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Current commutation relations and a partially conserved axial-vector current hypothesis (PCAC) are
applied to the nonleptonic IC decays. On the assumption that the effective weak interactions should have
the transformation property suggested by Gell-Mann in the quark model of the chiral symmetry, and that
the axial-vector isospin charges to which the pions are related through PCAC should be generators of
U(2) X U(2), the A 2~ and the IC& decay amplitudes, in which the four-momenta of all the final pions are
continued to zero, are proved to obey the AI= 2 rule. In the approximation of neglecting the continuation,
the decay rate of the Es is related to that of the X2,.The ratio of the decay rates is estimated and a reason-
able agreement with experiment is obtained. Only the charge independence is assumed for the strong
interactions.

I. INTRODUCTION

~CURRENT commutation relations' and a partially~ conserved axial-vector current hypothesis'
(PCAC) have been successfully applied to the parity-
violating amplitudes of the nonleptonic hyperon
decays. ' What is remarkable is that the AI=~ rules
can be obtained for the A and decays without octet
enhancement.

We shall give here further applications to the
nonleptonic E decays. In the symmetric limit of
SU(3), all the It;& decays are forbidden. But the Ear
decays really occur because of the large violation of
SU(3), and are actually the dominant modes. We shall
therefore not work in the limit of SU(3) symmetry,
but assume only the charge independence for the strong
interactions. Accordingly, we shall specify the weak
Hamiltonian by the transformation property under the
chiral U(2) XU(2),e which is generated by

d's F,o($), F,s = d's F,Q'(s),

(t'=0, 1, 2, 3), (1,1)

where F;„and 7;„5 are the vector and the axial-vector
isospin current densities, respectively. It should be
understood at the outset, however, that we will not
assume an SU(2)XSU(2) symmetry of the strong
interactions. Our results come from the assumption
that the weak Hamiltonian belongs to a sum of irre-
ducible representations g„(0,1) (rt=2, 4, ~ ) of
U(2)XU(2) and from PCAC which relates c)„F„' to
the pion Geld.

With these assumptions, we can show that the E2
and the E3 decay matrix elements with all the pion
four-Inomenta successively going to zero obey the
hI=-,'rule. If these four-momenta are continued to
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the physical values, the AI= ~3 amplitudes might arise.
However, the anal pions are in an s wave in the physical
process of E2, and dominantly in an s wave in the
physical process of Ea . Therefore, the nonphysical
amplitudes (zero four-momenta) should be a good
approximation to the physical ones. Further, we can
relate the rate of E3 to that of E2 .

III. DECAY MATRIX ELEMENTS

Let us begin with the E2 decay matrix element. It
is deGned as

E2 = E d'x K~"~ x,0 (3 1)

4 This is a subgroup of the chiral U(3) XU(3) discussed by M.
Gell-Mann, Physics 1, 63 (1964).

5 M. L. Goldberger and S. B. Treiman, Phys. Rev. 109, 193
(1958).
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II. ASSUMPTIONS

We enumerate the assumptions here as follows:

(1) The effective weak Hamiltonian should have the
following transformation properties under the chiral
U(2)X U(2) '

H 1"& =B&"'(2,1)+H& "& (4,1), (2.1)

where the entries denote the dimensions of the irre-
ducible representations to which II'"~ belongs. The
weak Hamiltonian is of the current)(current type, and
the strangeness-conserving and changing currents
belong to the (3,1) and (2,1) representations, respec-
tively, under the chiral U(2)XU(2) as in the quark
model. e H&"l (2,1) and H& "& (4,1) contribute as the
hI= ~~ and the AI= ~ spurions, respectively. By
deinition, the commutator of H'"& (2,1) with the
generator of U(2)XU(2) always gives back the (2,1)
representation, and similarly for H t"& (4,1).

(2) Partially conserved axial vector current hy-
pothesis (PCAC) or the generalized Goldberger-
Treiman relation. '

(3) The axial vector currents to the divergences of
which the pion Gelds are related generate the chiral
U(2) X U(2).
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V2
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(3.5a)
or

1
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decays also obey the AI=2 rule, if the four-momenta
of all the pions are properly continued to zero.

I'(E'(++ —)) 2 ~(g'/4~)E'(0) p

I'(Eis(+ —)) 9 M'(m' —4p, ')'t'gg'
(4 3)

where the phase volume p is given by

16M yM2M3

d',d', d'p~, (4.4)

and I' and m denote the four-momentum and the mass
of the kaon.

Equation (4.4) is rewritten to be'

which is given by

1
p = GMydM2 )

2
(4.5)

t N.a.= (~3/72)Q' (4.6)

in the nonrelativistic limit, where Q is the Q value of
Es (++—) given by rn 3'+. We have taken —account
of the identity of the two x+ and the symmetrisa60e
of the firtol stote vectors which was made in the previous
section. After making a small correction to pN. R. due
to relativistic kinematics, we substitute the numerical

IV. RATES OI' X2 AND K,

The foregoing discussions enable us to relate the rate
of the E3 decay to that of the E2 decay. We must be
prepared for the error amounting to several percent
in the predicted rates, if we consider the accuracy of
the DI= —,

' rule in the experimental data of E2„and E3 .
Since we have implicitly assumed that the final pions
in the E3 decays are in a relative s wave, the ratios
among the E2 decays and among the E3 decays are
uniquely determined. We have, therefore, only to
calculate one of the ratios between E2 and E3 .

The experimental accuracy is highest in the
E& —+x+x decay for E2 and in the E+—&z+x+x

decay for E3 . We shall estimate the ratio of these two
decay rates. By use of Eq. (3.10), we get

E+(++—)= —s(%2ct s/%3)E,s(+ —), (4.1)

with the present definition of the matrix elements.
The constant c is given by PCAC to be

c=ig„E(0)/Mtg'g~, (4.2)

where g„ is the renormalized m-E coupling constant
(,s/4vr=14), g~ is the renormalization of the strange-
ness-conserving axial-vector weak current &g~

—— .
gr

E(0) is the v.E vertex renormalized as E(—p') = 1, and
JI is the nucleon mass. Straightforward calculations
lead us to the ratio

values to get 6nally

1(E+(++-))/I'(E '(+-))=4 gX10 ' (4')
where E'(0) has been put to unity. The experimental
data available at present~ gives

I'(E'(++ —))/I'(E '(+—))= (6.3~0.5)X10-'. (4.S)

If we rewrite Eqs. (4.7) and (4.8) in terms of the
amplitudes instead of the decay rates,

LE+(++ )/Ei (+ )$theor
= (1.15&0.09)X$E+(++—)/Eis(+ —)jeep (4 9)

From the beginning, we have anticipated that a small
amount of the DI=23 amplitudes may be contained in
the physical amplitudes. If we consider the present
pproximation that the continuation of the pion massapprox

~

]from zero to p, is entirely neglected, the numenca
agreement with the accuracy of about 15%%u~ in ampli-
tudes should be regarded to be a support for our
discus sion s.

V. DISCUSSION

It should be emphasized again that the chir al
U(2)X U(2) synunetry has not been assumed for the
strong interactions. What is crucial to draw our con-
clusions is the assumption that the effective weak
interactions have the transformation property o

(I 1) under the chiral U(2) X U(2), as well as the
hassumption that the space-integrals of the fourt

components of the axial vector currents to which the
pions are related should be generators of U(2)X U(2).

If the weak Hamiltonian has a term transforming
like (sj) with i,j /1, this term may be transformed
from I=—' to I=—,

' or conversely under the chiral2

U(2) X U(2) transformations. Therefore, not only
ambiguity due to continuation in the pion momenta,
but also the deviation of H&"' from the form suggested
in the quark model of U(2) X U(2), if any, may be
responsible for the deviations from the hI= 2 rules and
for the discrepancy between our estimates and experi-
ment on the Es /Es ratio.
& An important question which is left unclarified here
is how accurately the matrix elements dered by Eq.
(3.9) approximate the physical amplitudes. The oper-
ator (CI —ps) in decay matrix elements Lsee, for
example, Eq. (3.4)) picks up the singularity like
(Cl —') ' in the Green's function. A physical matrixp
element is given by the singular part, after the inte-
gration over the time of H&"i (t) is carried out. When we

ut equal to zero by partial integration and by the
energy-momentum conservation in the limit o, p

~ ~

f —+0
we are left with the term of the zeroth order of p,' which
is the true continuation of the physical amplitude and
the continuum term of the order of p,'. Since the lowest
continuum state with the same quantum number as

8 M. Gell-Mann and A. H. Rosenfeld, Ann. Rev. Nucl. Sci. 7,
407 (1957).

7 A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Babas, P.. L.
8 ' I K' and M. Roos, Rev. Mod. Phys. 37, 633 (1965).
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the pion is the 3x state, we could roughly estimate that
the continuum term is at most of the order of tss/(3ts)' = s
as compared with the term representing the physical
process. Although this reasoning is not rigorous, it
seems that contributions of the continuum states are
not very large. This question shouM be subject to
further investigations.

Finally, we should like to add a comment on the
AI=~~ rules of the A and the hyperon decays. The
method stated here proves that they hold good even
within the charge independence instead of SU(3). It

is because AS and ~A systems do not contain an I=—',

component. %e cannot get the AI=-', rule for the Z

decays in general.
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If the solution of an approximate partial-wave dispersion relation is required to satisfy unitarity and
possess the correct threshold behavior, additional poles (representing etfective forces) are introduced into
the amplitude. These poles are explicitly exhibited. To enforce /-wave threshold conditions, approximately
l arbitrary parameters appear (the precise number depending upon the properties of the amplitude con-
sidered). This ditliculty is in principle independent of the method of solution. Using the nucleon exchange
force as input, the J=s amplitudes for rr If' scatterin-g are obtained by numerical solution of the S/D
equations. The solutions are extremely sensitive to the arbitrary parameters. It appears that, in the present
formulation, partial-wave dispersion relations do not provide a rdiable means of calculating detailed prop-
erties of the amplitudes.

I. INTRODUCTION

t 'HE literature of strong-interaction physics con-
tains many discussions and solutions of partial-

wave dispersion relations. We quote a representative
sample' " to which the reader may refer for details.
Although practically all solutions have employed a
"threshold factor" to guarantee that approximations do
not spoil the desired threshold behavior of the ampli-

*Supported in part by the U. S. Once of Naval Research.
t' Based upon a thesis presented by the author to the faculty of

the Graduate School of Cornell University for the Ph. D. degree.
f. Present address.
'S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486

(1960).' S. W. MacDowell, Phys. Rev. 116, 774 (1959).' William R. Frazer and Jose R. Fulco, Phys. Rev. 119, 1420
(1960).' Arthur W. Martin and Jack L. Uretsky, Phys. Rev. 135, 3803
(1964).' A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963).' Graham Frye and Robert Lee Warnock, Phys. Rev. 13(},478
(1963).

Ernest Abers and Charles Zemach, Phys. Rev. 131, 2305
(1963).

8 J. S. Ball and D. Y. Wong, Phys. Rev. 133, B179 (1964).' Jack L. Uretsky, Phys. Rev. 123, 1459 (1961).
"A. W. Martin and K. C. Wah, Nuovo Cimento 31, 1324

(1964).
'~L. A. P. Balazs, Phys. Rev. 128, 1935 (1962); 128, 1939

{1962);129, 872 (1963); 132, 867 (1963).

tude, there have been rather few discussions' " "of the
related questions of uniqueness and consistency.

We require that the partial-wave amplitude satisfy
unitarity and possess the correct threshold behavior
even when approximations are made. These constraints
require the introduction of additional poles in the ap-
proximate amplitude, whose positions are essentially
arbitrary. Roughly speaking, there are 1 arbitrary
parameters in the 1th partial-wave amplitude, and we
demonstrate by explicit calculation that the solutions
are quite sensitive to these parameters. For defIniteness,
we have concentrated mainly on ~-Ã scattering, al-
though most of these considerations apply to any
partial-wave dispersion relation.

Section II contains a brief summary of the kinematics,
de6nitions of the amplitudes, and other details. In Sec.
ID, the need for a threshold factor is brieAy discussed
and the extra poles introduced thereby are explicitly

~ P. Beckman, Z. Physik 179, 379 (1964).
"A. P. Balachandran and Frank von Hippel, Ann. Phys.

(N. V.) 30, 442 {1964).
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Myron Bander and Gordon L. Shaw, Ann. Phys. (N. Y.) 31, 506
(1965).


