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New Series Expansion in Statistical Mechanics~
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A new approximation scheme is applied to thermodynamic vaxiables which have power-series expansions
in terms of real parameters. This method is based upon a previously discussed formula designed to overcome
the convergence dilfrculties of the quantum-mechanical Born (perturbation) series. Some properties of the
approximation scheme are obtained, and then the method is used to obtain information from power-series
expansions such as those met with in thermodynamics and statistical mechanics. In particular, the virial
coefBcicnts fol' scvcI'al molecular Inodcls alc used to obtain numerical approximations to the cquatlons of
state. The solution for a one-dimensional system of hard rods is obtained exactly in this scheme. For the two-
dimensional hard-square lattice gas, the results agree quite well with recent low- and high-density Padc
approximants. The qualitative behavior of the solution for a system of hard spheres resembles that of the
Mayer theory of condensation. It is noteworthy that the approximation scheme has the property of gener-
ating solutions which RY'c monotonicRlly lncrcRslng lQ the dcnslty. Thus no van del %Rais loop ls obtained.

I. INTRODUCTION
' PHYSICALLY interesting effects cannot always be

treated by Series expansions. In some instances, thc
maximum information which can be obtained from such
expansions is not mell understood. However, the
necessity for series expansion is well known in many
diferent areas of research. Therefore, it is worthwhile
to obtain an approximation scheme which replaces thc
series by a more convergent expansion which may give
substantial results Rnd a better understanding of the
problem under consideration.

In tlm present work& wc usc R formula dcslgncd to
overcome the convergence difhculties of the Born series
fol R quantum-mechanical systcIIl. %c shall llIQlt oul-
sclvcs to thc vlx'lal cxpanslons of imperfect gases Rnd to
the virial expansions of a two-dimensional lattice gas
(Ising model) with the inclusion of attractive as well

as repulsive forces. The goal, however, is to introduce
the method into the theory of statistical mechanics
wheI'c lt may bc of gI'cRt value RIll RppllcRblllty.

This method can bc used easily for the study of many
other thermodynamic variaMcs. Further, it can be
extended to the study of systems of several expansion
parameters. Hence) lt ls.of %'ldc gcncI'Rllty Rs Rttcstcd
also by its use in 6eM theory. For example, the method
has been applied recently to a 6eld-theoretical model

for pion-pion scattering giving resultss quite consistent
w ith experiment.

This new approxixnation scheme has little rescrn-

blance to Rny otlMI' Incthod ln usc ln stRtlstlcal me-

chanics. The lowest order approximation resembles the
so-called L1,11 Pade approximant', however, this

*ork performed under the auspices of the U. S. Atomic
Energy Commission.

' M. Wellner, Phys. Rev. 132, 1848 (1963).
~ M. Alexanian (to be published).
' M. Alexanian and M. Wellner, Phys. Rev. 137, B155 (1965).

M. Alexanian and M. %ellner, i'., Phys. Rev. Wo, $1079
(19us).' G. A. Baker, jr., J.L. Gammel, and J. G. %'ills, J.Math, AnaL

Appl. 2, 405 (1961).

SUnilarity ls only dcluslvc Rnd docs not pclslst to higher
ol clel.

D. FORMAL DEMVATIGN

The basic equation is developed in this section. The
derivation is somewhat diEerent from the one originally
given in Rcf. j. to improve the Born series; however, at
cRch stage R slmllarlty ls apparent.

Let r)(f; g) be some thermodynamic variable as the
pressure I' or the magnetic susceptibility X, etc., where

f ls some continuous varlRblc Rnd g ls R I'cR1 ad)ustablc
parameter. Suppose ri (1; g) possesses the series expansion

~(f; g)=no(f)+~i(&)g+ns(&)g'+" (2.1)

where ri;(f)(j =1, 2, ) are differentiable and rir(f)WO

on an interval I of f. The series (2.1) need not be a
convergent series. What is of interest is the sequence

{ri„(f)) generated by the expansion. We consider the
formation of the inverse power series of (2.1). There
cxlsts plcclscly onc power scI'lcs formally SRtlsfylng this

condition, and this is

where the explicit dependence of the function on t has
been omitted foI' conciseness.

The formal inversion of the real parameter g can be

accomplished only in regions of the variable I, where the

complex phases of the functions rii(f), ris(f), are all

the same. These are the so-called constant-phase

regions introduced in Rcf. 1. '|Ate suppose the interval

I is one Such region.
It is clear that the left-hand side of (2..2) is inde-

pendent of t. Hence, by evaluating the right-hand. side

of (2.2) for t=r, say, and substituting the resulting

96



NEW SERIES EXPANSION IN STATISTICAL MECHANICS

form into (2.1) yields

np(t) np(r), np(t) np(r)
~ (t) =n(r)+ — — ~'(~)+

—2)1(t) 2) 2 (T) — -2)1(t) 'gl (r)

np(r) np(t) ~p'(r)—2 +2 )2'(r)+, (2.3)
ni(r) ni(t) ni'(r)-

where

2) (t) —2ip(t)
n(t) —=

2ti(t)

This is the same as Eq. (3.9) of Ref. 1 and contains the
statement of fast convergence enforced in the interval
I at t=w.

The basic differential equation is obtained by taking
the derivative of (2.1) with respect to t, which yields

(2.4)

and then by substituting g from (2.2) into (2.4) which
yields

'g 2g1 g g 1 2g2 — 3g1

/ / / /-

+ (244+24)(-")+(24+24)(-"')+«(-"')+(-"') .-
(2) 2 2t4 2) p (2)p'))

+ (gp'+2g4+2gigp) —+(gi'+3g p+6gigp)
I

—+(6gi'+4gp) —+5gi —+I —
I

~"
gl gl

'g4

+ (2gp+2gig4+2gpgp) —
I +(3g4+6gigp+3gi'gp+3gp') —+(4gi'+»gigp+4gp)—

ql) 711 nl

2) A, 2)V

+ (10gip+5gp) —
~
+6gi —

~
+ — r)'+

2 (2.5)
2tii r),J

where

'g2

'91

'g4 X/3 TJ2 Q2
+5 5—

gl 'gl gl gl

by a knowledge of the exact value of pt(t; g) at some
point t= to.

If instead of the real parameter g, the parameter
g=g/gp is introduced in the expansion (2.1), where gp

is real and independent of t, the same diGerential
equation (2.5) is obtained for 2t. In general, if 2)t is the
function associated with the sequence (2t„(t)) and 2t*

with the sequence (2l„(t)h"), where h is nonzero and
independent of t, then g=q*. Herein lies the connection
of this method to the renormalization-group method of
Geld theory. '

7)6 'g2 Q5 7/2 'Q4 g3 'Q4

+7 28 ——+7——
'/i gl gl gl gl gi $1

III. EXISTENCE AND UNIQUENESS OF THE
IMPROVED SOLUTION

In the preceeding section, a Grst-order nonlinear
differential equation was obtained for the function it(t)
which is of the form

+84—
(
—

)
—28(—)

—42(—) . (2.4) —= Z & (t)Ln(t) j'=—f(~,t)
d$

(3.1)

Since the real parameter g has been eliminated be-
tween the two equations (2.2) and (2.4), it must be
related to the constant of integration E of the first-
order differential equation (2.5). This dependence on g
signiGes the replacement of one parameter in terms of
another, The constant of integration E (g) is determined

where the function 4rp(t) depends on the coefficients
rti(t), rtp(t), , 2)i(t) The right-hand .side of (3.1) was
derived formally by inverting a power series and is
presumed to optimize the convergence of 2t(t) in the
region of constant phase,
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n-(t) —9.(t)
n. (t)= (3.3)

Equation (3.2) is an ordinary differential equation of the
first order of the form

dx/dt= f(x,t) . (3 4)

The following existence and uniqueness theorem is
known for such equations. '

Suppose f(x, t) and Bf(x,t)/Bx exist and are con-
tinuous in a t xdoma—in D (open set). Suppose the
point (t',x') is contained in D. Then there exists a
unique solution, x= X(t), in D and on some interval T
of t which contains the point t' such that x'= X(t')

In our equation we note that on the interval l the
coefficients as(t) are continuous, and we suppose it„(t)
is finite on a subset I' of I. Then the right-hand side of
(3.2) exists and is continuous on I . Since f (i1„,t) is a
polynomial in rt, it follows that Bf„(i1„,t)/8&„also
exists and is continuous on I'. Therefore, a solution of
(3.2) exists which is unique on I'. We note, also, that
the first n+1 terms of (2.1) are reproduced. That it (t)
is a continuous function of the initial conditions can be
proved similarly from the same hypotheses of the
existence and uniqueness theorem.

Using the existence and uniqueness properties, we

find that the approximation scheme gives a unique
solution. Of consequence, therefore, is the fact that two
different solutions of (3.2) will not cross on I'.

As previously mentioned, the constant of integration
is determined by a knowledge of the exact value of

ft(t, g) at one point, t= ts. If rt(ts, g) is a monotonically
increasing (decreasing) function of g, it then follows

from the uniqueness of the solution, that to any order

n, if tssI, the solution it„(t) is similarly a monotonically
increasing (decreasing) function of g for any tsI'. Also

since it=0 is a solution, if rt(ts, g) is positive (negative),
then it„(t) will be positive (negative) for tsI'.

To summarize, the nth-order improved solution

~1„(t) has the following properties:

(a) Optimizes convergence,
(b) Reproduces at least the first n+1 coefficients

of (2.1); hence,

lim rt„(t) =ft(t) =ft(t; g);—

We now consider the solutions of (3.1) which pre-
suppose a knowledge only of a finite number of co-
efficients of (2.1). Suppose n+1 such coefficients are
known, rts(t), iti(t), , it (t). The solution is called the
nth order improved solution (because of the forced
convergence) and satisfies the equation

= Z ~.(t)Ln-(t)3"—=f-(9- t) (3 2)
d] r=2

where

(c) Is a monotonically increasing (decreasing) func-
tion of g.

(d) Is positive (negative) definite.

From properties (b) and (c) it must not be concluded
that the exact result it(t; g) is monotonically increasing
(decreasing) for all t. The reason is that f(it, t) may
cease to be regular near some points, e.g. , near a branch
point; thus the hypotheses of the uniqueness theorem
are not satisfied on the whole range of interest of the
variable t. Some of these singularities are connected
with the existence of a singular solution (the envelope)
of Eq. (3.1). In this language, property (c) states that
the family of solutions of (3.2) does not possess an
envelope. Of course, this will be true for the exact
solution if and only if f(it, t) and Bf(rt, t)/8& exist and are
continuous. In general, these properties are not sup-
posed or known from the original series (2.1). The
approximation scheme is, therefore, better suited for
regions where the functions to be approximated are
known beforehand to possess a monotonically increasing
(decreasing) behavior. This limitation was apparent in
the inversion of the series (2.1) which holds only if

Bi1/Bg/0

IV. APPLICATION TO MOLECULAR MODELS

The technique developed in the preceding sections
is applied to the virial expansion oi several models of
interest, with it being the variable P/kT and the real
parameter, g, being the density, p. One hopes that the
behavior of the improved solution for p may yield a
better understanding of the nature of possible phase
transitions of the model. It should be made clear,
however, that the present approach assumes the virial
coefficients to be independent of the density (volume).
This assumption, then, becomes an integral part of the
mth-order improved solution. Therefore, any short-

comings inherent in such a basic assumption will be
reflected in our solution.

A phase transition will be determined by a discon-

tinuity in the function rt(p), or any one of its deriva-

tives. s A discontinuity in rt (p) is de6ned as a first-order

phase transition; a discontinuity in Bit (p)/Bp [with it (p)
continuous] corresponds to a second-order phase

transition, etc.
The density p is determined by the exact value of p

at some point t= to. Since all exact solutions are mono-

tonically increasing functions of the density, the im-

proved solution will be, similarly, monotonically in-

creasing in p (this has been proved rigorously by Van
Hove~ for an intermolecular force of finite range and

with a hard core).
From the derivation (Sec. II), it is clear that the

region of low density will be reproduced by the im-

5 E. A. Coddington and N. Levinson, Theory of OrCknary DQfer-
entia/ Equations (McGraw-Hill Book Company, Inc. , New York,
1955), Chap. 1.

' J. E. Mayer, J. Chem. Phys. 16, 665 (1948).J. E. Mayer and
S. F. Streeter, J. Chem. Phys. 7, 1019 (1939).

' I . iIap Hove, Physica 15, 951 (1949),
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proved solutions irrespective of the boundary condition
set on the basic differential equation (2.5). In other
words, properties (a) and (b) (of Sec. III) are inde-
pendent of the boundary condition, whereas properties
(c) and (d) depend on it.

To study the connection between the behavior of the
improved solution to that of the actual system, one may
consider the following: Suppose there exists an analy-
tical continuation of the function g(p) valid outside of
the radius of convergence of the virial series. The
eth-order improved solution converges in this region
and, further, it reproduces the first n virial coefficients.
Hence in the limit that n becomes infinite, the improved
solution is indeed the analytic continuation of g(p). As
such, the improved solution will represent the physics
of the model and its properties, e.g., discontinuities
in the function or its derivatives will represent the
"physical" phase transitions of the model.

A. Herzfeld-Mayer Model

This model consists of a one-dimensional system of
hard lines of length 0-. The equation of state is given by
the virial expansion

P/AT=Bi( )p+B ( )p'+ ' '

B.(~) =0"-' N&1.

(4 1)

Substituting the coefficients B (0) into (2.5) yields the
differential equation

dg/do =g'; (4.2)

i.e., a~(a) —=0 for k& 3 in (3.1).The initial condition for
(4.2) is

the Herzfeld model is the analog in statistical mechanics
of S-0 scattering in the Lee model of field theory. '

Bi= 1, B2= 2 (I—4f'), B3= s (I+12f")i
B4 ~i (1 12f" 40f—"—12f"—),
B =-'(1+80f"+220f'4+160f"),

(4.6)

(4 7)

and Vo is the potential energy between nearest-neigh-
bors (0&f'( ~ denotes attractive, —1(f'&0 repre-
sents repulsive interaction).

Substituting the coefficients (4.6) into the basic
differential equation (2.5) gives

dg/d f'= 2rP+2rP+ —(—(7/6)+2f' 6f" 12—f")g'—
+ (-,' 4f'+24—f"+80f"+52f")q'+ ~ . (4.8)

The density of the system is introduced in the boundary
condition of Eq. (4.8) which is

3. Two-dimensional Lattice Gas

A model which has been considered in studying the
effects of the strongly repulsive cores of atoms in real
fluids is that of the two-dimensional lattice gas of hard
squares. In this model, which is equivalent to an Ising
model in a magnetic field, "the "atoms" are restricted
to lie on the sites of a simple quadratic lattice. Only
nearest-neighbor interactions are considered, and
multiple occupancy of sites is prohibited by an infinite
repulsive potential.

Such a model yields the following virial coeKcients:

g= p for 0 =0. (4.3) g = —ln(1 —p) for f'= 0. (4.9)

The solution of (4.2) with the boundary condition
(4.3) is

1 Op

(4.4)

which is the exact result of this model. In general, the
second-order improved solution can be obtained directly
and is given by

$1
i1=go+— (4.5)

K—gg/gi

where E is an integration constant. The connection
between E and the original parameter g can be ob-
tained when the limit of (4.5) as g -+ 0 is considered. It
follows that E-+ 1/g as g-+ 0, in which case the first
two terms of the original series are recovered (as
promised in summary (b) of Sec. III).

The results show that the second-order improved
solution is the exact solution of the Herzfeld-Mayer
model and, thus, gives us an insight into the nature of
the improved solution. In the context of this technique,

8 K. F. Herzfeld and M. G. Mayer, J. Chem. Phys. 2, 38 {1934}.

Hence, our method for determining the constant of
integration introduces the proper limiting behavior of
the improved solution (to the ideal lattice gas in this
case) in quite a natural manner.

In the eth-order improved solution, the first n —1
derivatives with respect to f', evaluated at f'=0, are
exact. LRecall that since g(0)= —ln(1 —p), then in

Pg (0)]~ for k &n only terms up to p" can be kept. g This
is a statement of property (b), and, as a consequence,
the solution reproduces the exact virial coeKcients
81, B2, , B . To determine the "predicted" higher
virial coefficients 8'~1, 8'~2, ~ ~ ~, derivatives of order
greater than e are necessary. However, the derivatives
of order higher than I break down before the function
q(f) or its first e—1 derivatives. (See Ref. 3, footnote
11) Therefore, the "predicted" virial coefficients

, do not have the same convergence
properties as the improved solution and should not be
used to study the convergence of the latter.

See, for example, M. S. Maxon and R. B. Curtis, Phys. Rev.
137, 3996 (1965), Eq. {53)."Y.D. Lee and C. N. Yang, Phys. Rev. 87, 410 {1952).
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Pro. 1, Simple quadratic lattice (f'= —1), pressure versus
density. 1 designates the second-order improved solution (which
reproduces the 6rst two virial coeKcients), etc.

It is interesting to 6nd that our third-order improved
solution can be obtained in closed form:

The existence of singularities in the eth-order im-
proved solution can be determined by the sign of its
corresponding u„(f') coefficient in the differential
equation. If u„(f ) is negative (positive) for a certain
range of negative (positive) values of f', then singu-
larities can exist for that range of values of f'

Gaunt and Fisher" made use of 13 terms of the
actlvlty and virlRl sclles at low dcnslty Rnd DlDc terIDs
of the appropriate high-density expansion in conjunc-
tion with the Padc approximation to predict a continu-
ous (or "second-order") transition to an ordered state
at p= (0.740+0.008)p, .

The dotted curve in Fig. 2 shows their I 5,6] Pade
approximant for the low-density expansion and the
L4,4$ Pade approximant for the high-density region.

Our 6fth-order improved solution is also shown in
Fig. 2 and agrees quite well with the result of Gaunt and
Fisher; however, it does not reproduce the region where
the transition is supposed to occur. Our next approxi-
mations will bc quite relevant in determining the
existence and nature of the transition.

C, Fisher Model

-+in 1—— =2f' -- —+in 1+,(4.10)
n — n »-(1—p) — »(1—p)-

where condition (4.9) has been used to eliminate the
CODStRDt Of IDtegratlon.

Solution (4.10) has the property

for p=1—e ', (4.11)

irrespective of the value of f' This beli.avior was
anticipated as q=—1 is a solution, and the boundary
condition (4.9) requires p=1—s '. However, from this
it should. Dot be concluded. . that diferent isotherms
cross at p= j.—e I. The requirement that they do not
cross (BI/BT) &0, is equivalent to

ti& (1+f')ln(1+ f')dry/d f', (4.12)

which is satisied. Further, it is trivial to show that
(4.10) reproduces the 6rst three coefficients of the virial

expansion.
The diferent improved solutions were considered

only for negative values of f' (repulsive interactions).
The study of the region f'&0 requires the use of addi-
tional virial coc%cicnts and will be left to a future
investigation.

Figurc 1 shows the 6rst four improved solutions for
the case of hard squares (f'= —1). The sequence of
approximations shows a rather rapid rate of convergence
for large values of p/p, . The odd-order improved
solutions are 6nite. However, the even-order improved
solutions have a singularity; e.g., the second-order
improved solution has a simple pole at

p/p, „=2 (1—e-'~') =0./87.

Thc study of this model" clucldatcs oui tcchDlquc
when second-neighbor interactions are considered.
Furthermore, such a study allows for a comparison of
our approximation results with an exact result at one
particular temperature.

The hard square model (f'= —1) of part 8 is altered
by the addition of R second-neighbor interaction across
alternate squares (this we call the "Fisher Model" ), and

1.4

1.2
P/kT

1.0

0.8

0.6

0.4

00, 0.1 0.2 0.5 0.4 0.5 0.6 . 0.7 0.8 0.9; 1.0
~ ~MAX

Fzo. 2. Comparison of the 6fth-order improved solution (which
reproduces the erst 6ve virial coefficients) with the L5,6j low-
density snd the $4,4j high-density Pads approxitnsnts of Fisher
and Gaunt. The curve labeled f' =0 represents the initial boundary
condition, E-kT =—lnt 1—(p/p~) g.

"D. S. Gaunt and M. E. Fisher, King's College, London
unpublished report.

"M. K. Fisher, J. Math. Phys. 4, 278 (1963).
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the following virial coefficients are obtained:

Bs——5/2 —f, Bs——13/3 4—f+2f',
B4 17——/4 9—f+ (21/2) f' —5f',
Bs= —19/5 8f—+28f' 32—f'+ 14f',

where

(4.13)

(4.14)

and V is the potential energy between second neighbors.
The basic differential equation is found to be

dri/d f= ri'+—(1+2f)ri'+ (—19/12 4f —4f'—)re
+ (25/4+(13/2) f+12f'+8f')ri'+ . (4.15)

I"n. 4. Dimer model
(f'= —1, f= —~' n=$), pressure versus
density. 1 designates the
second-order improved
solution (which repro-
duces the 6rst two virial
coeKcients), etc.

l.6

l.2

P/kT

l.o

0.8

0.6

0.2

The initial condition for the differential equation
(4.15) is determined by matching the eth-order im-
proved solution at f=0 with the nth-order improved
solution of (4.8) at f'= —1. This prescription for
determining the constant of integration, with g a func-
tion of two variables, can be generalized easily to the
case that g is a function of several variables, 1i,
Here we are assuming that the exact solution q is known
only at one single point in the t-space (f'= f= 0 for the
present model, which reduces to the ideal lattice gas).
In cases where the exact q is known at several points
(or regions), these values of the exact ri can be in-
corporated, in a straightforward way, into the improved
solution.

The fifth-order improved solutions (keeping terms
including Bs) for various values of f are shown in Fig. 3.
The case when f=1, f'= —1 agrees with the exact
result of Fisher only up to p/p, =0.4. Again, as in the
lattice gas in Sec. IVB the case with f)0 (attractive)
seems to require considerably more virial coefhcients.
The bottom curve represents the results obtained by
considering the case f= f'= —1 and is the so-called
dimer model.

Figure 4 shows the Grst four improved solutions of
the dimer problem (f= f'= —1; p, = s). The fifth-
order improved solution, in contrast to the first three

l I I

I.O-
P/kT

0.8

0.6

l

0 0.2 0.4 0,6 0.8 I .0
MAX

approximations, is Gnite and this may be an indication
of a phase transition. However, the actual existence of
it and its nature requires higher approximations.

D. Hard Syheres

This model has received considerable attention, since
it is the most unsophisticated continuous model repre-
senting the property of impenetrability exhibited by
atoms and molecules in real gases. However, no satis-
factory solution is known for it except results derived
mainly by simplifying the model still further to that of
a hard lattice gas.

Here, the system of hard spheres is investigated
directly with the present approximation scheme. The
6rst Gve virial coeScients obtained by Hiroike"
and by Katsura and Abe" yield the following differ-
ential equation:

d~/df = ~'
I 2f+1—875—f'3~'

+ I
—5f' 10 7606f' 70835f' —09504f'$—n'

+L—14fs 49 4772f4 —69 .912931f—'.
46 64403—f' 1. 5.17943—2 fr 2.735406fs—

—0.23594fs]ri'+ ~ ~, (4.16)
where

(4.17)

and e is the constant potential energy. f is positive
(negative) when the potential is attractive (repulsive).

The boundary condition for (4.16) is

0.4 g= p for f=0. (4.18)

0.2

I I I I I I I I

0 O. l 0.2 0.3 0.4 0.5 0.6 0.7 O.B 0.9 I,O

~'~MAX

FIG. 3. Dimer model (f'= —1, f= —l; p~=1/3l and Fisher
model (f'= —1, f=+1; p „1/2), pressure versus density. The
curve labeled f' = —1, f=0 represents the initial boundary condi-
tion and is the curve labeled 4 in Fig. 1.

The solutions ot (4.16) evaluated at f= —1 for
different values ot the boundary condition (4.18) are
shown in Fig. 5. The straight line has slope 2n.gssand
corresponds to the boundary condition at f=0 The.
specific value of the slope follows from the following

'3 K:. Hiroike, J. Phys. Soc. Japan 12, 326 (1957)."S.Katsura and Y. Abe, J. Chem. Phys. 39, 2068 (1963).
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3.0 =—

P/kT
'

2.0

spheres's:

~=I& (1y~+ns)/(1 ~)s], (4.20)

I.O

normalization:

2x
b=——0'= 1,

3
(4.19)

where 0- is the sphere diameter.

Again, as in the case of the hard squares of Sec. 8, the
even- (odd-) order improved solutions are singular

(6nite), e.g. , the second-order solution has a simple pole
at p/p, =3/2~2. However, in contrast to the results
for the lattice gas, the even and odd solutions seem to
be converging to diferent solutions.

It is possible from the outset to consider the case

f= —1 and to use the dimension of the hard sphere Lthe
variable b in Eq. (4.19) for example j as the continuous
variable. "We can then use the six virial codIicients
which are known for the case of hard spheres and disks
to obtain the basic differential equation (3.1)." The
same behavior was found for the even- and odd-order
solutions, i.e., the even-order solutions become in6nite
for some value of p/p, = (p/p, , )* and the odd-order
solutions become essentially constant for (p/p „„)
& (pip-*)*

It seems that the qualitative behavior of the im-

proved solution resembles that conjectured by Mayer
in his theory of condensation. ' However, one cannot
completely rule out the possibility that a further
approximation may give a result in between the two
limiting behaviors of the even- and odd-order solutions.
Such has been obtained by others. For example, the
curve labeled I'-F in Fig. 5 refers to the solution of the
three-dimensional Percus-Yevick equation for hard

~~M. Alexanian and D. E. Wortman, Lawrence Radiation
Laboratory, University of California, Report No. UCRL 12473,
(unpublished).
"F.H. Ree and W. G. Hoover, J. Chem. Phys. 40, 939 (1964).
~7 J. E. Mayer, J. Chem. Phys. 5, 67 (1937). For further refer-

ences, see C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).

0' ~ 1

0 O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O
~'~i AX

pro. 5. Hard-sphere gas [f=—1; p~=(2s-/3)%2], pressure
versus density. 1 designates the second-order improved solution
(which reproduces the erst two virial coefBcients), etc. The curve
denoted by f=0 represents the boundary condition, P/AT=p.
The dashed curve re resents the result of the scaled-particle
theory Lace Eq. (4.20) .

C= P P~1LX ~

3&2

This is the same equation of state as that obtained"
from the scaled-particle model. Moreover, result (4.20)
is in agreement with molecular dynamics" and Monte
Carlo" calculations of the equation of state for hard
spheres at densities below the phase transition obtained
by these computer results.

V. SUMMARY AND DISCUSSION

Using the virial expansion together with the improved
convergence scheme of Sec. II, successive numerical
approximations are obtained for the equation of state
of a thermodynamic system. Two exact features of the
improved scheme are of interest: pressure is a monoton-
ically increasing function of the density, and the solu-
tion reproduces the virial coeKcients which are used.

The solution for a one-dimensional system of hard
rods is obtained exactly in this scheme. For the two-
dimensional hard-square lattice gas, the results agree
quite well, up to the phase transition, with the recent
Pade approximant results (at low and high density) of
Gaunt and Fisher. Our next approximations should be
relevant to the existence and nature of this transition.
Since the result for the hard-square lattice is used as the
boundary condition for the Fisher and dimer model, the
appearance of the "second-order" phase transition in
the Fisher model, as well as a possible phase transition
in the dimer problem, may be connected with the
appearance first of a transition in the hard-square
lattice gas.

For the system of hard spheres, the qualitative
behavior of the improved solution resembles that con-
jectured by Mayer in his theory of condensation.

In summary, the results obtained indicate that this
new approximation scheme is predicting correctly the
behavior of the "gas" under consideration. This is
attained by using only a few terms of the virial series.
Future work (eva, luating and using more terms) will

yield more definite statements regarding phase transi-
tions. Other thermodynamic variables may be studied
also by this scheme. In addition, the extension of this

'8 M. S. Wertheim, J. Math. Phys. 5, 643 (1964).
'9 H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys. 31,

369 (1959).
~ B. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208

(1957).
"W. W. Wood and J. D. Jacobson, Proceedings of the Western

Joint Computer Conference, San Francisco Institute of Radio
Engineers, New York 1959, p. 261 {unpublished); W. W. Wood,
F. R. Parker, and J. B. Jacobson, Nuovo Cimento Suppl. 9, 133
(i9S8).
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method to multicomponent systems should warrant
further investigation. Hence, it is hoped that this new

approximation scheme mill be quite useful in the field

of statistical mechanics.
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Some theoretical consequences are derived of a proposed viscous force on the normal-Quid component of
the He II 61m. In contrast with earlier calcuJations, in which the normal Quid was assumed to be immobile,
this new assumption allows large energy attenuations, such as have recently been observed in third sound
in He II Glms and in a wave mode of He II partially clamped in narrow channels. Atkins's three equations
describing third sound are modified to take account of energy and entropy transfer associated with normal-
Quid motion, and wave modes are obtained which simultaneously satisfy these equations and the normal-
Quid equation of motion with a viscous force —Ro .The four wave variables are: g and T, respectively, the
local Quctuations in 61m thickness and temperature, and e, and e„, the superQuid and normal-Quid velocities.
Attenuation and velocity of the wave mode corresponding to third sound are calculated at temperatures
from 1.2'K through Tq for all values of the dimensionless viscosity coefficient (E/cop). The maximum calcu-
I ted attenuation varies from 0.47 cm ' at 1.2'K to 17.3 cm ' at 2.1 K; at the lower temperature the ob-
served attenuation is about 2 cm '. However, the anomalously rapid decrease in velocity of third sound ob-
served by Everitt et ill. could not be explained in this manner. Evidence for normal-Quid motion in the Glm

is presented, and some feasible experiments for detecting it are described.

INTRODUCTION

HE discovery that liquid helium at temperatures
below its X point can Qow in a thin film out of a

containing vessel is almost 30 years old. ' Many elegant
experimental and theoretical investigations have since
been carried out on the He II film, but many problems
remain. ' Recently, such investigation has been reported
by Atkins' and Everitt et a/. 4 These workers examined,
respectively in theory and experiment, third sound, i.e.,
surface waves on the film. It was found that if only
superQuid motion is allowed, the surface waves should
be unattenuated and have a characteristic velocity,
Ns(T). The observed waves showed appreciable attenua-
tions and had velocities up to 20% lower than expected.
This paper presents a supplementary, more complete,
theory of two-Quid Qow in the film. Ke will consider
what modifications are necessary if, in addition to free
superQuid motion, viscous normal-Quid motion is as-

*Present address.
N. Kiirti, B.V. Rollin, and F. Simon, Physica 3, 266 (1936);

the suggestion appears in a footnote on p. 270. J. G. Daunt and
K. Mendelssohn, Nature 141, 911 (1938).A. K. Kikoin and S. G.
Lasarew, ibid. 141, 912 (1938).

K. R. Atkins, in Progress in Low Temperature Physics, edited
by C. J. Gorter (Interscience Publishers, Inc. , New York, 1957),
Vol. II.' K. R. Atkins, Phys. Rev. 113, 962 (1959).

4 C. W. F. Kveritt, K. R. Atkins, and A. Denenstein, Phys. Rev.
136, A1494 (1964).

sumed. Some consequences of this additional assump-
tion will be examined, and it will be shown that the
observed attenuation of third sound can be explained,
at least qualitatively.

The role of normal-fiuid motion in frictional dissipa-
tion of energy associated with macroscopic flow of the
He II film has also been of continued interest. In addi-
tion, interest has recently quickened in the related prob-
lems of He II Qow through small ori6ces and channels.
In this kind of Qow, the superQuid is much more mobile
than the normal Quid, but energy cannot be lost to the
superQuid unless its velocity exceeds some critical
value. ' Dissipative effects in small-channel Qow of He II
therefore draw attention to the normal-Quid motion.
Experiments and theories of this kind have a unique
property: In most experiments on He II large normal-
Quid effects obscure small superQuid effects, but in these
experiments the roles of the Quids are interchanged.

Several recent investigations bear directly on the
problem of wave motion in liquid helium with fully or
partially immobilized normal Quid. Pellam 6rst showed
that if a viscous drag, of the form —Ee„ in which e„ is
the normal-Quid velocity, on the normal Quid were
superposed on the usual two-Quid thermohydrodynamic

~R. P. Feynman, in Progress in Low Temperature Physics,
edited by C. J. Gorter (Interscience Publishers, Inc, , New York,
1955), Vol. I.' l. R. Pellam, Phys. Rev. 73, 608 (&948).


