which the pion fields are related generate the chiral
U@2)XU(2).

III. DECAY MATRIX ELEMENTS

Let us begin with the K, decay matrix element. It
is defined as
7r57r5> .

Kg,,=<KI/d3x 3@ (2,0)

¢Thisis a subgrouf; of the chiral U(3) X U(3) discussed by M.
Gell-Mann, Physics 1, 63 (1964).

( 8 M. L. Goldberger and S. B. Treiman, Phys. Rev. 109, 193
1958).
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For the convenience of the following discussions, we
shall normalize state vectors as

(a l B)=2wabapd (pa—pﬂ) . (3.2)
The reduction formula leads us to
e——ip:o—iqy_i_e—ipy—-iqx
Kor=— /d‘*xd‘*y
V2
X (D x—'llfz) (D y_l-"z)
X(K|T{H“(0),6'(x),6'(»)}10), (3.3)
or
e—ipx
K r=—i/d4x (I:I _“2)
’ 2

X(K|T{H® (0),¢" ()} | 77)

e—i pT
—i | d* (O—p2
/ V2 )

X(K|T{H(0),¢/(x)} |7%), " (3.4)

where ¢° is the renormalized pion field and H® (0) is
the space integral of 3C()(x,0). We haveJexplicitly
symmetrized the spatial wave function to maintain
the symmetry property of the two-pion system at
every step of the calculation. As previously stated,?
we replace the pion field ¢ by the divergence of the
axial-vector current by means of PCAC,

0,Fi* (%)= (1/c)¢* () (3.5a)
or
d 1
—(5 /d % Fio (x,t)=; /d%c o (x,). (3.5b)

Partial integration of Eq. (3.4) over the time gives us
K2,=i~c— /d“x e=irr ([ —u?)
V2
X(K|[H“(0),5 " (x) 1-8 (xo) [ w7)
¢
y— d4 —ipy D_ 2
+i % / y e~y (0 —p?)
X(K|[H“(0),5¢°(y) 1-8(y0) | 7%
c
- d4 —iDxT D__ 2
= [#y @)
X(K | T{H “(0),0,5:3 (%)} | 77)
c
— | d* e—iry ([ —pu2
= [ @

X(K|T{H“(0),0,55° ()} | 7).

We should remark that the surface terms appearing on

(3.6)
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the way of partial integration have been neglected in
the above formula.

Now let p go to zero, keeping the four-momentum of
the remaining pion on the mass shell. Then we can
eliminate [J by partial integration. We must be careful
in taking the limit of p — 0 in the third and the fourth
terms. However, we can see that these terms apart from
pa have no singularity like 1/p, if we keep the four-
momenta ¢ finite. In this way, we get

lim Koy = —i(cu?/V2)(K|[H« (0),F#(0) ]| =)

p—0
—i(cw?/VZ)(K |[H(0),F£(0)]-|x), (3.7)
with the definition
Fp (t) = /d%{} Fio® (x,t) . (3.8)

We proceed to make contraction of the remaining
pion and repeat the procedure described above. Then
we can rewrite Eq. (3.7) into

lim lim Kor= — (c%u%/V2)

X(K|[[H“(0),F#(0)]-F(0)]-[0)

— (@ /NV2)(K | [[H “(0),F#(0)]-F#(0)]-10).  (3.9)

Let us decompose H into the irreducible repre-
sentations of the chiral U(2)XU(2), namely the AT=3%
spurion and the AI=$% spurion, and label them as
H@(2I41,1). By definition, a commutator of
H@(2[+41, 1) with a generator F,® always gives back
the (2741, 1) representation and never goes out of it.
Since the kaon has I=3%, only the (2,1) piece of H®),
or the AT=4 spurion, contributes to the matrix elements
in the right-hand side of Eq. (3.9).

[LH (4,1),F:(0)]-F;*(0)]-

transforms like (4,1) under U(2)XU(2), or like I=3%
under the isospin group. Thus, we conclude that the
K, decay matrix element, in which the pion four-
momenta go to zero as described in Eq. (3.9), obeys
the AT=% rule.

It is easy to extend our argument to the K3, decays.
We repeat the manipulation described above to reduce
the K, decay matrix element into

lim g = —i(cw?/N)(K |[H «(0),F:#(0) ]| mim*)
—i(ew?/N3)(K|[H « (0),F# (0)]-| mix*)

—i(w?/NI(K |[H “(0),Fi*(0)]-| w*x7).  (3.10)
Since the commutator of H® with F% belongs to the
same representation of U(2)XU(2) to which H®
belongs, the three terms in the right-hand side are
essentially the same as the K», decays. We have shown
above that the K, decays with the pion four-momenta
equal to zero obey the AI=3% rule. Therefore, the K3,
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decays also obey the AI=1% rule, if the four-momenta
of all the pions are properly continued to zero.

IV. RATES OF K, AND K.

The foregoing discussions enable us to relate the rate
of the K3, decay to that of the K2, decay. We must be
prepared for the error amounting to several percent
in the predicted rates, if we consider the accuracy of
the AT=1 rule in the experimental data of Kar and K.
Since we have implicitly assumed that the final pions
in the K3, decays are in a relative s wave, the ratios
among the K, decays and among the K3, decays are
uniquely determined. We have, therefore, only to
calculate one of the ratios between K,, and K.

The experimental accuracy is highest in the
K*— 7tr— decay for K, and in the K+-— rirta—
decay for K;,. We shall estimate the ratio of these two
decay rates. By use of Eq. (3.10), we get

Kt(++—)=—i(V2ep?/V3)KL(+—), (4.1)

with the present definition of the matrix elements.
The constant ¢ is given by PCAC to be

c=1g,K (0)/Mu*¢4,

where g, is the renormalized #V coupling constant
(g:2/4r=14), g4 is the renormalization of the strange-
ness-conserving axial-vector weak current (ga=1.18),
K (0) is the 7N vertex renormalized as K (—u?)=1, and
M is the nucleon mass. Straightforward calculations
lead us to the ratio

D(KH(++-)) 2 mlg?/4m)K* ()
DEL(+-)) 9 M2 (me—442) g2

(4.2)

4.3)

where the phase volume p is given by

1 [ S rtprtn—P)
P s 16w 1waws

Ppdpdipr, (4.4)

and P and m denote the four-momentum and the mass
of the kaon.
Equation (4.4) is rewritten to be®

1
p=— fdwldwg,
2
which is given by

PN.R.= (\/3/72)Q2 (4-6)

in the nonrelativistic limit, where Q is the Q value of
K;.(++—) given by m—3u+. We have taken account
of the identity of the two =t and the symmelrization
of the final state vectors which was made in the previous
section. After making a small correction to px.r. due
to relativistic kinematics, we substitute the numerical

4.5)

6§ M. Gell-Mann and A. H. Rosenfeld, Ann. Rev. Nucl. Sci. 7,
407 (1957).
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values to get finally
DK (4+=))/T(KL(+—)) =4.8X 1074, (4.7)

where K2%(0) has been put to unity. The experimental
data available at present’ gives

DK+ (++=))/T(EL(+—))= (6.340.5)X107%. (4.8)

If we rewrite Egs. (4.7) and (4.8) in terms of the
amplitudes instead of the decay rates,

[K+ (++ - )/Klo (‘I" —)]theor
= (1.150.09) X [K*(++—)/K*(+—)Jexp-

From the beginning, we have anticipated that a small
amount of the AI=4% amplitudes may be contained in
the physical amplitudes. If we consider the present
approximation that the continuation of the pion mass
from zero to u is entirely neglected, the numerical
agreement with the accuracy of about 159 in ampli-
tudes should be regarded to be a support for our
discussions.

4.9

V. DISCUSSION

It should be emphasized again that the chiral
U(2)X U (2) symmetry has not been assumed for the
strong interactions. What is crucial to draw our con-
clusions is the assumption that the effective weak
interactions have the transformation property of
>« (n,1) under the chiral U(2)X U (2), as well as the
assumption that the space-integrals of the fourth
components of the axial vector currents to which the
pions are related should be generators of U(2)X U (2).

If the weak Hamiltonian has a term transforming
like (3,7) with 4,721, this term may be transformed
from I=% to I=% or conversely under the chiral
U(2)XU(2) transformations. Therefore, not only
ambiguity due to continuation in the pion momenta,
but also the deviation of H( from the form suggested
in the quark model of U(2)XU(2), if any, may be
responsible for the deviations from the AI=% rules and
for the discrepancy between our estimates and experi-
ment on the K3,/K2, ratio.
¥ An important question which is left unclarified here
is how accurately the matrix elements defined by Eq.
(3.9) approximate the physical amplitudes. The oper-
ator (0—pu?) in decay matrix elements [see, for
example, Eq. (3.4)] picks up the singularity like
(O—w2)~! in the Green’s function. A physical matrix
element is given by the singular part, after the inte-
gration over the time of H @ (f) is carried out. When we
put [0 equal to zero by partial integration and by the
energy-momentum conservation in the limit of p — 0,
we are left with the term of the zeroth order of u2 which
is the true continuation of the physical amplitude and
the continuum term of the order of u2 Since the lowest
continuum state with the same quantum number as

7 A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas, P. L.
Bastien, J. Kirz, and M. Roos, Rev. Mod. Phys. 37, 633 (1965).
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the pion is the 3= state, we could roughly estimate that
the continuum term is at most of the order of u2/(3u)?=%
as compared with the term representing the physical
process. Although this reasoning is not rigorous, it
seems that contributions of the continuum states are
not very large. This question should be subject to
further investigations.

Finally, we should like to add a comment on the
AI=% rules of the A and the & hyperon decays. The
method stated here proves that they hold good even
within the charge independence instead of SU(3). It

PARTIALLY CONSERVED AXIAL VECTOR CURRENT
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is because AN and ZA systems do not contain an =%
component. We cannot get the AI=% rule for the =
decays in general.
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If the solution of an approximate partial-wave dispersion relation is required to satisfy unitarity and
possess the correct threshold behavior, additional poles (representing effective forces) are introduced into
the amplitude. These poles are explicitly exhibited. To enforce l-wave threshold conditions, approximately
1 arbitrary parameters appear (the precise number depending upon the properties of the amplitude con-
sidered). This difficulty is in principle independent of the method of solution. Using the nucleon exchange
force as input, the J=% amplitudes for =-N scattering are obtained by numerical solution of the N/D
equations. The solutions are extremely sensitive to the arbitrary parameters. It appears that, in the present
formulation, partial-wave dispersion relations do not provide a reliable means of calculating detailed prop-

erties of the amplitudes.

I. INTRODUCTION

HE literature of strong-interaction physics con-
tains many discussions and solutions of partial-

wave dispersion relations. We quote a representative
sample!™ to which the reader may refer for details.
Although practically all solutions have employed a
“threshold factor” to guarantee that approximations do
not spoil the desired threshold behavior of the ampli-
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tude, there have been rather few discussions®'2-16 of the
related questions of uniqueness and consistency.

We require that the partial-wave amplitude satisfy
unitarity and possess the correct threshold behavior
even when approximations are made. These constraints
require the introduction of additional poles in the ap-
proximate amplitude, whose positions are essentially
arbitrary. Roughly speaking, there are I arbitrary
parameters in the /th partial-wave amplitude, and we
demonstrate by explicit calculation that the solutions
are quite sensitive to these parameters. For definiteness,
we have concentrated mainly on 7-N scattering, al-
though most of these considerations apply to any
partial-wave dispersion relation.

Section IT contains a brief summary of the kinematics,
definitions of the amplitudes, and other details. In Sec.
IIT, the need for a threshold factor is briefly discussed
and the extra poles introduced thereby are explicitly
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