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Observable Consequences of Fundamental-Length Hypotheses
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The postulate of the existence of a fundamental length may be expressed in terms of a minimum un-
certainty in position measurements, or equivalently as a minimum uncertainty in measurements of the
gravitational Geld. The postulate is expressed mathematically by means of "indeterminate operators, "whose
properties are discussed. With their aid, it is shown that the postulate of a fundamental length has as a
consequence a certain broadening of spectral lines. In the case of a fundamental length of the order of 10 '~

cm, the predicted broadening is much larger than the widths of nuclear gamma transitions already ob-
served. It is concluded that this fundamental length is already in serious contradiction with experiment. In
the case of a fundamental length due to gravitational e6'ects of the order of 10 "cm, as previously sug-
gested by the author, the broadening is too small to have been observed in any experiments done to date.
A modified Mossbauer experiment is suggested which should be capable of detecting this small broadening,
if it is present. The experiment is dBBcult, but appears to be possible with presently available techniques.
The gravitational-Geld uncertainties calculated by DeWitt, Peres, and Rosen, and others, lead to a still
smaller broadening, which our proposed method would be incapable of detecting.

I. INTRODUCTION AND SUMMARY
' 'N a previous article, ' the author has discussed the
~ - possible existence of a fundamental length, that is,
of an absolute limitation on the possible accuracy of
Ineasurements of positions of particles and of relative
readings of clocks. The existence of a fundamental

length / is expressed by postulating that the outcome of
a measurement of the position of an elementary particle
can never be predicted with greater accuracy than ~l.
There is some freedom in what postulate one makes
about uncertainties in the position of the center of mass

of a macroscopic body, as the uncertainties associated
with its di6erent constituent elementary particles
might partially cancel. A wide class of fundamental-

length postulates may be encompassed in the require-

ment
hx& lP (R/l),

where hx is the minimum uncertainty in the position of
the center of mass of a particle (elementary or com-

posite) of radius' R. P(y) is a nonincreasing function
which is of the order of unity when y is of the order of
unity and need not be deGned for y(&1. The assumption

that one makes about the possible improved accuracy
with composite particles is expressed through the
behavior of P. Equation (1) is to be thought of as

applying also to the reading of a clock of radius R. (We
are using natural units. ) Equation (1) applies inde-

pendently of the properties (except R) of the particle

being measured, and does not rule out the possibility of

stronger limitations for certain particles. The reader

should consult Ref. 1 for further details.

It has been shown (Ref. 1, Sec. VI) that the postulate

(1) is equivalent to the postulate

Dg,g& (l/R) p(R/l),

in which hg;I, is the minimum uncertainty of a com-
ponent of the metric tensor averaged over a cubic
space-time region of side R, in a coordinate system
which is nearly Lorentzian on the average. Equation
(2) applies separately to all components of the metric
tensor which are taken as independent. The posutlates
(1) and (2) are equivalent in the sense that either can
be deduced from the other.

There are a number of possibilities for l and P, of
which we mention three. The present author, ' by
considering the effect of gravitation on hypothetical
position measurements, arrived at Eq. (1) with

l-+6= 1.6X 10 "cm, P (y) = 1,

where 6 is the gravitational constant in natural units.
Several authors' ' have considered the problem of
measuring the gravitational Geld, assuming that test
particles are subject only to the known quantum-
mechanical uncertainties. They arrive at Eq. (2) with

1-v'G p(y) =y '.

In addition, the idea has frequently been mentioned
of a fundamental length of the order of baryon Compton
wavelengths. If one takes this as the fundamental
length, and also postulates that position uncertainties
for different elementary particles are independent but
that the largest number that can be put into a sphere of
radius R is of the order of (R/l)', then one finds Eq. (1)
with

l 10—"cm, P(y)=y '".
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Of course, other assumptions about P are also possible
with this value of l.

The purpose of the present article is to express the
fundamental length postulate in mathematical form,
so that consequences can be deduced from it; and to
show that it leads to a broadening of spectral lines
which, depending on the parameters l and P, may be
observable. For the bene6t of the reader who does not
wish to work. through the mathematics of Secs. II and
III, we give here a crude argument which leads to the
correct result for the broadening.

First, let us postulate Eq. (1), and consider for
simplicity a single elementary particle moving in a
potential energy Geld V(r). If the position of the particle
is displaced by br, its potential energy will be shifted by
an amount

hV=(VV) 3r.

According to the fundamental-length postulate, each
component of the displacement is in doubt by /, so that
V is also uncertain by the amount

~V& [vV[t.
The kinetic energy is unaffected, so the total energy of
the state is in doubt by

m&l(IvV(),
where ( ) denotes an average. Under normal circum-
stances, for a nearly stationary bound state with
average binding energy E~ and radius 8, we have

If there are a number of particles present, their average
energies are roughly additive, but by hypothesis the
uncertainties combine in such a way as to lead to a
factor P. An energy level of a bound system of radius R
thus has a minimum spread in energy given by

~E&Z, (l/Z)P (R/l), (g)

where Eg is now the total binding energy. One might
conclude, then, that the frequency of a transition
between two such states will be spread out by

a.& (J/Z)P(Z/l)Zn. (9)

However, the transitions usually studied in atomic and
nuc1ear systems involve mainly the outer particles, with
inner dosed shells remaining more or less undisturbed.
A more conservative and realistic estimate of the
broadening is therefore

b, v& (J/~)P (&/J) ~p, (10)

where uo is the average frequency of the transition. "

' If there is no correlation between the energy deviations of the
two states, one obtains Eq. (9);if they correlate so as to cancel the
uncertainty as nearly as possible, the result is Eq. (10).Equation
(10) therefore gives the minimum possible broadening.

The result (10) can be obtained much more directly
if instead of Eq. (1) we postulate the equivalent Eq.
(2). The observed frequency of a transition undergoes
a gravitational shift given by

bv vs{a),

where Q ) is the average gravitational potential in the
region occupied by the emitter. According to (2),
however, {P)=sr(gpp —1) is in doubt by

~{4)& (~/~)i3(~/~) .
We therefore immediately obtain Eq. (10) again. The
fact that the postulates (1) and (2) lead to the same
predicted broadening is an instructive illustration of
their equivalence. I.et us now examine the order of
magnitude of the predicted broadening for some
particular fundamental-length hypotheses, in the case
of nuclear y transitions.

First, if we postulate a fundamental length of the
order of 10 " cm, then we have P(E/f) 1 (since for
nuclei E 10—"cm), and we Gnd from (10)

Dv& vp(l/E) vp.

According to this hypothesis, therefore, the widths of
nuclear p transitions ought to be very large, of the same
order of magnitude as the average frequency. Of course,
observed widths are many orders of magnitude smaller
than this. We conclude, therefore, that this funda-
mental length postulate is already very strongly
contradicted by experiment.

If we postulate the present author's fundamental
length (3) together with the strong-broadening assump-
tion (9), then the widths are of the same order of
magnitude as the narrowest MOssbauer widths observed
to date ' " i.e., around 10' sec '. For e ample, in the
case of the 93-kev, 44-sec transition of Ag"', we have
En 10' eV, and Eqs. (3) and (9) lead. to a width about
10' times larger than the "natural" width 1/f (f=rnean
lifetime). It is amusing to note that Bizina ef ul. s

observe a width of just this order of magnitude. They
calculate that under the conditions of their experiment
the line ought to be broadened by a factor of 10' due to
magnetic interactions, and the resonant cross section
they observe ls abou~ ' of what they calculate on this
basis. Their result could therefore be explained by this
fundamental-length hypothesis, but this is probably
fortuitous as there are other effects present. Also, as
mentioned before, the smaller broadening (10) seems
much more reasonable than (9). Nevertheless, it would
be worthwhile to re6ne these measurements.

If we make the more reasonable postulate of (3)
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1408 (1963) LEnglIsh transl. : Soviet Phys. —JETP 18, 973
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together with (10), we Gnd for nuclear transitions

hv& (l/R)vp 10 "vo (12)

For vo 10' eV, Eq. (12) predicts a width hv 10 '~ eV
1 sec '. This is much smaller than the narrowest

widths observed so far. Its experimental detection
would consist of measuring the width of a gamma
transition with a lifetime of several seconds or more
(and with all other sources of broadening excluded),
and finding a measured width greater than 1/t, and of
the order of magnitude predicted by Eq. (12). In Sec.
IV, an experiment is suggested which should be capable
of detecting this broadening if it is present.

If one postulates Eq. (4) instead of (3), the predicted
broadening is reduced by another factor of 10 "due to
the factor P(R/l). There does not seem to be any way of
detecting this very small broadening at the present
time.

The argument just given for the existence of the
broadening is obviously not rigorous or even very
convincing. For example, it is quite normal in quantum
mechanics for the potential energy to be unknown but
for the total energy nevertheless to have a sharp value.
Our erst task, therefore, is to make this argument
more rigorous; and this, in turn, requires that we ex-
press the fundamental-length postulate itself in mathe-
matical form. Accordingly, in Sec. II we de6ne "in-
determinate operators, "which have the property that
they can never be diagonalized but are always subject
to a minimum uncertainty. In Sec. III, the fundamental
length postulate is expressed by using indeterminate
operators to represent x (or g;i,), and the minimum
spread in energy is derived. As in this section, two
derivations are given, starting from the two equivalent
ways of stating the fundamental-length hypothesis.
There is no attempt to make the treatment relativis-
tically covariant, as we are dealing with systems in
which relativistic effects are not important. In Sec. IV,
a modi6ed Mossbauer experiment is described which
should be capable of detecting the broadening predicted
by (12) if it is present, thus providing an experimental
test of the author's fundamental-length theory. The
experiment is quite dificult, but does not appear to be
impossible with presently available techniques.

The paper has been organized in such a way that the
understanding of the experimental part (Sec. IV) does
not depend on any knowledge of the mathematical part
(Secs. II, III). Accordingly, if the reader is willing to
accept (provisionally) the broadening formulas (10),
(12) on the basis of the crude arguments just given, he
may skip directly to Sec. IV, where the proposed
experimental test of Eq. (12) is discussed.

There are two appendices: Appendix A briefly dis-
cusses the question of relativistic covariance, and also
contains some remarks about the "stochastic" theory
of Ingraham. "It is concluded that Ingraham's theory

"R. L. Ingraham, Nuovo Cimento 24, 1117 (1962); 27, 303
(1963);32, 323 (1964).

is not a fundamental-length theory in the sense meant
here; that is, it is not equivalent to Eq. (1) or (2).
Appendix 3 discusses some mathematical properties of
the indeterminate operators, and their time dependence.

HA is to be represented by an operator, this means that
for any normalized ket

~ n), we must have

Clearly, the operator A must not have any eigenfunc-
tions. This property can be guaranteed in the following

way: Let there exist a Hermitian operator Q with the
following properties: (a) Q is bounded, e.g.,

—1&Q&1. (13)

Equation (13) means that all the eigenvalues of Q lie in
the indicated range, or that (n~Q~n) is always in the
range. (b) Q fails to commute with A, e.g.,

(14)t A,Q7=9, .

Now because of (14) and the uncertainty principle,

while because of (13),

~A~Q&X,

hQ& 1.

(15)

Equations (15) and (16) immediately combine to give

(17)

which is the desired result. An operator such as A,
whose commutator with some bounded operator is a
nonzero c number, will be called an "indeterminate
operator. ""

Although an indeterminate operator has no eigen-

functions, and therefore no eigenvalues, it is clear that
the moments of the probability distribution of 3 can
always be found; that is, one can evaluate (n~A'~n),
(n

~
A'~n), etc. While the above properties will be suffi-

cient for the purposes of the following section, the
rigorous self-consistent definition of indeterminate

"This could obviously be generalized by requiring that the
absolute value of the commutator have a nonzero lower bound,
instead of being necessarily a c number.

II. INDETERMINATE OPERATORS

The problem to be treated in this section is: How can
we give mathematical expression to a requirement such
as (1) without doing too much violence to the operator
formalism of quantum mechanics' At 6rst glance this
seems impossible (see, e.g., Ref. 1, Sec. VII), since the
existence of eigenfunctions corresponding to sharp
values of all operators plays an important role in the
development of quantum theory. In fact, however, the
requirement can be expressed quite simply.

Suppose there is some physical quantity A for which
we wish to require



operators requires a discussion of such things as domains
of de6nition. These matters a,re discussed in. Appendix
8, along with the time dependence of the Q operators
in the Heisenberg picture. These considerations vrill

permit us to answer the question of the possible results
of a single measurement of an indeterminate operator.

These operators may seem somewhat strange, but in
fact we have all (perhaps unconsciously) used at least
one such operator ever since we 6rst began learning
quRntunl mechaDlcs: thc D1OIIMDtMl1 of a pRrtlelc lD R

box is an indeterminate operator. For a particle in a
one-dimensional box of length I., vre have

Therefore,

In the next section, we express the postulates (1) and
(2) by using indeterminate operators to represent
x (or g;I,), i.e., by postulating the existence of appro-
priate Q operators. The uncertainty in energy is then
derived by shovring that the Hamiltonian also fails to
collllIlllte w1th cel'talll opel'atol's coll'talIIIIlg Q. No
physical interpretation is given to the Q operators here,
as vre vrant our results to depend only on thc funda-
mental-length hypothesis, not on any particular
physical interpretation of the origin of the fundamental
length. For the purposes of this article, the Q operators
are to be thought of simply as a mathematical device
vrhich permits us to express the fundamental-length
postulate in precise form and draw conclusions from it.

A3'.A(r Q)& ~l(r VV)—(1/m)(y Q)(.
From (19) it is clear that

A(r Q)&R. (24)

which means that thc velocity e satis6es

)v ( &[~fP(z/&)g I-,

vrhere m is the mass.
It is now clear that this @rill not do, since the theory

is supposed. to apply to macroscopic as vrell as micro-
scopic bodies. For macroscopic bodies, nz is roughly
proportional to R', so this vrouM lead to velocity
limitations contrary to everyday experience unless p(y)
decreases at least as y

—'. This is not the case for the
fundamental-length theories of Eqs. (3), (4), or (5). We
conclude, therefore, that Q must be a new operator,
perhaps having something to do vrith the measuring
appal atust but Rt Rny rate Dot oDc of thc famlllar
dynamical variables of the system.

Now let us consider a single elementary particle
moving in a potential 6eld. The Hamiltonian is

3'.=p'/2NI+ V(r), (20)

and (1g) takes the form

[r Qsh=~~

Using (20), (21) and the usual commutator between r
and y, we can evaluate the commutator"

[X,(r Q)]=ilr VV—(i/e)y Q. (22)

It now follows from (22) and the uncertainty principle
that

III. DEMVATION OP LINE BROADENING

A. Fundamental-Length Approach

Equation (1) means that for any state of a system
under consideration, the position of the center of mass
of a body of radius E. is always in doubt by at least
IP{I|!/f).Therefore, if the position is represented by a
SchrMinger-picture operator, that operator D1ust be
indeterminate. Accordingly, we postulate the existence
of a vector operator Q such that

[r.,Qsl='@(&/f)~.s, (1~)

(where Greek suffixes label the three space coordinates),
Rnd

—1&Q &1. (19)

The commutation rule (18) is satisfied if we simply
write

Q= Ip(R/l)y,

so the question naturally arises of vrhether the funda-
D1cntRl-length postulate can bc lntcI'pI'etcd slIDply as
requiring the boundedness of y. The hound that one
gets fol p 1Il this case 18

iyl &[@(~/f)3 '

A3'.&—l(r VV)——(y Q) .
E. nz

For stationary or nearly stationary bound states, the
first term on the right-hand side of (25) is always
positive because of the virial theorem. The only question
is whether it can be cancelled by the second term. A
moment's reelection shows, hovrevcr, that, vrhile such a
cancellation might take place for some states, it cannot
take place for all states of a. complete set because the
operator y Q has zero trace. It follows that if its ex-
pectation value is positive for some states in a complete
set, permitting partial or complete cancellation, there
must be other states in the set for which it is negative,
leading to reinforcement. Also, it is shown in Appendix
8 that the Hamiltonian is not "maximRV' from vrhich
it follows that its eigenvalue problem is insoluble.

The situation can be understood in somewhat more
detail as follovrs: Ke can express the position operator
I' RS

I'= I'0—/P,

~ Operators such as r Q are understood to be symmetrized, so
that they are Hermitian.
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in which r2 commutes with Q, and P is the momentum
conjugate to Q. The Hamiltonian can now be broken up
into a zero-order part plus a perturbation as follows:

where

and

X=Xp+X',

Xp——P2/2m+ V (rp),

X'= —/P. V V(rp)+. . .

(27)

(28)

(29)

The eigenfunctions of X2 are simply products f(rp)p (Q).
They are very highly degenerate, since 3'.o does not
contain P or Q at all. We refer to these zero order energy
levels as "multiplets. " The vanishing of the trace of

p Q can easily be seen in the representation of the
zero-order eigenfunctions.

Now suppose we try to construct eigenfunctions (or
approximate eigenfunctions) of the full Hamiltonian X.
Under the perturbation, a multiplet may be split into
many levels, but if / is small the splitting will be small

compared with the energy difference between multi-

plets. In fact, because of parity conservation, there are
no matrix elements of the Grst-order term in 3C' con-

necting states of the same multiplet. It follows that the
splitting within a multiplet is at least of second order
ln /:

5E=O(P) (30)

where bE is the difference in energy between any two

perturbed states belonging to the same multiplet.
Because of the tracelessness of p Q, there will always be
some states for which

(p Q)«. (31)

We call these "broadened states, " since from (25) and

(31) they have
hX& (f/E)(r V V). (32)

Now if i is small, it is clear from (30) and (32) that the

width of a broadened state is greater than the multiplet

splitting. It follows that the energy distribution of a
broadened state overlaps the energies of all states of the
same multiplet, so that even the smallest perturbation
will mix them. A state as normally prepared, therefore,
will always contain large admixtures of broadened

states satisfying (32), unless the entire multiplet con-

tains no broadened states. This last circumstance is

clearly rather exceptional.
The rest of the argument can be taken over virtually

unchanged from that of the introduction. For most

potentials we have
(r &V)- [Ea[.

For composite systems, the contributions of different

particles combine to give a factor of P. For a transition

involving only an outer shell, then, we Gnd as before for

the spread in frequency:

hv&20(l/E) p(R/l), (33)

which is the desired result.

B. Gravitational Approach

The derivation given in the previous subsection may
be criticized as being rather artiGcial. The model used
is that of a nonrelativistic particle moving in a force
Geld, with the fundamental-length postulate incor-
porated; however, it is known that this particle picture
does not work in any case for distances less than the
Compton wavelength. Field theory must be used in
order to allow for virtual pair creation, etc. It is there-
fore of more than academic interest that the argument
starting from the postulate (2) be presented, despite its
greater complexity. Another reason why the previous
derivation is unsatisfactory is brought out in Ap-
pendix B.

To express the postulate (2) in mathematical form,
it is necessary to represent the gravitational Geld by
indeterminate operators. As a preliminary to this, it is
necessary that the gravitational held be quantized. This
involves a number of problems, but fortunately -we do
not need to solve them. It is suflicient for our purposes to
quantize the Geld in linear, nonrelativistic approxi-
matiori. The, t is, we only go to the Grst order in the
gravitational constant 6, and to second order in time
derivatives (i.e., second order in c ', if we were using
cgs units).

Following the usual procedure, then, "we represent
the metric tensor as the sum of the Lorentz metric plus
a small correction:

where
g ~= g a"'+4v ~

g2

Oki» =
~

——+2')0'»= 4»»G2';»,
BP

(36)

where G is the gravitational constant and T;J, is the
energy-momentum tensor of matter. There is also a
subsidiary conditiog. :

g f.k —0 (37)

Since we do not require a completely covariant
formulation, it is convenient to break up the tensor f;2
into scalar, vector, and tensor parts according to trans-
formation properties under pure rotations:

boa—=4;
Oa=+a j

f p= Ap AJ. — ——(38)

~4 L. D. Landau and E. Lifshitz, The Qassica/ Theory of Fields,
translated by M. Hamermesh (Addison-wesley Press, Inc. ,
Cambridge, Massachusetts, 1961), pp. 323-326.

goo" = —
g

'~= 1, g I ~=0 i/k
and 7;I, is presumed to be small, so that terms of second
or higher order in p;I, may be neglected. %e now dehne

4;2—=V;a——',g;2"'V, (34)
where

v=—v" =g""'v;~. (35)

In terms of the tensor p;q, the field equations take the
form



Note that the three-dimensional space metric is now
taken to be the ordinary Euclidian one, i.e., without the
minus sign. It will presently be apparent that p is the
usual Newtonian gravitational potential. %e also
divide the energy-momentum tensor into parts as
follows:

&oo=—U;

T~P=7're ~

For the energy-momentum tensor due to a mass density
p and velocity Geld v, we have, up to second order in v:

U= p(1+v') .
J=—pV j

~ep= p&e&p.

The sums go over aH wave number vectors x satjsfying
the periodic boundary conditions.

After some straightforward manipulations, we arrive
at the Hamiltonian

&&[yt(~)y(~) —2Bt(~) $(~)+A t.,(~)a.~(~)]

+U(- )[~( )+~'(- )]
—2J(—x) [$(x)+B'(—x)]

+r &(—g)[A p(x)+At p(—x)], (45)

with the commutation relations

From Eqs. (36), (38), and (39) we now have for the
Geld equations: [4 (~)A '(~')]= ~KKr y

—Q&=4m GU.
—QB=4sGJ; (4t) xG

[&-(~)A'(~')1=— («)

while the subsidiary condition (32) becomes

@—y S=o;
8$/Bt vA =0. —

The Lagrangian density which leads to the Geld
equations (36) is

xG
[A.,(~),A t„(~')]= (s.,s,.+s„,s„)s„„.,

all other commutators being zero. In Eq. (45), R' is the
Hamiltonian for matter alone, i.e., for everything in the
system except the gravitational Geld.

It is easy to verify from the equations of motion that
— (~ e'~V")-e'&"

8xG 4(r) = —'[4 (r),3'-]= iud(—x) exp(ix r)
V

Q.[y(x) exp(ix r)
V

+y'(x) exp( —ix.r)];
$(r) = +,[$(x) exp(ix r)

QV
+Bt(L) exp( —ix r)]; (43)

A p(r)= g„P p(L) exp(ix r)
V

+At p(x) exp( i~ r)];—
g,U(x) exp(ix r);

V

Qle wish to represent our Gelds by Schrodinger-
picture operators. To this end, we Grst make a Fourier
expansion with periodic boundary conditions in a box
of volume V as follows:

—yt(x) exp( —ix r)], (4'1)

with similar relations holding for 8 and A. . The sub-
sidiary condition (42) cannot be satls&ed as an operator
identity, but must be treated as a condition on allow-
able state vectors. If for a given wave number x we take
the s axis in the direction of x, and make use of (43) and
(42), we see that the subsidiary condition (42) can be
expressed by the requirement

[~(.)+&.( )]I &=0;

[~-( )+&-.(.)]I )=o, (48)

where
I ) is an allowable state vector.

In order to represent the postulate (2), we must make
the field operators indeterminate. Accordingly, for each
x we postulate the existence of bounded scalar, vector,
and tensor operators Q(ic), R(x), and S pic), and the
commutation relations

J(r) = Q.J{x)exp(ix r);
V

g„r p(L) exp(ix r).
V

(44) [~( ),Qt( ')]='«( )~.. ;

[a.(~),z,&(~')]=i«(~)a.,a„„,;

P-~( ),~,.&( ')]='«( )(~.,b~.+~-~~,)~.." (49)

The parameter $(~) will be determined later in such a
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way as to give the result (2). Before doing this, how-
ever, we must make sure that the commutation laws
(49) are compatible with the subsidiary condition (48).
The commutation rules make the 6eld operators in-
determinate, so that they have no eigenvalues; accord-
ing to (48), however, certain combinations of them must
have the eigenvalue zero. Hence, our bounded operators
must be defined in such a way that the operators
appearing in square brackets in (48) commute with all
the Q, R, S. It is easy to see that this will be guaranteed
if we require

postulate (2) for the potential g. The other components
of the metric tensor a,re handled in an analogous vray
using the operators E. and S.

To derive the broadening, consider some position-
dependent Herrnitian operator g (r), involving only the
matter variables, represented as follows:

g(r) = Q.g(«) exp(i«. r),
QV

and define an operator I' by

R, («) = —Q(«) = ——',S„(«);
R.(«)=—S .(«), nag (50) I'= y r rd'r=, g —x x ~ -x . 58

C(~(R)),(Q(R))j-'e (@f). (54)

It vrill simplify matters at this point if we specialize
slightly by requiring that P(y) =y ", where n is some
nonnegative number, not necessarily an integer. Now
averaging over a region of radius ~E. is essentially the
same as limiting ourselves to wave numbers for vrhich
~& 1/R, and this is also true for the cubic space-time
region over which g is to be averaged. Using {43) and

(52), therefore, we arrive at the requirement

2 n+1

L(4(R)»(Q(R)}3=~f Z &(~)=i — (55)
«&1jg E

Replacing summation by integration in the usual way,
we Gnd that (55) will be satisfied for all R if

$(z) = {m+1)i'1"~"—'. (56)

Equations (51), (53), and (56) are equivalent to the

The only one of the bounded operators that we vrill

really need is the scalar part Q. By combining {49)and
(50), we see that it satisfies the commutation rules

fy(«), Qt(«') 1=it~(x) S.„.;
$8,(«),Qt(«') j= i7&—(x)8„„;

LA„(«),Qt(«') j=ilg(z)b„„..
All other commutators involving Q are zero except
those derivable from (51) by taking Hermitian con-

jugates.
We are now ready to formulate the postulate (2).

Define the field operator

1
Q(r) = Z.LQ(«) exp(i«r)

QV
+Qt(«) exp( —i«r) j (52)

and require that it be bounded between plus and minus
unity at all points. It obviously follovrs that its average
over a spherical region of radius E. is also bounded:

—1&(Q(R))&1. (53)

Now Eq. (2) will follow for g if

Now, using (45), (51), (58), and the equation of motion

ij= [g,Xg,
we find

L~,I'j=Z.{—'~( )m( )+Q'(—)j&

—&Z.~(- )&(.) L~(.)+~'(-.)j
2gG

IP
+2U(«)+ La, («)+a.t(—«)j

xG

lP
+47,(«)+ —

I A„(«)+A„t(—«)j
2xG

+2r,.(«) . (59)

For reasons similar to those given in the previous sub-
section, the erst summation is traceless and therefore
does not affect the broadening on the average (though
perhaps for some states). We now have to consider the
other terms in (59).Let

y= (1l2~G)9 («)+0'(—«)j
Then we have from the equation of motion (41):

z'y+2U(«) = —g.

To lovrest order in time derivatives,

2U(«) 2U(«)

Hence, up to second order in time derivatives,

2U(«) 2p(«)
dy+2U(«) =

in which we have used (40) and noted that the other
term in U is already of second order in time derivatives;
its second time derivative is of fourth order, therefore
negligible under the circumstances vre are considering.
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The treatment of the terms involving 8 and A is
similar. Here, however, J and r are already at least of
6rst order in time derivatives, so all contributions of
thcsc terms are negligible after' thc required two IDore
time differentiations. Hence, on the average (leaving
out traceless operators), and through the second order
in time derivatives, we have

or

vr here

I X,I $=2ilg.g(—st) p(») jii(st)»-s,

[xi) 2i'If'(r)r(r)d'v

I (r)=

(60)

(61)

To evaluate the operator F, note that for a system of
particles

Pr)lr exp( ig —r;),

vrhere the sum goes over all particles and m; is the mass
of the jth particle.

Combining (56), (62), and (63) we lnd after s()me
algebra:

d y" (r—r)
l'(r) =—~"~ —Z

dt I
r-r

I
"+'.

p)z+1) " d rsinN))

) 2 i s dt)Egi (65)

(La.,rg) =M'-. (I"(r))dsr.

If the indicated time diQerentiation is carried out in
(64), one of the resulting terms is seen to be

TJ
21"Z P;

g g, a+1

(T=kinetic energy), while the others are of the same
order of magnitude, on the; average. '6 Combining this
with (67) and the uncertainty principle, we 6nd for a

"The origin is now placed at the center of mass of the system of
particles.

'6 Because F is a time derivative, its average value must be zero
for a stationary state (nearly zero for a nearly stationary state),
from which it follows that the other terms, on the average, are of
the same magnitude as the one shown. Of course, it does not
follow that (V) or (FQ) needs to be zero.

(with a convergence factor used if necessary).
So far, we have not specilied the operator r)(r); it is

now convenient to de6ne it as follovrs'5:

rl(r)=/ —"F(r), r&E;
=0 r&R.

Combining (61) and (66), we now fmd

state vrith radius E.
(T)s

a3:~r&Z
g2n-1

(69)

(Since we are only interested in orders of magnitude,
we need not distinguish between (T ) and (T)s.) By
inspection of (58), (66), and (68) it is also clear that

(T&
+I Q+e

ge—8

)('l ~
"+' l (R~

~&& (T&I —
I
-&T) Pl ——

I
~

kz) z k&i
(70)

Except for the factor of P, Eq. PQ) is the same as (32)
because of the virial theorem. As before, for the fre-
quency spread in a transition, we 6nd

)) E))
6) &sg pl

—I. P1)z k&i

This derivation is not subject to the objection made
against thc one of the previous subsection, as it vras not
necessary to discuss precise localization of particles at
all. The indeterminate quantity responsible for the
broadening in this treatment is essentially thc retarda-
tion correction to the Newtonian gravitational poten-
tial, averaged over the region occupied by the nucleus.
The treatment does not depend on any assumptions
about R in Eq. (45). R may be assumed to include all
non-gravltatronal CRects.

C. COILOINsi05.

The considerations of this section justify the linc
broadening given by Eq. (10), obtained by crude
arguments in Sec. I.The consequences of (10), already
discussed in Sec. I, therefore follow immediately. In
particular, the idea of a fundamental length of the order
of 10 "cm can be ruled out on the grounds of serious
contradiction vrith experiment.

In the author's opinion, it should come as no surprise
to 6nd that this large fundamental length is in conQict
vrith experiment. A fundamental length is, after all, a
rather drastic change in our basic concepts. One would
expect, therefore, that any attempt to use ordinary
quantum mechanics in the region of the fundamental
length should lead to dramatic convicts betvreen theory
and experiment, such as one encounters in trying to
apply classical mechanics to atomic systems. Hence, the
fact that ordinary quantum mechanics has had even
qualitative success in dealing with nuclear spectroscopy
should have been taken as an indication that we were
not yet approaching a fundamental length in the
nuclear domain. It does not necessarily follow, hovrever,
that the length 10—"cm plays no major role in physics,
as what wc mean by a fundamental length is something
rather specihc. Cf. Appendix A.
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As already mentioned in Sec. I, the much smaller
fundamental length considered by the author' is
neither confirmed nor contradicted by any experiments
done to date. In the next section, we suggest an experi-
ment which appears to be feasible (though difficult)
with presently available techniques, and which would
be capable of detecting the line broadening due to this
fundamental length, if it is present.

IV. SUGGESTED EXPERIMENTAI. TEST

A. Principle of the Experiment

The broadening of nuclear gamma lines predicted by
the author's fundamental-length theory is given in
order of magnitude by Eq. (12). For typical gamma
energies, the broadening is of the order of 1 sec '. In
principle, then, the way to detect this broadening would
be to measure the width of a gamma transition of life-
time several seconds or more by means of the Mossbauer
eGect. If the broadening is present, the observed width
will be larger than the reciprocal of the lifetime.

A quick look at the orders of magnitude involved,
however, reveals that the situation is not quite so
simple. The width is ordinarily measured by measuring
the relative velocity at which source and absorber are
no longer in resonance due to the Doppler shift. A width
of 10 "vp tas predicted by Eq. (12)$, however, cor-
responds to a Doppler velocity of only 1 or 2 A per min.
Thus, even if other sources of broadening are eliminated,
an impossible degree of precision in control of the
velocity is required. Vibrations in the apparatus alone
normally lead to velocity fluctuations several orders of
magnitude larger than this.

For such narrow lines, therefore, it appears that
something other than the Doppler e6ect must be used
to shift source and absorber out of resonance with one
another. The author would like to suggest that the
gravitational red shift be used for this purpose. Let us
see how this can be done. If two identical nuclei are
separated. from each other by a distance d parallel to a
gravitational Geld, their resonance frequencies will
diGer by

8p= ppgd ~

where for the gravitational field at the earth's surface,
g= 980 cm sec ' or 1.09+40—"cm ' in natural units. If
the resonance width is I', the nuclei will be shifted out
of resonance when

d &F/upg—=h.

For the width predicted by Eq. (12), this is satisfied for
h 10 ' cm. It will be less, of course, for long-lived
transitions if our predicted broadening is not present.
The width of a line, therefore, can be measured by
measuring h, the vertical separation at which two
nuclei cease to be in resonance. Since it is no longer
necessary to move source and absorber relative to one
another, it becomes possible to have them both in the

F
II

Fro, i. Schematic diagram of proposed experimental arrange-
ment. Photons from a cubic crystal of side I.pass through pairs of
slits of width X to counters C& (located above the crystal) and Cs
(located to the side). Ii denotes the direction of the earth' s
gravitational 6eld.

same crystal. This eliminates the problem with vibra-
tions, since vibrations of one part of the crystal relative
to another are just the acoustical vibrations of the
crystal, and their e8ects are already included in the
standard theory of the Mossbauer eBect.'

The proposed experimental setup is indicated
schematically in Fig. 1. A cubic crystal of side L con-
tains nuclei of a suitable isotope, some of which are
excited. There is a gamma counter Cq above (or below)
the crystal and one to the side, C2. The photons enter
the counters through pairs of slits of width X. What
happens will be discussed in more detail in Subsec. D,
but the qualitative situation is clear. If h is less than L,
the photons emitted in the vertical direction will be in
resonance only with those absorbers within a vertical
distance h of their emitter; those emitted in the horizon-
tal direction are in resonance with all the absorbers
between the emitter and the counter. The horizontally
emitted photons thus have a higher probability of being
absorbed (or scattered) than the vertical ones, resulting
in a higher counting rate in the counter C~ than in C2.
The extent of this eBect is obviously dependent on the
width of the line; in particular, if the line is so broad
that h))L (which is the case in all experiments done up
to now), there will be no effect at all.

In the following subsections, we discuss the selection
of an appropriate isotope, the elimination of other
sources of broadening, and finally the actual prediction
of the experimental result. The role of the slit width X

will then be made clear. We confine ourselves to indicat-
ing what needs to be done, without pretending to solve
all the experimental problems (e.g., preparation of a
suKciently pure sample). There is no doubt that the
problems are dif6cult but it is felt that they can prob-
ably be overcome if a sufFicient e6ort is made.

B. Selection of Isotope

We first list some desirable properties that a gamma-
emitting isotope should have in order to be useful for
our proposed experiment:

(a) Its "naturaP width 1/3 must be less than the pre-
dicted width due to fundamental-length broadening.
According to Eq. (12), this means that the mean lifetime
t must be at least a few seconds. This requirement,
obviously, is absolutely essential.
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(b) It should have at least a fairly large Mossbauer
fraction (fraction. of photons emitted without recoil);
this means a low value of vp, and a high Debye tem-
perature for the crystal.

(c) o,, the ratio of internal conversion electrons to
gamma photons, should not be too high.

(d) If the isotope has a magnetic moment, and these
are randomly oriented, the resulting broadening of the
line will swamp the eGect we are looking for. It would
be helpful, therefore, for the isotope to have spin zero.

(d') lf the spin is not zero, it is necessary to lineup the
nuclear spins. This can be done if the substance used is
paramagnetic, in which case the nuclear spins are
aligned by their hyper6ne interaction with the elec-
tronic magnetic moments. "

(e) The isotope in its ground state should be stable, or
at least very long lived; otherwise its decay products
will build up as impurities and broaden the line.

(f) For economic reasons, it is desirable that the isotope
occur naturally, and with a high natural abundance.

A survey of the table of isotopes" indicates that there
are none that satisfy all these requirements. The best
prospect appears to be the isotope 45Rh'". Its excited
isomer 4sRhms (s'+) decays to the ground state (-', —)
by internal conversion, or by emission of a 40-keV
gamma photon. We now discuss its properties in relation
to the requirements listed above:

(a) Publishedvalues for the half-life range from45min
to 58 min. "We will use the last figure in our calcula-
tions, as it is the most recent quoted in the table. In any
case, the lifetime is quite long enough for our purpose,
and use of another figure would only affect minor
details.

(b) As mentioned above, the energy of the transition is.
40 keV. The Debye temperature of rhodium in the
range 10—14 deg K has been measured as 450 deg K."
(It decreases at higher temperatures, but our experi-
ment must be done at very low temperatures, so this is
the appropriate value to use. ) For temperatures small
compared with the Debye temperature (corresponding
to the conditions of this experiment), the Mossbauer
fraction f is given by"

f=exp( —2w),
where

w= —'E/kiri R=E '/2Mc'

Inserting the values E~=40 keV, Ori=450 deg E,
%=103 amu, we find f=0.9968, i.e., nearly all the
gamma emissions are recoil-free. This requirement,
therefore, is exceptionally well satisfied.

'7 C. J. Gorter, Physica 14, 504 (1958).' D. Strominger, J. M. Hollander, and G. T. Seaborg, Rev.
Mod. Phys. BD, 585 (1958)."F.Clusius and C. G. I.osa, Z. Naturforsch. 10a, 545 (1955).

(c) Avignon, Michalowicz, and 8ouchez's find nir =40,
O.z, =470, a,nd can account for all the decays with these.
The total value of 0., therefore, is 510. This is far from
ideal, but acceptable.

(d) This requirement is not satisfied. The spin of the
ground state is —',, the magnetic moment is —0.0879
nm.""

(d') Rhodium is paramagnetic Th. e configuration of
the ground state of the free atom (apart from closed
shells) is 4d'Ss: 4Fsts. According to the Lande formula,
the free atom should have a magnetic moment of 6
Bohr magnetons. In the solid metal, the magnetic
moment is believed to be due entirely to the spins of the
two uncompensated d electrons. " At very low tem-
peratures, this leads to a magnetic moment of 2 Bohr
magnetons.

(e) Rh"' is theonly known stable (or long-lived)
isotope of rhodium. '

(f) The isotope occurs naturally, with an abundance
of 100%.

There are a number of other isotopes which satisfy
requirement (a), but all encounter difliculty with one or
more of the other requirements, making their use
apparently more difficult than Rhm3. We do not wish to
state categorically that this is the only possible isotope,
but it does seem to be the best, according to data
available to the author. Hence, all the following calcu-
lations will be based on the assumption that Rh'" is
being used. The reader who wishes to consider some
other isotope will And it easy to generalize the theory of
the experiment.

C. Elimination of Other Sources of Broadening

The "natural" width of the line in question (half-
width at half-height in angular units, in the absence of
fundamental length or other broadening) is I'o=-', t
=1.0X10—' sec—'=3.3&10—"cm—'. The broadened
width predicted by Eq. (12) is in order of magnitude
I' 10 pp 2 &( 10 cm 10 I'p. The fundamental-
length broadening will therefore be the dominant eKect
if other sources of broadening can be eliminated, or
reduced suKciently. The criterion which we use in this
subsection is that broadening due to other effects may
be no greater than I'p. From the orders of magnitude
involved, it is clear that this requirement could be
relaxed by two or three factors of 10, without destroying
the possibility of detecting the fundamental-length
broadening.

Now consider a crystal of very pure rhodium metal
at very low temperature. At absolute zero, the elec-
tronic spins are all aligned by their mutual dipole-dipole

'0P. Avignon, A. Michalowicz, and R. Bouchez, J. Phys.
Radium 16, 404 (1955)."H. Kuhn and G. C. Woodgate, Proc. Phys. Soc. (London)
64A, 1090 (1951).

~ T. I. Kakushadze, Ann. Physik 8, 366 (1961).
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interactions, and the nuclear spins by their hyperGne
interaction with the electronic spins. If the crystal is
perfect, therefore, the local magnetic 6elds seen by the
dMerent nuclei will all be of exactly the same magnitude
(though not necessarily the same direction), and all
nuclei will be oriented in the same way relative to the
local 6eld. The magnetic shift of the resonance fre-
quency will therefore be the same for all the nuclei, and
they wiQ remain in perfect resonance with one another.
The same applies to shifts due to local electric 6elds.
For an actual crystal at small but 6nite temperature,
there will be a small number of randomly distributed
impurities, dislocations, and wrongly oriented spins,
causing a slight variation in local fields and consequent
broadening of the line. We must require that these
broadenings not be too large. We consider in turn the
various interactions present:

(I) Electron-nuclear interactions: Apart from local
CGects con6ned to the immediate neighborhood of the
impurity, the main broadening CBect due to an im-

purity, dislocation, or wrongly oriented electronic spin
is through the magnetic dipole-dipole interaction
between electronic and nuclear spins. If X is the density
of the crystal in atoms/cm' and F. is the fraction of
sites occupied by impurities, dislocations, or wrongly
oriented electronic spins, then the broadening is"

In our case, as mentioned before, p„=0.0879 nm, p,=2
Bohr magnetons. At room temperature, X=7.26X 1022

cm ', and we will use this 6gure since there seems to be
no experimental value for low temperatures. If we use
these numbers and require I'„,&I'o, we 6nd

~,&2X10-'o. (73)

As a limitation on the number of impurities and dis-
locations, Eq. (73) is a requirement on the purity and
perfection of the crystal. As a limitation on wrongly
oricnted clcctronic spins, it is a icquircment on thc
temperature. The electronic spins are oriented chieQy

by their mutual near-neighbor dipolar interactions. The
energy of this interaction is

T,&8X10-3 degK. (74)

(2) Internuclear interactions: There is also a broad-
ening due to isotopic impurities and wrongly oriented
nuclei; and it should be remembered that the excited

& A. Abragam, The I'rieci p/es of Nuclear jfugrIeI4srN (Clarendon
Press, Oxford, 1961),pp. 126-8.

The fraction of wrong orientations is

F,=exp(—W', ,/kT, ),
where T, is the temperature of the electronic spin
system. Equation (73) will now be satisfied for wrong
or'entations if

isomer Rhms is itself an "isotopic impurity" for this
purpose. If P is the fraction of such impurities, the
broadening is

I' =p 2KB .
Here we use p„=1 nuclear magneton, since it may be
the moment of an impurity or of the excited state.
Requiring I' & I'o gives

As a limit on impurities, Eq. (75) chiefly limits the
number of nuclei that we can initially excite, and hence
the counting rate. As a limit on wrong orientations, it
gives another temperature requirement. The nuclear
spins are oriented chieQy by the hyper6ne interaction
with the electronic magnetic moment associated with
the same site. For the free atom, the hyper6ne inter-
action energy Whq has been found" to be 0.144 cm ' (in
checking this reference, the reader should bear in mind
that our units di6er by a factor of 2x from the ones used
there). We can estimate W'hg in the metal by assuming
that the hyper6ne interaction is of the form Bp, p„, and
that the coupling constant 8 is the same in the metal as
in the free atom. This assumption, together with some
elementary angular-momentum theory and the proper-
ties mentioned in Subsec. 3 under property (d'), gives
8'hg ——0.065 cm '. Now

F„=exp( —Wqg/kT„),

where T„ is the nuclear-spin temperature. Equation
(75) will be satiated if

T &9&10 4degK. (76)

(3) "Resonance" broadening: This is the effect of
transfer of excitation from one nucleus to another via
electrostatic interaction. Its broadening effect is less
than the natural linewidth if thc nearest-neighbor
distance is greater than a wavelength, as in the present
case.

It is believed that the CGects discussed above con-
stitute the most important sources of broadening under
the conditions of this experiment. If conditions (73)-
(76) are satisfied, therefore, one would expect the
observed width to be I'o, unless some hitherto un-
known broadening mechanism, such as our funda-
mental-length broadening, is present. It appears that
the purity requirement (73) will be hardest to satisfy
(a mass spectrometer might have to be used). Tem-
peratures considerably lower than those of (74) and
(76) have been attained, though there may be some

difhculty in maintaining such temperatures while the
experiment is being carried out.

D. Predictions of Experimental Results

Wc must now calculate the counting rates in the two
counters Ci and C2 of Fig. 1, as functions of the line-
width F and slit width ). For de6niteness, we assume
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ho= 3.0X10 6 cm.

In general, if the width is I, this is replaced by

h= hp(P/Po) ~

(77)

(78)

The average absorption cross section at resonance is'

where

0' =0'0 (Po!r), (79)

(2Iy 1)(e+1)vo'

Here I is the spin of the ground state, —,
' in our ease.

There is no corresponding factor for the excited state,
since the degeneracy is lifted by the hyper6ne inter-
action. Putting in the numerical values (n =510), we get

a-o = 7.47 X i0 2' cm2 . (81)

Now suppose we start with a certain fraction P*
Dimited by (75)$ of the nuclei excited. We simplify by
assuming that the cross section is given by (79) if the
vertical separation of emitter and absorber is less than
h, and is zero otherwise It is also necessary to notice
that all the absorbers are in their ground hyperfine
level, while only half the emitters decay directly to this
level. Hence half of the emitted photons are not subject
to absorption at all, since they are shifted out of reso-
nance by the hyperfine interaction.

From Fig. i it is clear that the only photons counted
will be those emitted from a layer of thickness ), and at
an angle &X/L relative to the horizontal (in the case of
C&) or the vertical plane determined by the slits (in the
case of Ci).

Of the photons emitted in the vertical direction, half
cannot be absorbed (as mentioned above), and the
other half are in resonance with the intervening ab-
sorbers only up to a distance h. The absorption prob-
ability for a vertically emitted photon is therefore

&vegt= gt 1 exp( Uvert) jy—

that L in Fig. 1 is 1 mm, that conditions (73)-(76) are
satisfied, and that the distance I between slits is L.

We con6ne ourselves here to a rough order-of-
magnitude calculation, for the follovring reasons: First,
the theory to be tested only makes order-of -magnitude
predictions; second, many details depend on the de-
tailed experimental geometry. We also use a simple
particle picture for the photons. It is easy to convince
oneself that a more careful calculation vrould not a6ect
the qualitative results.
g'~The width of the Mossbauer resonance absorption is
twice the linewidth. If the linewidth is simply I o, there-
fore, the cross section vrill be reduced to half its peak
value at a vertical separation ho, determined by

vogh o=21'o .

Putting in the appropriate numerical values for our
problem, we And

where

Therefore
U~ert= 0Nh= 0-oBQo= 1.6X i0

Z.„t=0.8X io

Regardless of F, therefore, very few of these will be
absorbed.

For photons emitted in the horizontal direction, vre

must distinguish between two cases. If X&2h, the
photon is in resonance with all the intervening ab-
sorbers unless it is one of the fraction of photons vrhich
are out of resonance. For this case, then, we And on the
average

Uh„oat/—2 . (83)

The situation may be summed up as follovrs: If X=I,
the two counting rates are equal. As X is decreased, the
ratio of the rate in Ci to that in Cg increases until

2h, after vrhich there is essentially no further change.
Thus, the experiment yields an approximate value for
h, and hence for the width.

Let us now compare in more detail the predictions
which one would make with and without the funda-
mental-length hypothesis. If there is no fundamental
length (or other source of broadening), we have P= Po,
h= ko. For small slit width, we Gnd from (77), (81),
(83):

Uh„= 2.7i .

Since this is fairly large, we must take into account the
fact that the effective absorber thickness depends on
the distance of the emitter from the edge. We have

1Ih =— i——
p

=0.4i .

x )
e&I —2 Uhm —[dx

Li

In this case, then, we would predict that the ratio of
counting rates should increase with decreasing
eventually attaining a value of about 5/3 for X 6X 10 '
cm, and then remaining approximately constant as X is
decreased further.

On the other hand, if there is a fundamental length
with broadening given by (12), then k~10 ' cm,
P 104PO. Using (79), (82), and (83), we now 6nd for
small X:

Uhor 2 Uvert j

Ph„~2X 10—'

%e v ould now predict that the ratio of rates should
increase with decreasing X only until X i0 ' cm, at

If X)2h, only a fraction of about (2&/X) of the inter-
vening absorbers, on the average, will be in resonance
vrith the emitted photon, so vre ind

~EL(2k~ L
Uh. ,=

~

—
~

~pNhg = U' g
—.

2 EXP X
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which point the two rates differ by only about one part
in 104. Further decrease of X should not appreciably
affect the ratio.

It is clear that the predictions of the two theories are
quite diAerent, so that the outcome of this experiment
will be strongly affected by the presence of a funda-
mental length.

We must anally say a word about the counting rate.
It will clearly be smallest when X is smallest, i.e., for
X=6)&10 ' cm, the smallest value we need. According
to (75), the fraction F*of excited nuclei can be as large
as 6)&10 '. The number of excited nuclei in the layer
which is counted is XF*XJ'. The solid angle gives a
factor ),j6L. We must also multiply by 1/t to get the
rate of decay, and divide by (1+a) to get the gamma
counting rate. This gives

which is large enough to measure without difhculty. It
will be larger, of course, for larger slit width.

E. Canclusion

The proposed experiment should be capable of
detecting the broadening predicted by the author' s
fundamental-length theory, thus providing an experi-
mental test of the theory. The smaller broadening
predicted by Eq. (4) could not be detected in this way.
Therefore, if the large difference in counting rates
predicted by Eq. (86) is found, it would show that the
author's theory is wrong, but would not invalidate the
work of Refs. 3—6. The experiment is difficult, but it
appears that, with sufficient effort, it could be performed
in the foreseeable future.
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APPENDIX A: COVARIANCE; REMARKS ON
"STOCHASTIC" THEORY

Although we have not employed a manifestly co-
variant notation in this article, it is clear from the fact
that the postulates (1) and (2) refer to the outcomes of
meuslremeets that the physical content of the theory is

capable of being expressed in covariant language. For
the outcome of a measurement can always be expressed
as a scalar (perhaps involving the degrees of freedom of
the measuring apparatus).

Pro. 2. World lines of two observers,
m and P, communicating by means of
light signals. AB, BC, CD, and DE are
paths of light signals.

As an example, Fig. 2 shows schematically the world
lines of two observers, a and p, both equipped with
clocks. The line ABC' represents light signals ex-
changed between the two observers. If the observers are
to be Lorentz observers, they should be moving with
constant velocity (more generally, in free fall). If their
observations are to relate to the same Lorentz frame,
their relative velocity should be zero (more generally, a
determination of their relative velocity should have
given the result zero, with the minimum possible
uncertainty). One way of measuring the distance L
between the two observers is to measure the time
required for a light signal to propagate back and forth.
Thus, observer a could say that L (at t&, the time of
event 8) is one-half the time between A and C, as
measured by his clock. I. as dehned by this particular
measurement is therefore

It is obvious that L is an invariant; Eq. (1) wou]d
postu1ate that the value of this invariant can never be
predicted precisely in advance.

The synchronization of clocks can be treated by
considering the time interval between events 8 and D,
as measured by the two observers. For observer p, the
time of 8 is just r~, the reading of his clock at event 8,
and similarly for D. His value of the time difference is
therefore

(A2)

For observer e, the time of 8 is measured as halfway
between the times of 2 and C, as measured by his clock:

C 0

tg(a) = rg+ d$»= rc —— -d$».
2 g 2

Similarly,

(A3)

and the difference between the time intervals measured

0 f Jl

tD(a) = to+ d$»= rg+ d-$»+ — d$». (A4)
2 0 A 2 0

The time difference between the two events as measured

by e is therefore

(A5)
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by the two observers is

dsp — dS~ .
2 A

(A6)

The difference T is now a measure of the loss of syn-
chronization of the two clocks between events 8 and D.
The minimum uncertainty in T means, therefore, that
clocks cannot be known to be synchronized below a
minimum uncertainty.

These considerations lead to two conclusions: first,
the fundamental-length postulate (1) is expressible in
covariant form; second, since clocks can be used to
measure distances, it is inconsistent to require a mini-
mum uncertainty in distance measurements without
requiring the same Ininimum uncertainty for the
synchronization of clocks. To study the transformation
laws relating quantities measured by diGerent observers
in relative motion in the presence of a fundamental
length, one must take into account the fact that the
relative velocity of the observers cannot now be known
precisely. The author hopes to treat this problem in a
future publication.

It is now clear that the "stochastic" theory of In-
graham" is not a fundamental-length theory in our
sense of the term. In Ingraham's theory, clocks can be
synchronized precisely, while we have just seen that this
is inconsistent with the minimum position uncertainty
(1) in our kind of fundamental length theory. And in
fact, his theory cannot be interpreted in terms of
minimum position uncertainty of test particles. The
physically meaningful quantities in his theory are not
the field amplitutes g(x), but averages of them over
finite, but precisely speci/ed, regions, e.g. ,

e(x) = 4(x+()f(P)d%, (A7)

where the integral goes over a spacelike surface, and f
is a normalized weighting function. The average @(x),
defined by (A7), is defined at all points x in Ingraham's
theory. Since x, the center of the region over which the

T is again a scalar, and in fact a combination of scalars
of exactly the same type as L in Eq. (A1). Thus the first
term on the right-hand side of (A6) could be interpreted
as twice the value of L as measured by P, while the
second could be considered to be the sum of two succes-
sive measurements of L bye. If L is subject to a mini-
mum uncertainty, therefore, T must be also. Observer
a could synchronize his clock with that of P as follows:
After receiving the light signal at C, carrying with it the
reading 7e of P's clock at 8, he resets his clock so that
he agrees on the time of B.Referring to Eq. (A3), then,
he sets his clock so that

1
Te='re+ -ds».

2 A

average is taken, is specified precisely, it is clear that a
prescription such as (A7) is to be interpreted, not in
terms of a fundamental length in our sense of the term,
but rather in terms of an extended (though precisely
localizable) test particle. In our theory, the precise
location of the region in which the field has the measured
average value would be in doubt, owing to the un-
certain position of the test particle.

Even this interpretation of the stochastic theory
leads to some difhculty, because of the fact that the
average g is defined at all points. First, it is not clear
physically how this can be done, since test particles
would have to overlap in order to measure @ at points
sufficiently close to one another. Second, if p is indeed
known at all points, @ can also be calculated simply by
inverting the integral transform (A7). For example, in
the case of the Gaussian weighting function used by
Ingraham,

f(&')=L(2~)'"~3 'exp( —lP/l')

the Fourier transforms of P and p are related by

@(k)=y(k)e p( —-'k'x').

Hence, a knowledge of the averages implies a knowledge
of the detailed behavior of the field, so it is not clear
that the theory can be interpreted as a limitation on the
possibilities of measurement at all. It might have to be
interpreted simply in terms of nonlocal interaction.

There are, therefore, some problems connected with
the physical interpretation of Ingraham's theory (as he
himself states). The main point for our purposes, how-

ever, is that the stochastic theory is not a fundamental-
length theory in our sense of the term. The absence of
the large line broadening (11), therefore, is not neces-
sarily evidence against Ingraham's theory.

APPENDIX 8: MATHEMATICAL PROPERTIES
OF INDETERMINATE OPERATORS

In this appendix, we discuss some mathematical
problems inherent in the definition of indeterminate
operators, using the momentum of the particle in a box
as an example. The main reference for this is the book
by von Neumann. '4

Consider, then, the problem of the particle in a one-
dimensional box of unit length, or rather, the Eilbert
space of complex functions iP(Q) defined in the interval
0&Q&1. According to the formalism of Sec. II, the
"momentum" operator

r= —i(d/dQ)

should be indeterminate, since we have

L»Q3= —i
0&Q&1.

'4 J. von Neumann, M athemat7'cal b'olmdations of QNantum
Mechanics, translated by R. T. Beyer (Princeton University
Press, Princeton, New Jersey, 1955), especially pp. 145-169.
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Sy the reasoning of Sec. II, therefore, we should have

in the domain of functions satisfying

y(1) =y(0) =0. (83)

P' is indeed indeterminate: it has no eigenfunctions.
However, its domain can be extended in an in6nite
number of ways. Thus for any 8, 0&8&2m, we can
define an operator Pg by

Py = i (d/dQ—)

in the domain of functions satisfying

y(1) =y(0)exp(N) (34)

The operators P& are easily shown to be Hermitian;
moreover, they are all "extensions" of P', since for any
8, the domain defined by (84) includes that of (83) 24

Furthermore, each Py possesses a complete set of eigen-
functions. We have

Pg„y(Q) = (2vrrs+8)p„e(Q)

4-~(Q) =emL~(2~I+~)Qj,

If P is to be Hermitian, however, its domain (the set
of functions on which it is defined) must be restricted in
some way, and there are many ways to do this."For
example, we might dehne an operator P by

P'= i (d—/dQ)

domain must be restricted still further by requiring

d'a gn-- 4(0)= 4(1)=0
ifQo its

m=0, 1, 2, ~

This may seem a rather arbitrary limitation of the
domain, but the following points should be kept in
mind: First, any extension of the domain (36) makes
it impossible to define certain polynomials. Thus, PQ is
not defined for (34), nor is P' for (83). Second, the
domain (36) is still dense in the Hilbert space, which is
all that one needs for most purposes. Third, the choice
of any one of the extensions (84) would also be rather
arbitrary.

The operators to which we are accustomed in quan-
tum mechanics are maximal and possess complete sets
of eigenfunctions (more rigorously, their eigenvalue
problems are soluble in the sense of von ¹umann'4).
The physical interpretation of the use of operators to
represent physical quantities is contained in the
postulates:

(a) The possible measured values of an operator are its
eigenvalues.

(b) If pq is the eigenfunction of operator P with eigen-
value k, and f the wave function representing the state
of a physical system, then the probability of obtaining
the result k when one measures P is

~(k) =
I (A,4) ('.

e=integer. (35) In the case of continuous eigenvalues, this is replaced by

These are not eigenfunctions of P', of course, since they
do not lie in its domain. From the fact that the eigen-
value problem is soluble for Py, it follows'4 that Py is
"maximal, " i.e., its domain cannot be extended further
without destroying its Hermitian character.

The existence of eigenfunctions appears to violate the
uncertainty principle, according to the reasoning of
Sec. II. The reason for this apparent contradiction is
that the proof of the uncertainty relations" applies only
to wave functions on which the commutator (PQ—QP)
is defined. This is not the case for the P g(Q), since

QP„&(Q) does not satisfy (84) and therefore is not in the
domain of Py.

We conclude, then, that in order for the reasoning of
Sec. II to be valid, the domain of the indeterminate
operator must be restricted in such a way that the
commutator is also dined throughout the domain.
Indeterminate operators, therefore, in general are not
maximal. Thus, P dered above is indeterminate, but
its maximal extensions Py are not. If it is also desired
that all polynomials made up of P and Q be defi.ned, the

~5 Reference 24, pp. 15i-154.
"Reference 24, pp. 230-234.

W(k)dk ~
f Q i„f)['dk.

(c) If a measurement of the operator P has yielded the
value k, then the wave function of the system im-
mediately after the measurement is an eigenfunction of
P with eigenvalue k.

We can generalize these postulates to include in-
determinate operators by using the known properties of
the particle in a box as a guide. Thus, we know that the
possible observed values of momentum are just the real
numbers. A glance at (85), moreover, shows that the
eigenvalues of the extensions Py comprise all the real
numbers. A reasonable generalization of (a) is therefore:

(a') The possible measured values of an indeterminate
operator are the eigenvalues of its maximal extensions.

To get the probability of a particular value of the
momentum (or a particular infinitesimal range of
values), we take the inner product of the state function

P with exp(ikQ), the eigenfunction of free-particle
momentum. In the region 0(Q&1, the only region that
counts here, this is identical with the eigenfunction of
the appropriate extension (n and 0 chosen so that
2n.m+8= k). Postulate (b) may therefore be generalized
as follows:
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(b') IfQq is an eigenfunction of some maximal extension
of the indeterminate operator E vrith eigenvalue k, and

P is the state function of the system, then the prob-
ability that a measurement of E vrill yield the result k
ls given by

or
~(k) "1(4~8)I'

W(k)dk~
~ {yppf) )'dk

which satisfy
gi(k~—k)

k)
i(k' —k)

i.e., the inner product is a function only of the difference
(k—k'). A reasonable generalization of (87) is therefore
to normalize the qb~ for an indeterminate operator in
such a vray that

(~.,~') =f(k k'), - (88)

and then use (b') without a weighting factor.
A possible generalization of (c) is:

(c') If a measurement of the indeterminate operator P
has yielded the value k, and if P~ is that extension of E
which has k as one of its eigenvalues, then the wave
function of the system immediately after the measure-
ment is an eigenfunction of E~ vrith the eigenvalue k.

It appears, therefore, that incorporation of indeter-
minate operators into the formalism of quantum
mechaincs causes no insurmountable difBculty. The

in the case of continuous eigenvalues. In using (b') for
the case of continuous eigenvalues, one must be sure
that the Pt, are properly normalized, as otherwise a
weighting factor must be inserted into the formula for
the probability density. For ordinary operators with
continuous eigenvalues, the weighting factor in (b) is
constant if the @~ satisfy

(yp, yp )=28(k—k'), (87)

vrhere A is a constant. This cannot be required of the
QJ, for an indeterminate operator, since they are not all
eigenfunctions of the same operator and hence are not
orthogonal. In the case of the particle in the box, we
know that (b') is correct as it stands (without the
weighting factor) if we choose for the pq

yp ——exp (ikQ),

postulates (a'), (b'), and (c') may not be unique (i.e.,
other sets of postulates may be possible), but they seem
to be reasonable generalizations of (a), (b), and (c).
They were chosen so as to yield the standard results
when applied to the momentum of a particle in a box.
Postulate (c'), like (c), should be thought of as applying
to rather idealized measurements. It does not correctly
describe the e6ect of actual measurements on the system
in all cases.

%e are novr in a position to make some remarks about
the Hamiltonian operator (2'I), discussed in Sec. III A.
It may be written

X=P'/2m+ V(ro —/P) .
Since P is indeterminate and hence not maximal, it also
follows that X is not maximal (its domain could be
extended by extending that of E).Hence the eigenvalue
problem for 3'. is insoluble, " con6rming the earlier
analysis. The eigenfunctions of the extensions of K are
easily seen to be

e.("-»)~.(0),
where f„is the nth eigenfunction of Xo. The eigenvalues
are obviously just those of Xo, since the term» simply
gives a uniform translation of the potential. The energy
spread, therefore, is over a discrete set of possible values
if the eigenvalues of 3'.0 are discrete. This might call into
question some of the conclusions of Sec. IV, in vrhich a
continuous spread. vras tacitly assumed. However, this
should not be taken literaOy, as the nucleus is always in
interaction vrith various fields vrhich possess continuous
energy levels. In particular, this objection does not
apply to the treatment of Sec. III 3, vrhich, as has
already been pointed out, is the preferred treatment
anyvray.

Finally, vre must say a very brief vrord about the time
dependence of the bounded operators Q in the Heisen-
berg picture. In order that commutation relations such
as Eq. (18) continue to hold at diferent times, it is
clear that Q must change with time in the same way as
other operators of the system:

Q(t) =exp(iXt)Q(0) exp( —iXt). (89)
Since the transformation (89) is unitary, it will not of
course affect the boundedness of Q. It is not necessary
to include this in the analysis of the body of the paper,
which was all carried out in the Schrodinger picture.


