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Relativistic Schrodinger Equations for Particles of Arbitrary Spin
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Brandeis University, 8'altham, Massachusetts

(Received 16 August 1965)

Relativistic wave equations in the Schrodinger form id//af =Z& for particles of nonzero mass and arbi-
trary spin are investigated. The wave function P is taken to transform according to the representation
D(0.,s)O+D(s, 0) of the homogeneous Lorentz group, a unique spin s for the particle being thereby assured
without the aid of any supplementary condition. It is shown that the requirement that the Schrodinger equa-
tion be invariant under the operations of the Poincar6 group, as well as under space and time inversions and
charge conjugation, restricts the possible choices of H (as a function of the operators representing the above
symmetry operations) to a well-defined class which shrinks to a unique possibility (coinciding with the
Hamiltonian derived by Weaver, Hammer, and Good) when a further regularity condition of a physical
nature is imposed: namely, that the Hamiltonian have a unique finite limit in the rest system of the particle.
In this process, an ambiguity which exists initially in the definition of operators representing time reversal
and charge conjugation gets eliminated. The Hamiltonian itself is obtained in explicit form for particles of
any spin.

I. INTRODUCTION

KLATIUISTIC wave equations suitable for the
description of free particles of arbitrary mass and

spin have long been known: the Dirac equation for the
spin- —, case and its generalizations' to higher spin, the
Kemmer equation' for spins 0 and 1, the Iierz-Pauli
equations' for arbitrary spin, and others. 4 The formula-
tions of all these equations are strongly conditioned by
two basic requirements: that the wave function P be
locally covariant' and that the wave equation be
manifestly covariant. Local covariance of the wave
function enables us to specify its behavior under
transformations of the homogeneous proper orthoch-
ronous Lorentz group' by saying that it transforms
according to an irreducible representation D(tn, n) of the
group~ or according to a direct sum of such representa-

*Permanent address: Department of Physics, University of
Madras, Madras, India. Supported by the U. S. Ofhce of Naval
Research, Grant No. NONR 1677(04) at Srandeis University.' P. A. M. Dirac, Proc. Roy. Soc. (London) A1SS, 447 (1936).

'N. Kemmer, Proc. Roy. Soc. (London) A173, 91 (1939).
'M. Fierz, Helv. Phys. Acta 12, 3 (1939); M. Pierz and W.

Pauli, Helv. Phys. Acta 12, 297 (1939), and Proc. Roy. Soc.
(London) A173, 211, 1939.

See, for example, E. M. Corson, Introduction to Tensors,
Spznors and Eelativzstic 8'ave Equations (Hafner Publishing
Company, New York, 1953) for details of these and other types
of equations like Bhabha's multi-mass equation.' We propose to call a wave fewc&som "locally covariant" if,
under a Lorentz transformation L which changes the coordinates
of a given space-time point from x= (x',x',x',x') to x'=Lx, the
description of the wave function at that point changes from p(x) to
g'(x') =h. (L)P(x), where h. is a purely numerical matrix, inde-
pendent of differential operators (and of course of the coordinate
itself, by homogeneity of space-time). "Manifest covariance" of a
wave equation is a statement about the linear operator acting on
the wave function in the equation: that it has an obviously
invariant form.' This will hereafter be referred to simply as the Lorentz group.
The inhomogeneous group containing also the operations of time-
and space-translations will be called the Poincard group, follow-
ing the terminology in recent literature.

7 See, for instance, Ref. 4, Sec. 17; also Ref. 18 below. The
representation D(m, n) is (2m+1) (2n+1)-dimensional. It is re-
ducible with respect to the subgroup consisting of pure rotations,
being the direct sum of all the representations D(s) with s= (m+e),
(m+I —1), , ~m —e[.

tions: we may thus write P=PQ+P&" "&.It is well-known
that under the operation of space inversion P&

P&" ~&; hence in any theory invariant under this opera-
tion, the wave function must contain, along with every
part f&~ ".& also a part lf &" "', so that we must have'
4 =pQ+Q& ".'Q+lf&" "'g. This wave function is, in gen-
eral, reducible under rotations into parts which trans-
form according to different representations D(j) of the
rotation group, and therefore does not describe particles
of a unique spin unless suitable restrictions are imposed
on P. In the case of the conventional wave equations, '
the restrictions are either implicit in the equations
themselves as in Dirac's equations' for particles of
arbitrary spin and in the Kemmer equation —both 6rst-
order differential equations —or may be imposed as a
supplementary condition" ln addition to a (Klein-
Gordon type) wave equation, as in the Fierz-Pauli
formalism. The presence of redundant components and
the necessity for supplementary conditions to eliminate
them are serious drawbacks: they not only make it
difficult to keep track of the really independent com-
ponents, but also make a consistent introduction of
interactions dificult or impossible. However these can
be avoided in one way —and only one, as long as we
insist on local covariance —and that is by considering
only wave functions P transforming as f&"~Q+P '".
Such functions exhibit a unique spin s under rotations,
and therefore no supplementary conditions are needed.
Conventional treatments do not take advantage of this
attractive possibility, however. They could not, for the
simple reason that except in the very special case s= —',

(Dirac equation for the electron) the requirement of
manifest comriance of a first-order wave equation is
incompatible with having the above transformation

'Operators to represent charge conjugation and time reversal
can also be dered over the space of such functions.

' See, for example, Ref. 4, Sec. 28.
' A thorough investigation of the role of supplementary condi-

tions in extracting, from a reducible or irreducible representation
of the homogeneous Lorentz group, an irreducible representation
of the Poincar6 group, has been carried out by D. L. Pursey, Ann.
Phys. (New York) 52, 15/ (1965).
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property for the wave function itself. To construct an
invariant 6rst-order diGerential operator one has to
form the scalar product of the gradient four-vector,
which belongs to D(-', P), with a set of matrix operators
which must also belong to D(2,-', ). But such matrices,
operating on f~~ "&, would lead" to Pt~' "'& where

)
m' —m

~

=
~

e'—e( =-,', and therefore if the wave func-
tion in a manifestly covariant equation of this type
contains a part P& "&, it must contain at least one other
part P&

' "'&. In the Dirac equation for the electron, the

f" '*& and P&'*'& parts supplement each other in this re-

spect and therefore no new parts need be introduced,
but clearly this will not work for any other spin.

It was Foldy" who for the first time constructed wave
equations without supplementary conditions for par-
ticles of arbitrary spin. This was achieved at the cost of
surrendering manifest covariance, but as he pointed out,
manifest covariance is really a luxury: All we need for
the relativistic invariance of the theory is that the
solutions of the wave equation should form a repre-
sentation space for the appropriate irreducible represen-
tation of the Poincare group. "Foldy's wave functions
in the canonical representation are not locally covariant
either. Weaver, Hammer and Good'4 succeeded in ob-
taining relativistic wave equations involving locally
covariant wave functions of the type f&' '&Q+It &' '&. The
advantage of having simple transformation properties
for the wave function are obvious, particularly when
attempting generalizations to include interactions. In
fact, rules for constructing an invariant S matrix from
(second-quantized) fields of the above type have been
given recently by Weinberg, " though he was not in-
terested in the question of wave equations satis6ed by
such fields. Weaver, Hammer, and Good (WHG) con-
struct their wave equation in the Schrodinger form
i8$/Bt=H$ by assuming the form of the Harniltonian
in the rest system of the particle and then passing to an
arbitrary frame of reference with the help of a Lorentz
transformation operator obtained by generalization
from the spin--', case. This procedure leaves it an open
question as to whether or not there are other wave
equations of this type. A related question is: "To what
extent is a relativistic wave equation determined purely
by considerations of covariance, and to what extent do

"See, for instance, H. J. Bhabha, Rev. Mod. Phys. 21, 451
(1949).

L. L. Foldy, Phys. Rev. 102, 568 (1956).
"For the classification of irreducible representations of the

Poincarb group, see E. P. Wigner, Ann. of Math. 40, 149 (1939);
V. Bargmann and K. P. Wigner, Proc. Natl. Acad. Sci. U. S. 34,
2ii (1948).

'4 D. L. Weaver, C. L. Hammer, and R. H. Good, Jr., Phys.
Rev. 135, 3241 (1964)."S.Weinberg, Phys. Rev. 133, 81318 (1964).

other physical notions play a part 7"These are the main

questions to which we address ourselves in this paper.
More speci6cally, we seek the class of relativistic equa-
tions of the form i8$/BI=II/ which are suitable for
describing particles having a unique spin s (without the

aid of supplementary conditions), it being required that

P be locally covariant.
Our approach to the problem will be as follows:

Knowing the operator representing the generators of the
Poincare group on wave functions transforming ac-
cording to D (O,s)Q+D (s,0), we construct out of these and
the operators representing the discrete symmetry opera-
tions, the most general operator H which has the same
transformation character as iB/Bt = Po wh—ere Po is the

generator of time translation. In other words, we ensure
relativistic invariance of the equation i8$/Bt=B& by
constructing H such that II and —Po have identical
commutation relations with the generators of the
Poincare group and with the operators representing
space inversion, time reversal, and charge conjugation.
The latter operators are themselves not uniquely de-
termined by their commutation relations, "and there is
a corresponding ambiguity in H. Thus, despite our
restriction regarding the transformation property of the
wave function, considerations of covariance alone do not
suKce to determine a unique relativistic wave equation
for a particle of given mass and spin. We show, however,
that with an additional condition of an essentially
physical nature, the possible choices narrow down to
just the WHG equation. We also obtain an explicit
expression for the Hamiltonian for particles of arbitrary
spin.

II. THE GENERATORS OF THE POINCARC
GROUP; DISCRETE SYMMETMES

The commutation relations which de6ne the abstract
algebra of the infinitesimal generators" of the Poincare
group are well known. We present them here in order to
establish notation and for ease of reference in later
sections. If Po and P;(i= I, 2, 3) are the generators of
time and space translations, and J;, E; those of pure
rotations and pure Lorentz transformations ("boosts"),

' Foldy, in Ref. 12, has already pointed out the nonuniqueness
in the determination of the discrete operators. Unlike the present
case, however, the different possibilities there were all consistent
with a preassigned Hamiltonian. It appears likely that the
multiplicity of choices would disappear if we require that these
operators be equivalent to momentum-independent operators in a
representation in which the wave function is locally covariant; but
we have not investigated this point."If L(e) is a transformation of the Poincard group, associated
with a real parameter e, we define its infinitesimal generator G by
I.(e) = 1+KG, where e&0 is chosen to be infinitesimal and 1 is the
identity transformation.
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respectively, then"

t P„P;]=0,
[P;,Ps]=0,
P';,Pp] =0,

[J;,Ps]=is;;sPs,

I J;,J;]=is;,sJs,

LJ,,E;]=is,;sos,

PC;,E;]=—is,;sJs,
P';,IC;]= i3;;P—p,

LP„lt;]=—iP, .

On wave functions

(1a)

(lb)

(1c)

(1d)

(le)

(1f)

(lg)

(1h)

(1i)

s=0, D(0,s) and D(s,0) are not distinct; our discussion
based on Eqs. (3) will not apply to this case. Another
point to be noted is that the generators (3) do not lead
to a representation which is unitary in the usual sense,
i.e. with respect to the scalar product J'ftPdsx. The only
exception is the case s=-,'. In general, the Lorentz-
invariant scalar product will have the form J' lt ting dsx

with M/1. We shall defer the discussion of the "metric"
operator M to a future publication. We shall also defer
till then the justification of the requirement we make
below that the operator P representing space inversion
be unitary and operators T and C representing time
reversal and charge conjugation be antiunitary in the
usual sense.

We now turn to the determination of T, C, and P
from the information available about them. For P this
consists in the following relations'0:

io, s&(x t))
tt (x,t) =

J

kg&* s&(x,t)p

Pp ps= ia——/at, —— (3a)

these generators are represented by the following
operators":

Pps= pOP

Pu=-uP,
PJ=JP,
PK= KP, —
P ~1.

(4a)

(4b)

(4c)

(4d)

(4e)

P=y—=—iv,

J=x&(y+S,
rs 0~

&0 si
'

(3b)

(3c)

The sign indicates equality to within a phase factor."
A unitary transformation having the above properties is
given by

Pit (x,t) =(np( —x, t),
/s 0)

K= ty+xpo+iX, X=
~ ~

=psS, (3d)
&0 —sI

where the matrices (sr,ss,ss)=s are a (2s+1)-dimen-
sional representation of the angular-momentum opera-
tors, and p3 is the third of the Pauli matrices. Inci-
dentally, it may be observed that in the special case

'8 Notation: Latin indices run from 1 to 3. Summation over re-
peated indices is understood. 8 and e are the Kronecker and Levi-
Civita symbols, respectively. Units such that A= c= 1 are assumed.

"The "spin" parts of the generators in (3c) and (3d) follow
from the de6nitions of D(0,s) and D(s,0). Irreducible representa-
tions of the (homogeneous) Lorentz group are defined in terms of
the operators 3f;=-', (J;+iE;) and E;=,(J;—iIC;) whose com-
mutation relations L3E;,ter;/=0, PÃ;,M;g=ie;;sttlg„PN;, 1V;J
=te;;sF&, deduced from Eqs. (1e), (1f), and (1g), characterize M
and N as two independent "angular-momentum" vectors. M' and
N' commute with all the 3/I; and N; and are therefore represented,
in any irreducible representation of these operators, by scalar
multiples m(m+1) and e(m+1) of the (2m+1)- and (2N+1)-
dimensional unit matrices. A given pair of (integral or half-
integral) values m, e defines a particular irreducible representation
D(m,e); the representation space, being a direct product of those
of M and N, is (2m+1)(2m+1)-dimensional. In the special
representation D(s,O), the matrices E;are evidently zero, while the
matrices M; are the spin-s representation of the angular-mo-
mentum operators. Denoting the latter by s; we have, in D(s,O),
—,'(J-iK)=O and ~(J+iK)=s, so that J=s and K= —is. Simi-
larly, in D(O,s), J=s and K=+is. On combining these we get the
S and 6, of (3c) and (3d). Incidentally, we could take J=s in
D(0,s) and J=s' in D(s,0) where s' is diBerent from but equivalent
to s; but this would seem to be an avoidable and unnecessary
complication.

where o. is a unitary matrix satisfying ops= —p3o. The
latter relation arises from the requirements

oS=So,
oX= Xo ~

(6a)

(6b)

"See, for instance, Foldy, Ref. 12.
"Though two successive space inversions return the system to

its original state, the wave function need be reproduced only to
within an arbitrary phase factor, since the correspondence be-
tween the state and the wave function is indeterminate to this
extent. For similar reasons, the sign ~ appears below in other
relations between discrete operators.

which follow from the use of (3c) and (3d) in (4c) and
(4d). The choice of o is thus restricted to a linear
combination of pj. and p2 which is unitary and satisfies
o s 1.The most general form of this kind is e'"'(pr cos8

+ps sin8), but the arbitrary phase factor e'"* is of no
significance in a discussion of free particles and can be
ignored, and the angle 8 can be reduced to zero by a
unitary transformation which merely accomplishes a
redefinition of the relative phase of the D(0,s) and

D(s,0) parts of the wave function and does not disturb
any of the assignments (3). Therefore we may, without
loss of generality, set

o =py.

The relations to be satisfied by an antigeitury time-
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reversal operator T are"

Tpo poT e

9»
TJ= —JT,

TK=KT,
TI'~I'T,
T'

Equations (Sa)—(Sd) can be realized by defining

(Sa)

(Sb)

(Sc)

(Sd)

(Se)

(8f)

conjugation. The requirements are

Cps= —poC,

Co= —Pc ~

CJ=-JC,
cK=-KC,
CI'~I'C,

CT Tc,

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

(17g)

We can satisfy Eqs. (17a)—(17d) by defining C such that

,t) =xi/*(x, t), (18)
Tit (x,t) = it *(x, —t),

C)t (x
vrhere 7- is a unitary matrix subject to the following
requirements, obtained on introducing Eqs. (3) in (8): where x is unitary, and

TS= ST, —or rS*= Sr, —
TX=—XT ) or vX = —XT.

(10)

(11)

CS= —SC, or «S'= —Sx, (19)

(20)

These tvro equations imply that v commutes with p3, These two equations imply that x anticommutes with
and therefore must be of the form p3 and therefore must have the form

(r'

Eo
(12)

( 0 «')

Kcc" of

It follows from (10) that

T 8*=—87',f g f r 8=—87.ff g ff

Hovrever, it is knovrn that the unitary transformation
f, which takes s over into —s* is a unique one" (apart
from an arbitrary phase factor), and satis6es

Unitarity of x demands that of x' and x", and then (19)
requires these two matrices to be equal to t, apart from
phase factors. The relative phase factor betvreen x' and
x" is restricted to 8'oe=&1 by (17g), and. (17e) and.
(17f) give no further restrictions. Thus, if as before we
ignore an over-aQ phase,

(14)
( 0

(8% foe
8"=WI.

oi '

Thus, in view of (13), r' and r" must be equal to 1, to
within arbitrary phase factors. The condition (Se),
which reduces to the requirement vo.* fear on the
matrices 0. and v, restricts the relative phase between w'

and v" to ~1. 'Thus v e 6nally have

0
e"i=W1

0 i Scot)

Ko =e ~0'K
7 or Co =e"oC, (23a)

sr*=8"erg', or CT= ceoeTC, (23b)

888e( 1)oe or Co sloe( 1)se (23c)

The phase factors e"e 8'oe in (15) and. (22) are uncorre-
lated. Again, with (22), the equalities (17e)-(17g) be-
come sharper. Ke have

v o ~= e"&ffr, or To =e"&o.T,
rr'= (—1)", or T'= (—1)".

(16a)

(16b)

apart from a possible over-all phase factor vrhich vre
lgllol'e. Note tllat this form automatically enslll'es (Sf),
by virtue of (14); in fact it leads to a sharpening of both
(Se) and (Sf):

III. THE RELATIVISTICALLY INVARIANT
WAVE EQUATION

Having determined the operators representing the
Poincare generators and the discrete operations, we novr
proceed to construct a Hamiltonian operator vrhich has
the same transformation properties as —po so that the
lnvarlance of the equation

Consider novr the antiunitary operation of charge pop= i8$/Bt =H—p— (24)

22 U'. pano an/ G. Racag Irregucgge gensoriui, gets (Academic vrould be ensured. The operators available to us, out of
Press Inc., ¹wYork, 1959), Appendix C. winch H can be built up, are 18, 8 or X, and the Pauli
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matrices p;. The Anal expression for H must be such
that replacement of po by —H in Eqs. (1), (4), (8), and
(17) leaves the commutation relations unchanged.
Translation invariance, Eq. (1a), forbids the appearance
of x in H. For invariance under rotations, Eq. (1c), H
must be a scalar operator; it cannot be a pseudoscalar,
according to (4a). Now, it is easy to see that all scalars
that can be constructed from the above operators can be
written as a linear combination of terms (X.p)' and
0.() p)', (l=0, 1, 2, , 2s). Hence H must be a linear
combination of this form. Incidentally, since Pp' —P&'
—P2' —P32=m2 for a particle of definite mass m) our
Hamiltonian operator must satisfy the condition

When s is a half-odd integer:

X~2—p2
B.=B-.= rr '.

y —p,

X~2—p2

C.= —c-.=—II'
P p=k P —

IJ,

It follows from (27) that in all cases

B,C„=C„b„,.

(29d)

(29e)

(30a)

(30b)

(v, p, = —s, —s+1, , s), (26)

H'= p'+m'= 8' p=—[pi, E= (P'+nz')'i' (25. )

The imposition of this condition is facilitated by ex-
pressing H in terms of projection operators to various
eigenvalues of (X p) rather than directly in powers of
()'p). The eigenvalues of X„—= (2 p) jp are of course
—s, —s+1, , s—1, s, each value occurring twice. The
projection operator to an eigenvalue y of P ~ is

H= Q b„B„+Q c,c„+o(Qb„'B„+P c„'C„i, (31)
v~00vV~0 v&0 v&0

with the coefficients b„c„b,', c,' undetermined as yet,
It can be easily seen with the aid of (30) that Eq. (25)
demands, for any given y, either

Since any power of P „can be expressed in terms of the
A.„and hence in terms of the 8, and C„our earlier
statement regarding the form of H is equivalent to
taking

b„2=82 and c„=b„'=c,'=0 (32a)

where the prime on the product sign indicates that p = y

is to be excluded. Evidently,

or
b„=0 and c '+b " c,"=E' — (32b)

(27)

B„=A„+A „,
C„=A„—A „) (28b)

except that when v=0 (which can be the case only for
integral spin),

8p= A.p. (28c)

The B„are even in X~ and the C„are odd. This is evident
from the explicit forms of these operators:

%'hen s is an integer:

2 ~2
Bp=AO= g —p

(29a)

B,=B,= "rr' "
y2 p ] y2 y2

S gy —
P,

c.=—c-.=—II',
P p& V —p

(29b)

(29c)

Ke shall see below that X„changes sign under charge
conjugation; thus A.„)which contains both odd and even
powers of X„, has no simple transformation property
under this operation. It is convenient therefore to split
A„ into "odd" and "even" parts (which contain, re-
spectively, only odd powers and only even powers of
X„).This is accomplished by defining

The choice of (32a) or (32b) may be made independently
for the various values of y. The further restrictions that
arise from invariance under time reversal and charge
conjugation will now be considered. For invariance
under 2; according to (Sa), 2' must commute with H.
Now, by (Sb) and (11), T commutes with () p) and
hence with the B„and C„. But T may commute or
anticommute with 0 according to (16a). Recalling that
T is an antiunitary operation, we conclude that T will
commute with H', Eq. (31),provided b., c., fi,', c„' are all
real in case Tcr =o-T, while if To- = —o-T we must have
b ) c„real and b„' and c,' pure imaginary.

In the case of charge conjugation, invariance of the
wave Eq. (24) requires CH= —HC, according to (17a).
From (17b) and (20) we find that C anticommutes with
(X p), so that CB„=B„Cand CC„=—C„C. Combining
this with the fact that C may commute or anticommute
with 0 according to (23a), and recalling that C is
antilinear, we conclude that the wave equation will be
invariant under C, provided b„, b„are imaginary and
c„,c„' real in case Co =o C, while if Co- = —o C, invariance
requires b„, c„' to be imaginary and b,', c, to be real.

The above conditions for invariance under C and T
are listed in Table I. It is evident from the table that
invariance under both C and T requires the b„ to vanish;
this rules out the possibility of choosing the coeS.cients
according to (32a)—instead, b„', c„, and c„' must satisfy
(32b) for every i. Further, either the set of coeKcients
b„' or the set c„' must vanish, since the b„' can be
nonvanishing only when either T or C (but not both)
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TAnLz I. Conditions on H, Kq. (31), for invariance of the wave
equation under T and C,

Symmetry
operation' b„

T (+) Zb
T (-)
c (+) I
C (—) I

T and C 0 E.

R
II

ZIf T (+},C(—)»fT(—) C(+)
0 otherwise

R
I

E if T (+), C (+)IifT (—), C(—)
0 otherwise

a A + or —sign following T or C indicates that the operator is taken to
commute (+) or anticommute (-) with o;

b Notation: R =Real, I =Imaginary.

commutes with o-, while if the c„' are to be nonzero,
both C and T must commute with cr or both must
anticommute.

We have now exhausted all the conditions on H
arising from invariance of (24) under the Poincare
group and the discrete operations, with one exception:
invariance under boosts, which, according to (li), re-
quires [H,Kf=iP, or

[B,(ty xH+—iX)j=iy (33)

Explicit evaluation of the left-hand member" in (33) is
diKcult in the general case, but this can be avoided, as
we shall see in the Appendix. At the moment we wish
merely to observe that the application of (33) would not
help to settle in favor of any particular one of the
possibilities left open in Table I. It is simplest to see
this in the spin--,'case. In this case X and fT can be
interpreted in terms of the conventional Dirac matrices
as -', n and p. The operators Brts and Ctts are 1 and
(n y/p), respectively. If we now choose, a priori, the
coeKcient 6~~2' to be nonzero and cy~~' to be zero, the
form of the Hamiltonian is c&ts(n y/p)+pbrts'. The
application of (33) and (32b) then leads to the actual
values of the coefhcients, and the Anal result is the
familiar Dirac Hamiltonian n y+Pm. On the other
hand, if we started by choosing b&g&' to be zero and c&/2'

to be nonzero, the same procedure would lead to a new
Hamiltonian,

&=(~/p')(n y)+(&~/p')p(n y), (34)

which also satis6es all the invariance conditions. Thus
it is clear that relativistic invariance alone does not
determine the wave Eq. (24) uniquely.

There is, however, another condition of a physical
nature which any reasonable Hamiltonian should. satisfy
and which is not satisfied by (34), nor indeed by any
Hamiltonian of the form

P c„C„+og c,'C„. (35)

It is that if we make y~0 (passage to the rest system)

~ Note that in writing out the expression for K in (33), we have
replaced the po which occurs in the definition (3d) by —B.This is
permissible here because po commutes with Band is equivalent to—ff when operating on any solution of Eq. (24).

Here again the coefficients c„must vanish as y —+ 0, and
in the same limit, all powers of ) ~ higher than the
zeroth in the second term in (36) must cancel out,
leaving just a multiple of the identity matrix. But from
the de6nition of the 8„in terms of projection operators,
it follows that the identity operator is 1=+8,. The
conclusion is, therefore, that all the 6„' must tend to the
same value when y ~0; and by virtue of (32b) and the
fact that in this limit Z —+ m and all the c„—+0 (as
already noted), the common limit of all the 6„' must be
m. The Hamiltonian in the rest system is thus uniquely
determined as Bo=p~nz.

It must be pointed out here that our requirement
regarding the existence of the rest-system limit has ac-
complished two things: 6rst to establish that the
coeScients f".„' must vanish, and secondly to show that
the b„' (in the rest system) must be reaL It follows
immediately from Table I that the commutation proper-
ties of T and C with 0- must be

To=+HATT )'
Co-= —O-C.

(37)

These results, in combination with (16a) and (23a),
eliminate the ambiguity in the matrices r and f(: as given
by (15) and (22). We now have

(t. 0)
(, 0

(39)

/ 0

03

Cne need hardly stress that (37) and (38) ensure that
the coeKcients b„' are always real (not only in the rest
system). Consequently the Hamiltonian is Hermitian in
the ordinary sense —a nice property to have though all
we need for conservation of the invariant scalar product
J QtMipd'x is the condition EVM=MH.

To return to the explicit form of the Hamiltonian, we
still have to determine the values of the coefficients c„
and b„' in (36).For any given spin s, this can be done by
imposing on (36) the condition (33) for invariance under

'«The same condition appears in the guise of a "regularity
property" of the wave function at the origin of momentum space,
in the investigation of localized states of relativistic particles by
T. D. ¹wton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).

B should tend to a well-defined limit. '4 It is clear that
)„is not well-defined in this limit since it would depend
on the direction of the unit vector (y/p); and the C„,
being odd in X„, share this property. In vievr of this, it
is easy to convince oneself that there is no choice of the
coeScients c„and c„' in (35) which would lead to the
desired limiting property for H. The only alternative
left is to take H to be of the form

II=Q c,C„+o Q b„'8„.
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boosts. '5 The result in the spin--,' case, for instance, is the
Dirac HRDllltonlRQ while foI' spin 1 we obtain

2E' 2E
(2 y)+o E — (X y)' . (4l)

282—fg2 2E'—m2

These coincide with the Hamiltonians derived in the
correspond1ng cases by Weavel; Hammel; Rnd Good, ' "
Such agreement is, in fact, to be expected for any spin
since their starting point is the assumption that the rest-
system Hamiltonian is Ho ——Pm=o.m (which we have
shown to be the only one consistent with covariance and
regularity conditions), and they utilize an integrated
form of (3d) to pass to an arbitrary reference frame. The
general expression for the Hamiltonian of a particle of
arbitrary spin is

(E+p)'"—4r44" 2Ems" (E+p)'"
H=P EC„+op. 8„. (42)

~ (E+p)4"+4t44" ~ (E+p)'"+rr44"

The derivation of this expression is given in the
Appendix.

It may be recalled that we had explicitly excluded
spinless particles from the treatment given above. VVhen

s=o, the parity operation I' can be dehned on the
single-component wave function if&a 4&, but it is neces-

sary to adjoin another component, also transforming
like f' sl, in order to accommodate the two antilinear
opeI'Rtlons T RQd C~ whKh nlust commute RQd Rntl-

commute, respectively, with the Hamiltonian. The form
of the wave function then 6ts into the general type

"'O+f'" 1 that we had considered earlier, and it is
easy to see that the Hamiltonian also can quite generally
be taken in the form (36), which now reduces to H =plE
since S and X are now zero. The last mentioned fact
releases the parity operator 0 from the necessity to
anticommute with p3., it may therefore coincide with p&

as before or may just be the unit operator, as has
RlleRdy been Doted by %HG. A similar ambiguity
exists in the choice of C and T', and what is more, there
seems to be no reason to preclude independent choice of
the possible alternatives 1D I C RDd T.

A anal remark regarding the representation of the

"By writing fy=sLx, E'$=$(xff —8 x), we can reduce (55) to
the form Lff, (—4Lx,H) —2X))=0, which shows that H does not
commute with —fLx,ffj. The obvious interpretation is that the
particle (vrhatever be its spin) exhibits "Zitterbewegung. " It is
possible, however, to argue that it is not x that is observable, but
some "mean position" as dehned by Foldy and Wouthuysen
fPhys. Rev. 78, 29 (1950)g for the spin-$ case. This "mean" or
"observable" position leads to a velocity vrhich is a constant of
the motion. For further considerations on this point in relation
to the Dirac electron, and to particles of spins 0 and 1 as described
by the Sskata-Taketsni form of the Kemmer equation t N.
Kemmer, Proc. Roy. Soc. (London) A173, 91 (1939), S. Sall:ata
and M. Taketani, Proc. Phys. -Math. Soc. Japan 22, 757 (1940)j,
see P. M. Mathevrs and A. Sankaranarayanan, Progr. Theoret.
Phys. (Kyoto) 26, 499 (1961);27, 1063 (1962), and 32, 159 (1964).
A discussion of observables of particles of arbitrary spin in the
context of the present formalism grill be published elsewhere.

2' Our matrices X and p~ (to which me have equated a}are, in the
notation of QfHG, se and p, respectively.

Poincare group provided by (3):The operators P, J are
clearly Hermitian and so is the Hamiltonian H, (36), to
which —I'0 is equivalent when operating directly on a
wave function; but in order that K be Hermitian we
Inust have

xH+—i X= H—x i2—
ol

—iLx,H7= 22, .
It is clear from the form (36) of H that it is only in the
spin- —', case that this requirement can be met. This
substantiates our statement in Sec. I that except for
s=-,' the representation (3) is not unitary with respect
to the scalar pl'odllct Jlgtfdss.
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APPENDIX

To determine the coefficients of c„and b„' in (36) by
requiring invariance under boosts, we make use of the
alternative form of the boost condition (33) given in
Ref. 25, namely

LH, (—i',H7 —22.)7=0. (AI)

It turns out to be sufBcient for our purposes, and very
much simpler, to consider the weaker condition obtained
by scalar multiplication of (A1) on the left by y, namely

[H, —iy Lx,H77=2LH 0'y7. (A2)

In applying (A2), we shall find it convenient to make use
of two dlffelellt ways of wlltlllg H:

H= Q c„C„+oQ b„'B„
»0 v%~0

(36)

or
H= Z fi(& y)'+~ 2 gi(& y)' (A3)

l BVBn

where / ranges from 0 to 2s, the fi being nonzero only
for odd values of l and the g~ for even values. The
1elatloD between the coeScients ln the above two
equations can be easily obtained from the spectral
representation of (R, y):

(4)'=(& ylp)'= Z "A.

so that

(. )'=2 (p)', =Z(.p)'. (t. ~ ), (
Vsm 8 v«%0

= Z (~P) 'C. , (t odd). (ASb)
v&0

Introducing (AS) in (A3) and comparjng with (36)
6nd that

& =«(~p)'f fi'=Xi(~p)'gi. (A6)

Now, using the fact that —i(x,H7 is just the gradient of
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H in y space, it is easy to verify that

—
&14 L»&j=Z ((df4/dp)p+f«)(& p)'

+ 2 ((dg/dP)p+g l)(& u)' (A&)

By using (A5) and (A6) we can reduce this to

—4& fx,B)=Q p(dc„/dp)C„+0 p p(db„'/dp)8„(A. S)

Substituting this in the left-hand side of (A2) and using
the representation (A5b) for (3. y) on the right-hand
side, we obtain, after evaluating the commutators,

(dc„/dp)b„' c„(d—b„'/dp) =2vb„'. (A9)

But we already have the relation

c 4+b '2=E&

from which it follows that

(A10)

db„' 2vc„b„—'+pb„'
(A13)

c„dc„/dp+b, 'db„'/dp= p. (A11)

Solution of the simultaneous Eqs. (A9) and (A11) for
the derivatives of c, and b„' yields

dc„c„p+2vb„" c„p+2v(E'—c.e)
(A12)

dp E' E'

The substitution c„=Eh„ in (A12) leads to a simple
equation for h„. Solution of this equation, with the
initial condition h„=mc, =O at p=O, yields the result

(E+p)4v ~4v
cp= E

(E+p)4 "+m4"
(A14)

The coefficient b„' is then obtained from (A10):

2E4t4'" (E+p)'"
b f

(E+p)4v+gg4v
(A15)

The expression (42) for Z follows on introducing (A14)
and (A15) in (36).

It is a striking characteristic of the coefficients as
given by (A14) and (A15) that they are 4v4deper4dent of
the spin of the particle. Thus, for example, the form
of the Hamiltonian for a particle with integral spin s
would differ from that of a particle with spin (s—1) only
in having the extra terms c,C, and o.b,'8„ the
values of the coefhcients c1, c2, , c, 1 and. bo b1',

b, 1'being the same inboth cases. Butitmust bekeptin
mind that the matrices C„, B„donot remain unchanged
from one spin to another, their dimensionality, 2(2s+1),
being determined by the spin.
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Invariant Scalar Product and Observables in a Relativistic Theory of particles
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In a recent paper a relativistically covariant Schrodinger equation was derived for particles of arbjtrary
spin s, locally covariant wave functions without redundant components being used to describe states of a
particle. Here we determine the invariant scalar product with respect to which the representation of ppjncarg
transformations on these wave functions is unitary. It is shown that the conventional position and spin
operators, not being Hermitian with respect to this scalar product, cannot be observables. New operators
which can represent these observables are constructed with the aid of a generalized Foldy-Vfouthuysen
transformation which is determined explicitly for arbitrary spin.

I. INTRODUCTION'

' 'T has been shown in a recent paper' that there exists
a unique relativistically invariant Schrodinger equa-

tion which describes a free particle of arbitrary spin s
and nonzero mass m. The requirements on which the
derivation was based are the following: (i) The wave

*Permanent address: Department of Physics, University of
Madras, Madras, India. Supported at Brandeis University by the
U. S. OfEce of Naval Research, Grant No. Nonr 1677 (04}.

'P. M. Mathews, this issue, Phys. Rev. 143, 978 (1966). The
notation of this paper will be followed in the present work.

function P must transform locally under the operations
of the Poincare group as well as under the discrete
operations of space and time inversions and charge
conjugation. (ii) Its behavior under rotations must be
such as to ensure, without the aid of any supplementary
conditions, that the particle has a unique spin s. These
conditions determine the operators which represent the
generators of the Poincare group on the states of the
particle. An operator Bwas then constructed such that
(iii) the Schrodinger equation id//@=II/ is invariant
with respect to the operations mentioned under (i),


