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deviation of r from the mean (the width of the histo-
grarn of Fig. 6) also had a minimum at the "best"
value.

The same procedure was followed for a subset of
25 runs, the results of which are shown in Fig. 7. This
subset was selected by eliminating some runs for which
the dependence of r on the lower cutoff did not appear
self-consistent. This subset gave a "best" lifetime value
of v =26.41 nsec.

As a different approach, a second subset of 21 runs,
eliminating runs with obvious ripples and those with
few total events, was assembled into a composite run

by adding the data, taking into account the calibrations.
This composite run was analyzed in the same way as an
actual data run, giving a "best" value of v =26.41 nsec.
For comparison, the average of the "best" values of the
same 21 runs gave an average of 26.38 nsec.

It is apparent that the value of r is somewhat de-
pendent on the treatment of the lower cutoff, so that
the statistical error of 0.02 nsec on the mean value is
not realistic. We choose r, =26.40 nsec as the central

value of the various data combinations and assign an
uncertainty of 0.08 nsec. This reflects our sensitivity to
the systematic sects tested. Also, within these limits
the lifetime is insensitive to the choice of lower cutoff
over a range of 3 mean lives.

This lifetime value is in disagreement with both the
previously accepted value' of 25.51&0.26 nsec and with
the recently reported value of 26.01&0.02 nsec of
Eckhause et a/4. The latter is the more serious dis-

crepancy in view of the large amounts of data involved,
and the small errors. We are unable to reconcile the
discrepancy in view of the fact that only one of our 37
runs could be considered compatible with their value.
The major differences in technique were as follows:
(a) We required the e+ pulse; they (Eckhause et al)
did not. (b) Our m. and tt pulse came from the same
counter; theirs were from different counters. (c) We
used a pulse overlap time-to-pulse-height converter
with about 0.9 nsec bins; they used a 100-Mc/sec
digital time analyzer with 10-nsec bins. (d) Our back-
ground is about 100 times lower than theirs.
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Identities relating continuations of physical amplitudes to equal-time commutators are considered. These
identities, combined with fairly innocuous and justi6able approximations on the physical amplitudes, are
shown to yield useful results. Some of these results look as if they emerged from a higher symmetry.

'HE equal-time commutators of unrenormalized
current operators have recently been the object

of intensive investigation. Much of the discussion has
been focused on the following aspect. Consider a theory
which is invariant under a Lie group that is generated
by charge operators constructed from a set of currents.
Then the invariance requires that the expectation value
of the equal-time commutator of two charge operators
in a physical state belonging to some irreducible repre-
sentation be saturated by a single intermediate state
of the same irreducible representation. Conversely, if
it is assumed that the expectation value of such a com-
mutator is saturated by a single intermediate state, then
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results characteristic of the symmetry are obtained. '—'
This latter circumstance has led to the interesting specu-
lation that the saturation of equal-time charge commu-
tators by judiciously selected intermediate states may
be taken as a kind of dynamical mechanism for the
induction of approximate symmetries. ' Unfortunately,
the phrase "dynamical mechanism" is difBcult to define
precisely in this context. Equal-time commutators
per se are objects devoid of any special dynamical sig-
ni6cance. In particular, the mass of an intermediate
state has no apparent bearing on its importance in the
sum over states. Thus, the choice of an intermediate
state cannot be predicated on any simple dynamical
principle of the type underlying, say, the Goldberger-
Treiman formulas.

The purpose of the present paper is twofold. %e first
develop a 6eld-theoretical identity that relates equal-

~ B.Lee, Phys. Rev. Letters 14, 676 (1965}.
'R. Dashen and M. Gell-Mann, Phys. Letters 17, 142, 145

(1965}and other references cited therein.' S. Fubini and G. Furlan, Physics 1, 299 (1965).
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time current commutators to the off-mass-shell analytic
continuation of physical scattering amplitudes. Here
our work is identical in spirit to and largely motivated
by that of Fubini, Furlan, and Rossetti, but it differs
in detail and suGers from no ambiguities. We then in-
vestigate the possibility of extracting useful information
from this identity by approximating the physical scat-
tering amplitude. Our approximation can be justified
to some extent on dynamical grounds, for it is related
to the familiar technique of pole approximation.

Let J„(x)be a current operator and j(x) any Heisen-
berg operator. Gauss's theorem implies the trivial
identity

d'x a (e' '.
&P'IsLS, (x), j(0)1i}(xp)IP)}=0. (&)

The states of momentum p' and p will, for the sake of
definiteness, be taken as single baryon states. On
evaluating the divergence we obtain

d'*e "'*(p'IsL~p(x, 0), j(o)PIP)

d'x e'" (P'IL~. (x), j(0)li}(xp) I P)

where

—c d4x e'p'

(p'INGLE(x),

j(0)jo(xp) I p), (2)

(3)

We take j(x) to be a current density and denote by
g(x) the field generated by this current,

Then, by use of standard reduction techniques, Eq. (2)
may be east into the form

d'x e—'P '(P'lsPp(x, 0), j(0))IP)

"''(O'IL~. (*),j(0)3~( o) I p)

= lim q'" d'x e' ''(p'
I LJ„(x),j(0)]0(xp) I p)

q'~O
—(c/p') lim T, (6)g'~o

S. Fubini, G. Furlan, and C. Rossetti, Trieste reports, 1965
(uupublished}.

where p, is the mass of the I' particle and T is the ampli-
tude for &+baryon ~ 8+baryon scattering.

We defer a full investigation of Eq. (5) to a later
publication. In the present paper we consider only the
limit in which q' vanishes

(p'i&I:Q, j(0)ll p)

where

Q= d'xJ'p(x, 0) .

The first term on the right-hand side of Eq. (6) vanishes
unless an intermediate state contributes which is de-
generate in mass with either of the baryon states. If
this is the case, this contribution combines with a cor-
responding term in the Born-approximation part of
the amplitude T to give a well-defined and unambiguous
limit, although the limit of the separate terms is ill
defined. It is in this respect that our method is superior
to that of Fubini, Furlan, and Rossetti. 4

Equation (6) forms the basis for the discussion of the
remainder of this note. We identify J„(x)with one of the
8 components of the axial current density which trans-
form as the generators of SU(3) or with an SU(3)
singlet axial current. We may then assume a generalized
version of the partially conserved-axial-current hy-
pothesis (PCAC) and take E(x) to be the field operator
of the corresponding member of the pseudoscalar octet
with c a uniform constant for all members of the octet,
or the field operator for an SU(3) singlet state (r}'). If
j(x) is identified with a nonet of polar or axial-vector
currents, the equal-time commutator appearing on the
left-hand side of Eq. (6) can be computed by assuming
that these currents are composed of bilinear combina-
tions of Fermi fields that satisfy canonical commutation
relations. If j(x) is taken to be the source of the pseudo-
scalar-meson octet or singlet, we obtain a generalization
of a relation of Adler. ' In this case it can be shown that
the relevant commutator vanishes at the unphysical
value of the momentum transfer (p' —p)'=ii'. This is
adequate for our purposes. (These statements are
proved in the Appendix. )

On choosing j(x) to be the pseudoscalar current we

obtain a constraint on meson-baryon scattering. In
order to get useful information from this constraint, we

make the dynamical assumption that low-energy meson-

baryon scattering is dominated by the exchange of a
few systems with specific transformation properties
under SU(3). More precisely, we assume that systems
of unit baryonic charge exchanged in the s and I
channels transform only as an octet and decuplet, and
systems of zero baryonic charge exchanged in the t

channel transform only as singlets and octets.
While the above ansatz is somewhat ad hac, it should

be stressed that it is no more so than some of the assump-
tions that have gone into recent rederivations of some

SU(6) results. Indeed it is a more reasonable ansatz in

the sense that one is imposing a well-defined condition
on physical scattering amplitudes which has the virtue
of being realizable in simple dynamical models such as
the pole approximation with low-lying states.

We have investigated this constraint using routine
manipulations with Clebsch-Gordan coeKcients and

' S. Adler, Phys. Rev. 13?& 81002 (1965).
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If the p field is distinct from F, we find

(D/F') sriTi = (D/F)»iT (9)

The first solution in. Eq. (8) agrees with the standard
predictions of SU(6), SU(6,6), and, more importantly,
with experiment. ' The second solution is manifestly
unphysical, for it gives a vanishing pion-nucleon
coupling. It corresponds to invariance under a W(3)
group. ~ We defer discussion of the third solution until
the end of this note.

If the previous ansatz is to be understood in terms of
a pole approximation, we require, in addition to the
well-established baryon octet and decuplet, a low-lying
nonet of mesons with even spin and positive parity
which are normal under charge conjugation. There
appears to be reasonable evidence for a 2+ nonet' and
some, albeit considerably less convincing, evidence for
a 0+ nonet. ' The existence of either or both is sufhcient
for our purpose.

Since the spin of the exchanged systems is essentially
irrelevant in our model, its justihcation in terms of an
ordinary pole approximation may be replaced by one
involving the exchange of Regge trajectories of pre-
scribed signature.

A similar calculation can be carried out for the case
in which the Heisenberg operator j(0) is identified with
the electromagnetic current density ci„(0). Here the
relevant amplitude T refers to photoproduction proc-
esses. A straightforward application of Eq. (6), together
with a dispersion analysis of the photoproduction am-

plitude, yields the sum rules for the isoscalar and iso-
vector anomalous magnetic moments obtained by
I'ubini, I'urlan, and Rossetti. Using the same kind of
pole approximation as that described above, we find
that the (D/F) ratio for the magnetic moments is the
same as the (D/F) ratio for the pseudoscalar coupling.
Although the baryon-octet contribution does yield the
anomalous magnetic moments, the dispersion analysis
determines the amplitude only up to subtraction con-
stants and does not tell us whether we should use the full
moments or the anomalous parts. In any static-model
calculation of low-energy photoproduction, the ampli-
tude is proportional to the full magnetic moments. "If
one uses the full moments, the first solution for the
(D/F)»Tr ratio yields the well-known SU(6) result

(10)

6 See, for example, the relevant discussion in M. A. B.Beg and
A. Pais, Phys. Rev. 137, 31514 (1965).

2 A. Pais, Phys. Rev. Letters 12, 632 (1964).
S. Glashow and R. Socolow, Phys. Rev. Letters 15, 329 (1965).

9 See, for example, L. M. Brown, Phys. Rev. Letters 14, 836
(1965)."R.Dashen, Phys. Letters ll, 89 (1964).

also, as an algebraic check, using tensor methods (see
Appendix). We find that a consistent solution is possible
only if

(DIF)meson-baryon coupling 3/2 r 1 I or 3 ~ (8)

APPENDIX

In this Appendix we shall give some of the details of
the calculation that yields the values of the D/F ratio
displayed in. Eq. (8). To this end, we write Eq. (8) in

the slighly altered form

= lim q'" d4x e"' *(y'I P'„'(x),Pr'(0))0(xo)l li
g'-+0

C

lim T'&'. (A1)
+2 +2 (pr p)2 0'-+0 .

z g=012 ~ 8.

Here Q' is a nonet of axial charges corresponding to the
axial current J„'and it»' the nonet of pseudoscalar fields.

We use the generalized PCAC hypothesis

r)vJ s=cQ' (A2)

so that T'r' is the off-mass-shell p&'+baryon octet ~ p'
+baryon-octet scattering amplitude. We shall suppress
the baryon charge and spin indices.

Our first task is to explicitly demonstrate the can-
cellation of the ill-defined terms in the q

—& 0 limit. On

introducing a complete set of intermediate states in the
first term on the right-hand side of (A1) and performing
the space-time integral, we find that the contribution of
each intermediate state vanishes in the q' —+ 0 limit save
for the mass-degenerate baryon-octet states. With an
implicit sum over intermediate spin and charge indices

The third solution in Eq. (8) gives the unacceptable
result tr(p) =0.

We a,re grateful to Dr. David L. Judd for the hospi-
tality extended to us at the Lawrence Radiation
Laboratory.

Notes added i22 malgscriPt.
1. Since this paper was written, we have become

aware of an important paper by S. Coleman I Phys.
Letters 19, 144 (1965)j in which the scheme of Dashen
and Gell-Mann (Ref. 2) is shown to be self-contra-
dictory. The scheme proposed in the present paper does
not suffer from any of the troubes underlined by
Coleman.

2. The apparent ambiguity in the work of I'ubini
et at. (Ref. 4) has bothered other authors as well. (See,
e.g., S. Okubo, LUniversity of Rochester report (un-

published)j. The very simple procedure used above,
which electively resolves the point, has been noticed
independently by J. D. Bjorken and W. I. Weisberger

(private communication).
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we thus obtain

q'" d'x t,~''*(y'
I P '(x) y'(0) jg(x ) I y&

(y'I z„'(0)
I
y'+iI'&(y'+iI'I4»(0)

I y&
='Lg "

-2~(y'+rI') qo'+&(y') —&(y'+a')

1 (y'I4»(0)
I y —q'&(y —q'I J„'(0)

I
y)-

2&(y—~')

We write

qo' —&(y)+&(y—iI')

+O(qi) . (A3)

T'&= T,.i.'&+ Iu(p')A'&u(p)
2&V)

(A7)

(y'l 4'(0)
I y) =

LI
'—k'j 'u(p')75E'(k')u(p), (A4)

in which the form factor E'(k') is a matrix in charge
space and k=p' —p. Then, in accordance with the
PCAC condition (A2), we have

(y le„'(0)
I
y&= —~(~/m&2)u(pb, &,E'(0)u(p) . (As)

In the q' —&0 limit the denominators occurring in
Eq. (A3) become simply 2p„'q'& and 2p„q'I". Accord-
ingly, the right-hand side of this equation may be
written as

(c/2'') Q' —P)—'u(p')

~M+7. p'
&& v q'v5E'(0)l v~'(k')

E 2p'. q'

M+q Pl—v5E'(k'), Iv. ASE'(0) u(p)+o(~»)2pq')
= (c/m&2) L&2—k2)-iu(p')

Mq q'l
I

1— IE'(0)E&(k')
p'. q' )
My. q l+ I

1—,IE'(k')E'(0) (P)+o(q ) . (A6).q' )
The scattering amplitude T'&' is well-defined as q'

vanishes except for its baryon pole term T~,i,'&. We
write

~0"~V.'4 '+PA'~V '4 '
a,b,c etc.= 1,2,3.

(A11)

Here lover indices transform under the defining repre-
sentation of SU(3); upper indices transform as the
complex conjugate of this representation. The conven-
tional D/F ratio is then given by

D/&= (~+a)/( -e) . (A12)

We must also list the various couplings to the pseudo-
scalar octet that are assumed to dominate the ampli-
tude A. In the s and I channels there is a decuplet
+age coupling

precisely cancels the terms in (A6) which are am-
biguous in the q' ~ 0 limit. Thus the limit in (A1) is
well defined, and we may write this relation as

u(p') I
E'(0)E&'(k')+EJ(k')Z" (0)fu(p)

=u(p')A" (q'= 0)u(p)
+ (2~u'/~) C

'—k'3(y'I ~LQ'8'(0) 1 I y) (A9)

The evaluation of the equal-time commutator of the
axial charge with the pseudoscalar field can be per-
formed only with the aid of some specific model. We
shall avoid this evaluation by analytically continuing
(A9) to the unphysical point k'= p' where this term does
not contribute. We shall also neglect the variation of
the form factor E'(k') and the amplitude A" in the
region 0~& k'~& p'. Accordingly, we find

E'(0)E'(0)+E'(0)E'(0) =A."(q'=0) . (A10)

This relation forms the basis of our calculation of the
D/F ratio. We assume that the amplitude A. '&' is domi-
nated by the exchange of systems in the s and I channels
that transform as a decuplet and by the exchange of
systems in the t channel that transform as octets and
singlets. It is only necessary to specify these SU(3)
transformation properties; the spin of these exchanged
systems does not enter into the calculation.

The tensorial method will be used to illustrate the
calculation. Although this method is perhaps somewhat
clumsy, it has the virtue of being self-contained. The
baryon octet-pseudoscalar octet coupling may be
written as

This pole term,

1
2'..."= (p') v E'(q"), , v~'(q')

M—y (p'+q')

1+V~'(q'), V~'(q") u(P)~—v (P q')—
p'g= —u(p') E'(0)E'(k')

2p 'q

g
+E'(k')E'(0) (P)+0(q.),

2 'g
(AS)

'k, i„tptq'p, e'"'+Hermitian adjoint. (A13)

However, crossing symmetry of the amplitude 2 for
zero four-momentum mesons demands that X=~, or
that this coupling be pure D type. This pure D coupling
leads to the assignment of the quantum numbers for
this system that was noted in the text. The octet C»

An octet Cp and singlet X are exchanged in the t
channel. The coupling of this octet to the initial and
final pseudoscalar wave functions p and p' is generally

(A14a)



REMARKS ON SATURATION OF EQUAL —TIME COMMUTATORS

baryon coupling is

n'pt bg, bc,c+
p'/tbsp,

4,b, (A14b)

and the remaining singlet couplings are

ttt'bcttt, bX, gtbg, bX. (A15)

These coupling terms operate in conjunction with the
octet projection tensor

(A16)

and the decuplet projection tensor

(+ @t cb'
c)
—tIt a'b'c' —t. [b a'b b'b c'+. . .5 (A17)

where the omitted terms refer to the other 5 permuta-
tions of the indices abc. In terms of this notation, the
constraint (A10) for the case of the pseudoscalar octet
becomes (within traceless wave functions)

n'~g "+b g" bb'+np~g "+b b"'t'tg +pnbb "tI'g "g'b 'b

+p'b "tI'g. b"'b '+ (a ~ a', b e-b b')
= ego[a- ' IP g. b,-"e.gb+ (a e-b a', b +-+ b')

+Os[n'~b &bg"'t4"+P'~b 6'bg""&g'

+ (a ~ a t b ~ b )5+ g&[bba'bb, cbgc'b&, c5 (A18)

Q Bpb bb'b "bg"——0,
perm

(A19)

where the sum extends over all 4I permutations of
abed and bp ——+1(—1) for even (odd) permuations.
This linear dependence reduces the number of such
products that contribute within traceless wave func-
tions to 8, which is, of course, precisely the number of
SU(3) invariants in the octet-octet scattering ampli-
tude. Upon comparing coefFicients of the independent
combinations of Kronecker symbols that occur in
(A18), or otherwise by making appropriate contrac-
tions, one finds the relations

Here the index pairs (a,b) and (c,d) refer to the initial
meson and baryon, respectively; the corresponding
final-state pairs are primed.

It is straightforward (but tedious) to work out (A18)
in terms of various products of four Kronecker-delta
symbols. There is one linear relation among these
products for, since the indices take on only the values 1,
2 or 3, their completely antisymmetrical sum vanishes.
That is,

K"(0)IZ&(0)+Et(0)K"(0)=A*'. (A23)

If we take the index' to correspond to a singlet and the
index j to correspond to an octet we conclude as above
that

(D/F) EBB (D/F)t-channel exchange BB (A24)

Then, interchanging the roles of i and j we obtain

(D/F) PBB (D/F)t-channel exchange BB~ (A25)

Therefore,
(D/F)»Tt = (D/F) b~TI (A26)

and Eqs. (A20) are not altered for this more general
case. We thus Gnd the same values for the (D/F) ratio
as previously obtained. This was indicated in Eq. (9)
of the text.

The procedures outlined above should enable the
reader to work out the results on magnetic moments
stated in the text. While there are obvious differences
between the space-time kinematics encountered in the
two situations, the SU(3) analysis is essentially identi-
cal. The only nontrivial difference lies in the circum-
stance that the relevant equal-time commutator, in the
electromagnetic case, must perforce be gleaned from
some model, such as the quark model which leads to

We may also apply the constraint (A10) to the case
where one of the pseudoscalar 6elds is a singlet, the
other remaining an octet. In this case the only ex-
changed system that contributes to the amplitude A is
the t channel octet. It is easily seen that the constraint
then requires that the D/F ratio of the system ex-
changed in the t channel be identical with that of the
pseudoscaler field, or that

(A21)

With this additional condition, Eqs. (A20) have a solu-
tion only if

n/p=0, -', , or 5. (A22)

These values yield the D/F ratio quoted in Eq. (8) of
the text.

The case in which 8"J„'=cI"is not proportional to
the pseudoscalar field tt', can be treated in a similar
manner. One arrives at a constraint identical in form
to (A10) with only K'(0) replaced by a new matrix
K '(0)

n s(n+p) = oSyo+ Son,

2np s(n+ p)'= ——
o +to,

p' l (n+p)'= ——(7/6) Oio+ @op',

-', (n+p)'= —,
' 0', go

—-', (Xs(n'+ p')+ eg.

(A20)

[Q'( o), 8.'(*)5= 'f""I,"(*), (A27)

g„' being the electromagnetic vector current. One is
free, of course, to postulate that the commutator in
(A27) represents a higher degree of truth than the model
from which it emerged.


