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Some properties of the operator ny, ~ representing the number of photons localized in a Gnite volume V at
time t are investigated. To some extent these properties reflect the well-known difhculty of localizing photons
in space-time. However, it is shown that, when the linear dimensions of V are large compared with the wave-
length of any occupied mode of the Geld, the nz, & operator acquires some simple properties. The commutator
of nrtand th, e detection operator A (x,t) is expressible in an interesting form. The commutator and relations
derived from it become particularly simple for certain space-time regions which we label conjoint and dis-
joint. An orthogonal set of eigenstates of ng, ~ is found, together with the corresponding eigenvalues, and it
is shown that an arbitrary state is expressible in terms of these eigenstates. Some Nth-order correlations of
the nz, & operators are evaluated, and the results are used to calculate the probability distribution of eigen-
values of nz, & for an arbitrary state of the Geld.

A(x, t) = P ltq, ,ei. ..expi(k x—ckt),

in the form

At(x, t) A(x, t)dsx.

Here Akts is the annihilation operator for photons of
wave-vector spin mode k, s; ex, , is the unit polarization
vector satisfying the relation

1. INTRODUCTION

'HERE are many problems in quantum optics,
particularly those concerned with photoelectric

measurements of the field, which are most conveniently
treated with the help of an operator 8y, & representing
the number of photons localized in a finite volume V at
time t. 6~ & can be expressed in terms of the detection
operator' 4 A(x, t), which we define by

Ls is the normalization volume, and t k,sI stands for the
set of all modes of the field to which the detector re-
sponds. The effective number of modes in this set will
in general be finite for a finite normalization volume.
It can be shown that the number of counts registered
by a photodetector is represented by 8«, and that cor-
relations between counts registered by several photo-
detectors are given by normally ordered products of
n~ & operators. ' ' ' In practical situations, a surface of
area S of the photodetector is usually exposed to nor-
mally incident plane waves for a time T, and we can
then identify the volume V with the volume cTS swept
out by the area S in a time T.

It can be seen from the definitions (1) and (2) that,
when the volume V coincides with the total (normaliza-
tion) volume I.s, ti v, becomes identical with the number
operator

&z, at&x, s ~

f k, s)

Q ~&k, s ' &k, st &s,s'3 (3)
Moreover, the expectation values of n&, & and A are very
simply related for Fock states of type

~
Ini. ..I) by

(nv, )= (U/L')(n).*This research was sponsored by the U. S. Air Force Cam-
bridge Research Laboratories, Once of Aerospace Research.

'See, for example, the review by L. Mandel and E. Wolf,
Rev. Mod. Phys. 37, 231 (1965). We adopt the convention used
there of representing all operators by a caret sign.' See, also, S. S. Schweber, An Introdgction to Relativistic QNmstlm
I'ield Theory (Harper Bz Row, New York, 1961), 1st ed. , p. 172.' R, J. Glauber, Phys. Rev. 130, 2529 (1963);131,2766 (1963).

4 T. F. Jordan, Phys. Letters 11, 289 (1964). ' L. Mandel, Phys. Rev. 136, 31221 (1964).
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In general, however, although nz t, and 8 always com-
mute, the eigenstates of 8 are not necessarily also eigen-
states of Ay ~, except in the trivial case where the number
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of modes is unity. Furthermore, two operators By, |,,
and By, , &, do not strictly commute even for disjoint
space-time regions (Vi, ti) and (V2, tm). These facts,
which are manifestations of the difhculty of localizing
photons in space-time, make Ay g somewhat more
awkward to handle than the number operator B.

Nevertheless, as we show below, for volumes V
whose linear dimensions are large compared with the
wavelengths of all modes of the set Ik,s}, the operator
8y & acquires some simple properties. We shall see that,
for certain space-time regions which we designate as dis-

joint and conjoint, the commutator of t1v, i and A(x, t)

is expressible in a simple form. This allows us to find the
complete orthogonal set of eigenstates of By, & and the
corresponding eigenvalues, all of which are degenerate
to infinite order. The notation of disjoint and conjoint
space-time regions is found to be useful also in the dis-
cussion of correlations of the operators By,~, which are
encountered in many problems in coherence theory.

2. EVALUATION OF THE COMMUTATORS

From the definition (1), and the well-known com-
mutation rules obeyed by ak „we can immediately
write down the commutator of A(x, t) and At(x', t'). Thus

1
[A(x, t),Atx', t']=—p ek, ,ek, ,*exp(i[k. (x—x') —ck(t—t')]);I 3 {k,s}

[A(x, t),A(x', t') 7= [At(x, t),A) (x', t')]=0,

where the product of two vector operators is here to be understood as a tensor operator.
Consider now the commutator of A(x, t) and t1) (. From (2),

[A(x,t),n), i ]= [A(x,t),At(x', t') A(x', t')] d'x'

[A(x,t),At(x', t')] A(x', t) d'x',

and with the help of (1) and (5), on interchanging orders of integration and summation, we obtain

1
[A(x,t),@i i.]=- p g ek, ,(ek, ,* ek, , )dk „exp[i(k x—ckt)] exp(i[(k' —k) x' —c(k' —k)t']) d'x'. (6)

L9/2 {k y

Let us take the volume of integration U to be in the form of a rectangular box with sides l~, ~t2, la parallel to the
three axes, and let xo be the midpoint of this volume. Then

and
U

sin[2 (k,
'—k;)t;]c'(k' —k) *'d3~ —Vc'(k' —k)

—,'(k —k,)l,

[A(X,t),t1),(]= 2 p (tk, ek, , (ek, .* ek „)
L9/2 {k s} {k

sin[-,'(k, '—k;)t,]
exp(i[(k x ckt)+(k' —k) x—,—c(k' —k)t])g — . (8)

-'(k '-k )t,

We next consider the summation over k. It is clear that the principal contributions will come from values of k in
the neighborhood of k' such that

( ki —ki'~ &2/4,
ik2 —k2'i &2/lp,
[k3—k, '[ & 2/la.

(9)

If the lengths l~, l2, 13 are of order 1 cm or longer, as is usually the case, while the wave nun1bers k belonging to the
set Ik,s} are in the optical region, then the conditions (9) imply equality between the two vectors k and k' to a
very good approximation. We shall take it for granted throughout that these conditions on the linear dimensions of
U are satisfied. Accordingly, we may also write

&k, s &k', s y

so that
~k, s ~k', s' (~k', s &k', s') ~s, s' ~
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With the help of (10) and (11) we can write (8) in the form

V
[A(x, t),fir, ~ 7= P P cq, , eq, , exp[i(k'. x—ck't)]

J9/2 {Q} {Ql g1}

sin[-,'(k;—k )I;]
Xexp(i[(k —k') (x—x&)—c(k—k')(t —t')])g-

—,'(k;—k )I,
(12)

We now replace the summation over IkI by an integral according to the usual rule

1 1

Ls i~i (21r)'
d3k.

It is convenient to introduce a new variable k"=k—k'. In view of the inequalities (9) we may write

k —k'= [(k'+k")']'I'—k'

)

—k', (
k" i

(13)

and this allows us to express (12) in the form

V
[A(x,t),@v,g ]= P dj, ;sr; exp[i(k' x—ck't)7

J 3/2 (Qr ~f}

X
(21r)'

»in(2kI"4)
exp (ik" [(x—xs) —ck'(t —t')/k'7) g — d'k", (14)

where we have replaced the finite limits of the k&", k&", k3" variables by in6nite limits, since the principal contribu-
tions to the integral arise from small values of

( k,
"

(
such that

~

k;"
( &1/I; (j=1, 2, 3).The integrals have the form

of the well-known Dirichlet integrals

sin(1 k Ilt II)

exp(ik;"y;)—' ' '
dk;"=1, if ly

22
=0, otherwise.

By using (15) and introducing the discontinuous function U(x; V) defined by

U(x; V) = 1, if x lies within the volume V,
=0, if x hes outside the volume V,

we can rewrite (14) in the form

1
[A(x,t),@1,~ ]= Q A, ,aj,, exp[i(k x—ckt)]U[x—ck(t—t')/k; V].J 3/2 (g

(15)

(16)

(17)

Certain conclusions can be drawn at once from Eq.
(17). Let us call two space-time regions (Vr, tr) and
(Vs, ts) disjoint if, when one of the volumes V1 or Vs
is enlared by displacing the boundary outwards a dis-
tance c

~
t1 ts ~, the two volum—es do not overlap. Then,

if x& is any point in V& and x2 is any point in V&, the
events (xr, t1) and (xs,ts) will have a space-like separation.
Now if (x,t) and (V,t') are disjoint& U[x—ck(t—t')/k; V]

vanishes for all k, so that'

[A(x,t),fir, 1.7=0, if (x,t) and (V,t') are disjoint. (18)

Sometimes two regions (V, t) and (V', t'), which are
not disjoint, appear to be disjoint in relation to the

' Compare also the discussion by Schweber (Ref. 2) for a spin-
less 6eld and for equal-time operators.
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field. Thus, consider a field in the form of plane waves,
traveling in one direction, and let V and V' be nonover-
lapping volumes located side by side, so that no "ray"
of the Geld passes through both. If x lies within V, it is
clear that the function U[x—ck(t —3')/k;V'] vanishes
for any k,s mode of the field which is occupied, so that
the expectation value of the commutator

([A (x&/) ~Bi ~, r~])=0 . (19)

Let us call the space-time region (Vr, ti) conjoint with
(Vs fs), if the volume Vs can be reduced to Vs')0 by
displacing its boundary inwards a distance cItt —tsI,
and if the volume Vi lies entirely within V2. Then, if
x& is any point within V& and x2 is any point on the
boundary of V&, the events (xi, ti) and (xs, t&) will have a
space-like separation. Now if (x,t) is conjoint with (V,t ),

U[x—.k(~—~')/k; U]=1,
for all k, and from (17) we see that the commutator

[A(x,t),6i, , ]=A(x, t),
if (x,f) is conjoint with (V,t'). (20)

Again it is possible that two regions (V,t) and (V', t')
which are not conjoint may appear to be conjoint in rela-
tion to the field. If the Geld is in the form of plane waves
traveling in one direction, and if V is large enough to en-
close V and is located in line with and behind V, so that
every ray traversing V also traverses V', then for any x
within V, and a suitably chosen interval (t,

' —3), we shall
have U[x—ck(t —3')/k;U']=1 for any k,s mode of the
field which is occupied.

Needless to say, disjointness and conjointness as here
defined are not exhaustive properties, and a space-time
region need not be either disjoint or conjoint with
another. However in the special case of an event (x,t)
and an extended region (U, r'), it can be seen that (x,t)
is either conjoint or disjoint with (V,t) according as x
lies inside or outside V.~

3. EIGENSTATES OF AK, E

We can use the Hermitian conjugates of Eqs. (18)
and (20),

[A'(x, t),6v, v]=0,
if (x,t) is disjoint with (U, t ), (21)

[At (x,t),6v, ]= At(x, t), —
if (x,t) is conjoint with (V,t'), (22)

to derive the eigensta, tes of 8v, ~. Thus, if
I {0})is the

7 It would appear that points x lying neither inside nor outside
the volume V form a set of measure zero. However, this is not
strictly correct, since, as we have noted, it is not meaningful to
localize the position where the photon is absorbed to better than
about a wavelength. Accordingly, there is a small region (of
volume much less than V) in the vicinity of the boundary of V,
where we cannot strictly distinguish between points lying inside
and outside V.

vacuum state of the field, then from (21)

Bv, ,At(xt, ti) I {0})
=At(xt, tt)@r, r I {0}),
=0, if (xi,tt) is disjoint with (V,t), (23)

and from (22)

Rr, ,At(xi, ti) I {0})
= A (xi,ti)A.v, , I {0})+A'(xi,ti) I {0}),
=At(xr fi) I {0}), if (xi, ti) is conjoint with (V,t).

(24)

It follows that At(xt, ti) I {0})is an eigenstate of 8r, i
belonging to the eigenvalue 0 or 1 according as (xr, fi) is
disjoint or conjoint with (V,t). By operating on both
sides of (23) or (24) with At(xs, ts) on the left, and apply-
ing (21) and (22) we can similarly show that

&v.h'(»~4)A'(»~4)
I {0})

=mkt(», &,)At(» ti) I {0}), (25)

where m is 0, 1, or 2 according as (xi, tt) and (xs,ts) are
both disjoint with (V,t), one is disjoint and one conjoint
with (V,t), or both are conjoint with (V, t). The product
of several vector operators is to be understood as a ten-
sor operator. By continuing in this way we can readily
see that any state'

At(xiv, 4) . .At(x, ,~r) I {0})= I xsr, &N, ,xt,4) (26)

is an eigenstate of Rr, ~ if ( xt t),t, (x tiv)sarre either
conjoint or disjoint with (V,t), and that the correspond-
ing eigenvalue is equal to the number of events
(xr, tr), , (x~,trav) conjoint with (V,t). The states de-
fined by (26) are to be regarded as tensors. In particu-
lar, if t~=t2= =t~=t, then, apart from a set of meas-
ure zero, ~ any state of the type

IS)—=At(xiv, t) At(xi, t) I {0}) (27)

is an eigenstate of Ay, ~, and the corresponding eigen-
value is equal to the number of points x&, ~, x& lying
within V. Moreover it is clear that each eigenvalue is
degenerate to infinite order (at least as L~ )seionce

we may have an unlimited number of points outside V
in Eq. (22) without affecting the eigenvalue.

Despite the infinite degeneracy it is not dificult to
show that states of the general type (22) form an or-
thogonal set. Consider two diGerent states

IS)=At(x t) .iv. A—t(xi, t)
I {0})

aild

I
S')=—A (xsr. ',t) A (xt', t) I {0}).

If the states are diferent, the points x~, x2, ~, etc.
and x~', x~', - -., etc. cannot all coincide. Suppose that
x„does not coincide with any of the points xz', ~ .,xN''.
Then it is possible to choose a volume V such that x„
lies within V, while all the points x~', x~', , etc. lie out-
side V.r It follows from the foregoing that IS') is an
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eigenstate of 8v, ~ belonging to the eigenvalue 0, while

{S) is an eigenstate of tIN, i belonging to the eigenvalue 1
or higher. Since eigenstates of a Hermitian operator be-
longing to different eigenvalues are orthogonal, we see
that the different states of type (27) form an orthogonal
set.

The approximations involved in the derivation of the
commutator (17) are reflected also in the orthogonality
property, and it is apparent that difhculties will arise
with the foregoing argument if the separations between
corresponding points x~ and x~', x2 and x2', etc. are all
of the order of, or less than, a wavelength of the set
{k,s}.These difhculties are again connected with the
impossibility of localizing the position of a photon to this
accuracy. The orthogonality property therefore fails
for states which are sufficiently close. ~

x, s~=
I 3/2

At(x, t) .el, , exp[i(k x—ckt)]d'x, (28)

where the integral extends over the whole normalization
volume. Now since every Fock state is expressible in
the form

(A t)~1

{ {nl})=II { {o}&,
(n), !)

it follows from (28) that we can write

(29)

In order to prove that states of the type (27) form a
complete set, we will now show that any Fock state
{ {nl})(X—=k, s) can be expanded in terms of these
states. We 6rst note that the Hermitian conjugate of
Eq. (1) can readily be inverted to read

I {nl})=II ~ . At(xl„t) elAt(xl„, t) e&, At(x „,t) ~1{{0})

X— exp (i[kgb (xl„+ +x„„)—cklnlt])d'xl„d'x „. (30)
(n), !)

Since all the x~„, , x„„etc., apart from a set of measure zero, must lie either inside or outside V, we see that Eq.
(30) is an expansion of

~
Inl}) in terms of the eigenstates of trav i.

We conclude therefore that any state of the field can be expanded in terms of the eigenstates (27) of 6v, , and
that these states form a complete orthogonal set. However, the states (27) are not normalized to unity, and the pro-

jectors for these unnormalized states do not appear to offer a very simple resolution of the unit operator.

4. MOMENTS AND CORRELATIONS OF ~v, g

We will now apply the foregoing results to the evaluation of some moments of the 8v, & operators, which differ in
certain interesting respects from the moments of

We erst note that, whether (Vl, tl) is conjoint or disjoint with (Vl, tl), the operators

trav,

1, and A, v. ,.. commute.
For, froin Eq. (18) and its Hermitian conjugate (21), or from Eq. (20) and its conjugate (22), we And

~VI, &~~V2, &~—

VI

A (xl)tl) A(xl)tl)tivl, il d xl )

t1vl, ilA (xl)tl) 'A(xl~tl) d xl )

and similarly for the higher order products of operators. However, no obvious conclusion can be drawn if (Vl, tl) is
neither conjoint nor disjoint with (U&, t&) ~ On the other hand, when tl= t&

——t the operators

trav,

, , and trav, & always
commute, since one can be expressed as the sum of operators conjoint and disjoint with the other.

Consider now the problem of calculating the correlation between the number of photons in (Vl, tl), (U1,4),
(VN, tN), which, as is now well known, ' ' ' is given by the expectation value of the normally ordered product

( ~ @Vltl' ' 'tIVN, EN ,~ )
iN V~

(fail"(x~ltl) ' ' 'AiN (xN)tN)AiN(xN)tN) ' ' 'Ail(xlftl))d xl' ' 'd xN
VN

iN- 1 a

(~il (x4tl) ' ~iN —1 (XN—4tN —1)tlvN. &N

v VN 1

X+iN 1(XN-lptN —1) ' ' '~il(xlgtl))d xl' ' 'd xN 1 ~ (32)-
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We may use Eq. (17) or its Hermitian conjugate to move the RVN gN operator successively to the right or left.
If the regions (Ui, ti), , (VN, t&) are all disjoint, we find

(:&vg, tg itvN, tN')=P
&N—1 1

(Agg (Xigti) ' ' 'AgN 1 (XN-igtN —i)

X+gN 1(XN—lgtN —1) ' ' 'A tg(XJ1ti)t1VN tN)d Xi ' ' ' d XN

V1 tg ~VN ggN-1'+—VN, gN) '~ ~ ~ ~ ~ (33)

The same result holds also if (Vi, ti), , (VN, tN) are not disjoint, but if the volumes Vi, , VN in which photon
counts are to be correlated are located side by side in a field of plane waves, so that no ray traverses more than one
volume. In practice these conditions usually apply to correlation measurements with several photoelectric detec-
tors. From (33) it follows by recursion that

(:itv, , t,
' ' ttv, g:)=(ttv, , t, ' itv, t') (34)

if (Vi, ti), , (VN, tN) are all disjoint. .
The situation is very different if the regions (Vi, ti), , (VN, tN) cannot be treated as disjoint. Suppose that we are

again dealing with a held of plane waves and with identical volumes V, which are arranged in a straight line so that
every ray traversing one volume traverses all. Moreover, let the separations between successive volumes V~,

Vz, . , VN be c(tu —ti), c(t&—t2), , c(tN —tN i). Under these conditions every event in one space-time region has
corresponding events in all the others lying on the same light cone. In principle it is possible to set up a correlation
experiment with X photodetectors to which these conditions apply. Hence, if (x„,t„) belongs to any one of the
regions, (Ui, ti), , (Vgv, tN), we have from (17)

(LA(x„,t„),Av. g.j)= (A(x„,t„)), (3S)

and (x„,t,) appears to be conjoint with (V„t,) in relation to the field. This result can be used in (32) to move the
n~~ &„ operator repeatedly to the right. Thus

.&VN, gN:) =2 (Rig (Xlgtl) ' 'AgN 1 (XN lgtN i)

XA;N, (XN igtN i) Agg(xi, ti)(8vN, gN
—3+1))d xi d'xN i,

( ~ ~vl, tg ~VN gtN 1 (~VN, , tN +1)) (36)

appropriate, to move the nyN, & operator repeatedly to
the right. We then obtain

From (36) it follows by recursion that

~ ~ ~ ~
A ' nrrrg, $g

= (8 , , v( g,i,tv,
—g1) (8 „,v„gX+1)). —

Equations (34) and (37) are to be compared with the
corresponding formula for the total number operator where X(Vi, . , VN i,'VN) is the number of volumes

Ui, , UN i which lie within UN. From (39) it follows

by recursion that(:nN:)=(8(8—1)" (8+ltt —1)),

(37) ( ~ ~vg, t' ' '+vN, t ~ ) ( ~ ~vg, g' ' ~VN t, t ~

pvN, t
—&(Ui, , UN i, UN)J), (39)

where disjointness does not arise.
When the times t~, t2, ~ ~, t~ are all equal, it is not

difBcult to treat the more general situation, where the
regions (Vi,ti), , (VN, tN) are not necessarily either
conjoint or disjoint. We 6rst recall that any operator
A'y,

& can be expressed as the sum of operators conjoint
or disjoint with another operator 8&., &, since V can al-

ways be expressed as the sum of volumes falling inside
and outside V'. Accordingly, any normally ordered cor-
relation (with ti=t2 ——. . =tN) can be written as the
sum of correlations (:Rvt.g

.RvN, g. ), such that every
volume V„ lies wholly inside or wholly outside every
other volume V„(r')r).r If this is done, we can use the
basic relation (32) together with Eqs. (18) and (20), as

(:ti , v'' 'gttv, g'. )=ttv, g/Av, g K(V], ', Vg)]'—' '

X/RvN, g X(Vi),VN i,—VN) j. (40)

This relation reduces to (34) or (37) under the appropri-
ate restriction on the V's.

S. DISTRIBUTION OF EIGENVALUES OF n~, &

Let us now look brieQy at the problem of determining
the distribution of the number of photons ny, ~ localized
in the volume V at time t. This problem is most con-
veniently tackled by way of the characteristic function

(expiy@v, t). We first observe that the expectation value
of the normally ordered operator: exp(Rv, gx): is
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eigenvalues 8(x,t) and 8*(x,t). Hence

(:exp(nv, ~x):)= P (x"/r!)(:nv, ~".),
r=p

(41)
(expiytlv, &)

= P({v&,.}) exp{ U(e'& 1—)$ d'{vg, ,}, (45)

where the rth-order correlations (:ti"v,~.') are of the
type given by Eq. (37). With the help of (37) the above
sum can be evaluated, provided the use of the relation
(37) remains valid as r —+~. Since the derivation of this
relation was based on the commutator (17), which in-
volved some (good) approximations, the question of the
convergence of the expansion (41) when (37) is used
ought to be investigated. However, we will not go into
this question here, but merely note that, when the use
of (37) in (41) is valid

(:exp(trav, gx): )

= P (x"/r!)(av, ~(&v, ~
—1) (&v, ,—ry1))

r=P

where

U= 8*(x,t) 8(x,t) d'x,

1
8(x,t) = P vg„ej...expi(k. x—ckt) .

I3/2k s

Equation (45) gives the characteristic genera, ting
function for the distribution p(nv, ~) of the number of
photons ey, ~ in V at time t. The Fourier transform of this
function with respect to y is p(nv, &). However, the in-

version can be performed at once, if we recall that
exp{ U(e'& —1)$ is the characteristic function of a
Poisson distribution with parameter U. Then Eq. (45)
leads immediately to

= ((1+x)

trav,

,),

or, when x is replaced by (e'"—1),

(42)
&v, &

p(. )= ~({",.})-
ny, ~.t

(46)

(exp(iy@v, &))= (:exp{ trav, &(e'"—1)j:). (43)

By expressing the density operator p of the field in
the basis formed by the eigenstates

I {v&„}) of A(x, t) in
the general form found by Sudarshan, '

P= 9 ({»,.})I {», })({»,.} I
d'{»,.}, (44)

where p({v~„})is a generalized function, so that

we see that the operators A. (x,t) and At (x,t) in the defini-
tion (2) of nv, , can be replaced by their right and left

' E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).

(exp(iytiv, ~))=Tr Q({vq,}):exp{trav, (e's —1)j:
I {",.})({v,.} ld'{",.},

This relation is identical in form to that found pre-
viously' ' for the total photon number within the nor-
malization volume. It is also similar to the formula
obtained for the distribution of counts registered by an
illuminated photoelectric detector, when the inter-
action with the detector is treated in some detail. '

While the operator 8y, ~ appears to be the appropriate
operator for characterizing the number of photons local-
ized in (U, t), in the sense of a photoelectric measurement
of the field, it is not yet clear whether the eigenstates of
6&,& are equally useful. Although states of this type have
proved to be very valuable in some branches of statisti-
cal mechanics, the question remains to be answered by
applications to problems of practical interest.
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