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nucleon rather than by the total number of states
available, we might expect to observe a relatively small
cross section for the Al¥(y,7+)Mg¥ reaction. A quanti-
tative prediction would require information about both
the number of final states available for population in
Mg? and the number of initial protons available for the
pion production process. Such a prediction can not be
made until more detailed information about the nature
of the level structure in Mg? is available. However, it
does appear that this type of extension of the Laing-
and-Moorhouse theory could account for our results.
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Nucleon-nucleus scattering is studied in the energy range 95-350 MeV for targets ranging from carbon to
lead. The relative importance of the first and second order terms in Watson’s multiple-scattering expansion
of the optical potential in terms of the two-nucleon scattering matrix isinvestigated with the nucleon-nucleon
phase parameters obtained at Yale. Effects of including the angular dependence of the two-nucleon ampli-
tudes, as Cromer has done, are compared with those of the second-order potential, and they are found to be
equally important so that both must be included for consistency. The possibility of investigating nuclear-
structure parameters, especially the two-nucleon correlation lengths brought in by the second-order po-

tential, is considered.

I. INTRODUCTION

HE treatment of inelastic processes which remove

the incident nucleon from the entrance channel
in nucleon-nucleus scattering by including an imaginary
part in the potential representing the interaction was
introduced by Ostrofsky, Breit, and Johnson.' The
method was further investigated by Bethe,? and several
early analyses® demonstrated the ability of the optical
model to correlate scattering data over a range of
energies and targets with relatively few parameters.
Continued successes with this model have inspired
extensive phenomenological analyses, with many re-
finements of detail receiving careful attention. The
review in Hodgson’s book* summarizes much of this
work.
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The assumed potential has the form

V(r)=(UAiWe)p(r)
7\? ldp
+<:) (UA+iW,)-—(e-L), (1)
C, dr

r

where the potential strengths are adjustable parameters,
and p(7) is a dimensionless radial function that is nearly
constant from =0 to the nuclear radius and there falls
rapidly but smoothly to very small values. It is natural
to assume that p(r) has some connection with the distri-
bution of matter in the nucleus, so that the range Ry
(defined as the distance at which p(r) has half its
maximum value) will depend on A!/3, where 4 is the
mass number. However, both range and surface thick-
ness, ¢, (the distance in which the radial function falls
from 909, to 109, of its central value) are treated as
adjustable. The electron-scattering experiments, an-
alyzed in terms of a similar p(r),® show a discrepancy
when compared with the results of nucleon-nucleus
scattering experiments: the extent of the nuclear-matter
distribution is smaller for electron scattering than for
nucleon scattering. More sophisticated phenomeno-
logical analyses by Hodgson® show that a satisfactory

8 R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
¢ P, E. Hodgson, Phys. Rev. Letters 6, 358 (1961).
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fit to diffraction minima in nucleon-nucleus scattering
angular distributions requires that the range of the real
and imaginary potentials in Eq. (1) be different, with
the imaginary part having a somewhat longer range.

The success of the optical model in correlating so wide
a range of experiments has led to various attempts at
its theoretical justification. The complexities of the
many-body problem are severe, and initial attempts
have been based on Chew’s” impulse approximation:
the energy of the incident nucleon is assumed to be high
enough so that the target can be considered to be a
collection of independent nucleons. Watson’s® multiple-
scattering analysis has employed this approximation,
and he has shown how, with suitable approximations,
an effective nucleon-nucleus potential of the form of
Eq. (1) can be obtained, with the strength parameters
directly related in first order to the nucleon-nucleon
scattering matrix. Kohler® and Levintov® have shown
that for a potential in which the radial dependence of
the central and spin-orbit parts are related asin Eq. (1),
the small-angle polarization is correctly given in first
Born approximation. This experimental quantity is
therefore directly related, via the impulse approxi-
mation, to the nucleon-nucleon scattering matrix, as
Bethe!® has emphasized. Consistency between nucleon-
nucleon and nucleon-nucleus scattering through such a
polarization calculation has been demonstrated by
Ohnuma,'! Bethe,;!° and Wilson'? and general agreement
with the cross section was obtained by Riesenfeld and
Watson.3

Watson’s treatment leads to an expansion of the
effective potential, in which the leading term involves a
sum of two-nucleon scattering amplitudes over the
target nucleons. It is therefore straightforward to com-
pare calculated strength functions, in this approxi-
mation, with phenomenological parameters such as
collected by Hodgson.* Several authors have done so'¢
and demonstrated reasonable consistency. The phe-
nomenological parameters are hardly unique, however.*
The next term in Watson’s expansion includes effects of
scattering to an intermediate inelastic state, followed
by return to ground. This will be called the second-order
potential, and it has been obtained by Johnston and

7 G. F. Chew, Phys. Rev. 80, 196 (1956); G. F. Chew and G. C.
Wick, Phys. Rev. 85, 636 (1952); G. F. Chew and M. L. Gold-
berger, Phys. 87, 778 (1952).

8 K. M. Watson, Phys. Rev. 89, 575 (1953); N. C. Francis and
K. M. Watson, Phys. Rev. 92, 291 (1953).

 H. S. Kohler, Nucl. Phys. 1,433 (1956) ; I. I. Levintov, Doklady
Akad. Nauk. SSSR 107, 240 (1956) [English transl.: Soviet
Phys.—Doklady 1, 175 (1956)7.

0. A. Bethe, Ann. Phys. (N. Y.) 3, 190 (1958).

'S, Ohnuma, Phys. Rev. 111, 1172 (1956).

2 R. Wilson, Phys. Rev. 114, 260 (1959).
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1 References 10, 12, 13 and A. K. Kerman, H. McManus, and
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Phys. Rev. 113, 1607 (1959); A. Johansson, U. Swanberg, and
R. E. Hodgson, Arkiv Fysik 19, 541 (1961); J. Dabrowski and
J. Sawicki, Nucl. Phys. 13, 621 (1959);22, 318 (1961); J. Dabrow-
ski and A. Sobiczewski, Nuovo Cimento 20, 403 (1961), and Acta
Phys. Polon. 20, 243 (1961).

STUDY OF NUCLEON-NUCLEUS ELASTIC SCATTERING

839

Watson!® in an approximation allowing practical calcu-
lations. The usual first-order potential calculations have
employed only the forward angle values of the nucleon-
nucleon scattering matrix, and Cromer'® has investi-
gated effects of taking into account the angular vari-
ations of the amplitudes. In the present work, these
effects have been found to be comparable with those of
the second-order potential, thoughdifferent in character,
so that a consistent treatment should employ them both.

The present calculation of the optical potential still
employs three major approximations: (1) the impulse
approximation itself, which ignores effects of binding of
the target nucleons to one another; (2) target nucleon
momentum is neglected; (3) the nucleon-nucleon scat-
tering matrix used is that derived from analyses of
elastic two-nucleon scattering, so that it depends only
on momentum transfer and any effects of “off-energy-
shell” matrix elements are lost. The phenomenological
results of nucleon-nucleon scattering analyses obtained
by Breit et al'” and Hull ¢t al.!® are used, and some
comparisons of effects of using other representations!®
of the two-nucleon scattering matrix are made, includ-
ing recent improvements in the many-energy analyses.?
Angular distributions in scattering and polarization,
given by employing the potentials obtained in a
Schrédinger equation, are compared with data in the
energy range 84-350 MeV for the incident nucleon and
for targets ranging from carbon to lead. Estimates of
the importance of the remaining approximations are
made, and the possibility of determining the nuclear
structure parameters specifying nucleon distribution
and correlations is examined.

II. EVALUATION OF THE POTENTIAL

The problem to be solved formally is that of finding a
potential, Vo, such that the single-particle Schrodinger
equation

(h+ Vop))\k,= 50)\k, (2)

represents the nucleon-nucleus scattering. Here % is the
nucleon kinetic energy operator, € the nucleon energy
in the nucleon-nucleus center-of-mass system (Nc.m.
system). Johnston and Watson!5 have shown that a
formal solution of the problem is provided by the
multiple-scattering expansion

1
Vop= az:;l (za)+a§ﬂ<ta;PNDtﬁ>

1 1
+avﬂ7é§;‘¥?£ﬂ<ta;PNDtﬂ’;PNDt7>+ e, (3)

R. R. Johnston and K. M. Watson, Nucl. Phys. 28, 583
(1961); R. R. Johnston, ibid. 36, 368 (1962).

16 A. H. Cromer, Phys. Rev. 113, 1607 (1959).

7 G. Breit, M. H. Hull, Jr., K. Lassila, and K. D. Pyatt, Phys.
Rev. 120, 2227 (1960); ibid. 128, 826 (1962).

8 M. H. Hull, Jr., K. E. Lassila, H. M. Ruppel, F. A. McDonald,
and G. Breit, Phys. Rev. 122, 1606 (1961); 1%8, 830 (1962).
(1;’5]’}.) Gammel and R. M. Thaler, Phys. Rev. 107, 291, 1337

? G. Breit, A. N. Christakis, M. H. Hull, Jr., H. M. Ruppel,
and R. E. Seamon, Bull. Am. Phys. Soc. 9, 378 (1964).
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It has been assumed that the incident nucleon interacts
with nuclear particles via two-body potentials 7., and
thus 4, is a two-body scattering operator defined by

@

ta = vzx+ va_ta ’
a

where the propagator e, appearing also in Eq. (3), is
a=E,—Ho+in. (5)

Here E, is the sum of ¢ and the nuclear ground-state
energy, Ho the sum of nucleus and nucleon Hamilton-
ians in the absence of incident nucleon-nucleus inter-
actions, and 7 determines the boundary conditions in
the usual way.2! In Eq. (3) the brackets denote evalu-
ation of relevant matrix elements for the nuclear ground
state, and Pyp is a projection operator which is zero
when acting on the ground state and unity otherwise.
The subscript ND signifies “nondiagonal” in the nota-
tion of Watson.®15 It should be noted that antisym-
metrization has only been approximately taken into
account; the nuclear wave functions are antisym-
metrized, as are the two-nucleon scattering matrices,
but the complete antisymmetrization of (441) nu-
cleons has not been carried out. Takeda and Watson?
have shown that this neglects ““target exchange” effects,
wherein a nuclear particle other than the ath nucleon
exits with the high energy of the incident nucleon,
leaving the incident nucleon in the nucleus.

Other expansions of V., are possible. Among them
are those of Kerman ef al.?® (hereafter denoted by KMT)
and of Francis and Watson.?* The differences may be
summarized by saying that different propagators are
chosen, requiring therefore solutions of different two-
body problems. In the KMT calculations, the first-
order term is the same as in Eq. (3), but the second-
order term contains contributions of the third order in
the Johnston-Watson expansion, which has elastic
scattering in intermediate states. For the Francis-
Watson expansion, the two-body scattering operator is
defined with a propagator in which the projectile energy
is corrected to that in the nuclear medium. This implies
a self-consistent calculation, since the modified energy
depends on the two-body scattering matrix. It has not
been determined in the present study which of these
expansions converges best. The Johnston-Watson
expansion recommends itself as- straightforward in
applications, and some estimates of corrections to it are
attempted.

The potential of Eq. (3) is nonlocal and formally
requires solution of the full many-body problem,
because the propagator (1/¢) contains the nuclear
Hamiltonian; for the same reason, t, is not the free
two-body scattering operator. However, use of the

% B, Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
2 G. Takeda and K. M. Watson, Phys. Rev. 97, 1336 (1955).
2 A, K. Kerman, H. McManus and R. M. Thaler, Ref. 14.

2 N. C. Francis and K. M. Watson, Ref. 8.
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impulse approximation implies neglect of the binding of
the ath particle to its neighbors in the nucleus, so that
t. may be replaced by the free-scattering operator, Z,.
For the projectile energies considered, one may also
neglect initial target-nucleon momenta compared to the
incident-nucleon momentum, and hence #, acts on the
nuclear ground state only through the spin and isospin
coordinates. A local potential results from the assump-
tion that the matrix element of #, depends on the final
state of the scattered nucleon only through q, the
momentum transfer; this neglects ‘“off-energy-shell”
effects in ¢, which arise because the projectile is actually
scattering off a heavy nucleus in the Nc.m. system
(kinematic differences in ¢ are included).

The first-order term in the potential, in coordinate
space, is then

VD r)=50'—1) VD (r)
=6(r'—n)4 / d*q F(9)i(g)exp(iq-r), (6)

where 4 is the nuclear mass number, F(q) is the Fourier
transform of the nuclear density function p(r), and
t(¢) is the spin-isospin average over target nucleons.
The nucleon-nucleon scattering matrix may be written
in spin space as?

M(oc) =4 (0¢)+C(0c) (0’1+0'2) . n+B (0c) (0'1 ‘nes Il)
+3G(0,) (61-mez-m+-61-Le-I)
+3H(6.) (01 moz- m—ey-loz-1), (7)

where 6, is the scattering angle in the two-nucleon zero-
momentum system (the c.m. system), o; the spin
operators for the two nucleons, n a unit vector normal
to the scattering plane which forms, with m and I, a
right-handed coordinate system. The first-order spin
averages leave only 4 (6;) and C(8,) contributing to the
optical potential.

The second-order term requires more strenuous effort
for its evaluation in the Johnston-Watson treatment,®
and the following approximations or assumptions are
made. Energy differences between excited and ground
states are ignored compared to € so that closure may be
used in the reduction of the sum on a, 8. Not only is t,
replaced by #, on the two-nucleon energy shell, but only
1, the value at forward angles, is employed. This last
replacement is consistent with the assumption that the
second-order contribution will be smaller than the first,
so the refinement of taking the angular variation of f,
into account is unnecessary for the second order. In fact
numerical evaluation confirms that it <s smaller,
justifying this assumption. The operators then depend
only on spin and isospin variables, and the spatial
integrals lead to a pair distribution function,

p(¥,%) = (0]3(x— 25 (x'~25) |0)..

2 H, P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.
105, 302 (1957).
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The assumption of Lax and Feshbach,? that the distri-
butions differ only in space-symmetric and space-
antisymmetric states, is made. With further simplifi-
cations involving assumptions of large nuclei, high
incident energy and angular symmetry, the effect of
correlations is contained!® in two correlation lengths,
R, ., for the space symmetric and antisymmetric states,
respectively. If one knows the nuclear wave functions,
R;,. can be calculated. In the Johnston-Watson work,
values obtained from assuming a Fermi-gas model for
the nucleus and from wave functions given by Brueck-
ner and Gammel?” are used. Thus for the Fermi gas
model, one has!®

R3+Ra= - 247"/[5 (A +4)kF] )
Ry—Ro=6rA/[5(A+4)kr],

where £p is the Fermi momentum, ~1.27 F-1, The
Brueckner-Gammel calculation yields

R.=R,=—084TF,

so that the contributions to V® are quite different for
the two cases. These are taken as typical values of the
correlation lengths in the present calculations. The
effect of varying them as arbitrary parameters is also
studied. The spin and isospin sums lead to contributions
to Vop from all terms of the scattering matrix, Eq. (7).18

In coordinate space the resulting potential may be
written

Vop=VWOHVO=V O4V ,O4 (V,O4V,@),

where

®

V0 () = — (A /) (ku/B) / #dq F(g)jolgr)
X [A 0(9):|: (2T3/A )Af (9)] )
V.0 (r) = — (A fimee) (/BB (1) f ¢dg F@)j(ar)

X[Co(q)==(2Ts/A)C-(9) )/ [1—g/4k T2, (9)

and

Ve® (r)= (2n*/ikeo) (4*/ V 4) (kr/kc)?
X[(Rs+Ra)ga+ (Re—Ra)ge1o(r)

Ve® (r)= 20/ keo) (A2/V 1) (kr/ke)*(1/kR,)

1dp
X [(R3+Ra) ha+ (Rs - Ra)he:l" -

rdr 10

In these equations, which follow the Johnston!® nota-
tion, 4o,,(¢) and Co,,(g) are linear combinations of the
first two scattering amplitudes of Eq. (7) for isospin

26 M. Lax and H. Feshbach, Phys. Rev. 81, 189 (1951).
"K. Brueckner and J. Gammel, Phys. Rev. 109, 1023 (1958).
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singlet and triplet states of two nucleons, while g4, and
ha,e involve forward angle values of all the amplitudes
in Eq. (7). The quantity T’ is the third component of
isotopic spin, V4 is the nuclear volume, %, the labora-
tory nucleon incident wave number, %, its value in the
two-nucleon barycentric system and % the value in the
nucleon-nucleus systems; ¢ is the total energy of the
incident nucleon in the Nc.m. system. The form factor
F(g) is

Flg)= f o)y, (11)

where p(7) is normalized so that

/ p(Ndr=1.

In the first-order potentials, Eq. (9), the integrals over
¢ involve the ‘“‘spherical Bessel functions” jo(gr) and
Ji(gr) ; if Ao,+(g) and Co, ,(g) are replaced by their values
for ¢=0, the integrals lead to p(7) and dp(r)/dr, respec-
tively. The potential would then have the same radial
form as Eq. (1).

A further correction, of order 1/4, is necessary
because of terms in the second order potential not
included in Eq. (10). These may be included by V,, by
a factor

v=1—1/A)+AL(V4/8x) (Vi V) T2, (12)

where A, V1, Vs, are combinations of scattering ampli-
tudes.?® Nucleon-nucleus scattering amplitudes obtained
from the potential modified by a factor ¥ must be
divided by ¥ to give the desired cross section.

The present calculation of the potential utilized the
Yale phase-parameters'”!8 for the two-nucleon matrix.
A comparison with the Johnston calculation,!® based on
phases from the Gammel-Thaler potential® is facili-
tated by writing the potential in his form (assuming the
forward-angle approximation) :

1T,
U= A_a[ U00+_‘U01:*:—“ Uoz:l
A A
‘ 1 Ty
+>‘_6 (R8+Ra)|: U10+:4'U11:E—£U12]

1 T
4\ (R,—Ra)[Uzo'FZUm:!:fUzz] , (13)

and similarly for W, where U replaces (U, +ilW,) in
Eq. (1), and W replaces (U,+iW,); \=RsA4~1/3/

28 R. R. Johnston, Nucl. Phys. 36, 368 (1962). The authors wish
to thank Dr. Johnston for a correspondence concerning the form
of A. The published form contains a misprint which has no
numerically significant consequences on Dr. Johnston’s calcu-
lations reported in the reference.
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TasLE I. Parameters of the theoretical optical potential, in the Johnston® notation. The phase parameters
of Breit ef al.> and Hull ef al.c are used for the nucleon-nucleon amplitudes.
95 MeV 156 MeV 300 MeV 350 MeV
Re Im Re Im Re Im Re Im

U (MeV) —38.12 —30.41 —24.79 —25.94 — 5.07 —25.94 — 1.08 —26.96
Un (MeV) 52.76 —23.58 76.28 —41.52 — 5.42 —29.96 —28.13 —25.86
Uqz (MeV) 12.23 25.06 5.26 16.02 —10.00 10.53 —13.82 11.45
Ui (MeV FY) 14.09 — 3.21 6.36 0.29 1.03 2.52 0.22 2.69
Un (MeV FY) —31.04 39.91 —12.78 30.78 3.83 8.83 6.61 6.17
Uiz (MeV F) —16.13 — 3.59 — 5.27 — 2.82 1.61 — 2.52 2.67 — 240
Uz (MeV F1) — 6.69 5.83 — 2.02 4.03 0.67 1.48 0.92 0.92
Uxn (MeV FY) 53.85 23.07 17.30 — 6.12 4.85 11.80 2.1 10.77
Uz (MeV FY) 10.56 3.48 5.04 1.19 — 0.40 1.56 — 1.24 1.85
Woo (MeV) 3.940 — 1.134 3.070 — 0.678 2.156 — 0.468 2.001 — 0.466
Wa (MeV) — 0951 4.765 — 0.354 7.594 2.491 — 0.504 1.532 — 2474
W (MeV) 1.353 1.689 0.896 1.285 — 0.178 0.654 — 0.456 0.611
Wi (MeV F7) — 0.465 1.122 — 0.310 0.463 — 0.209 0.090 — 0.198 0.055
Wi (MeV FY) 1.050 — 2.259 — 0.848 — 1.490 — 0.094 — 0.018 0.014 0.179
Wi (MeV FY) — 0.125 — 0.464 — 0.047 — 0.189 — 0.112 — 0.005 0.152 0.020
Wao (MeV F1) — 0.030 — 0.290 0.009 — 0.118 0.037 — 0.030 0.039 — 0.019
Wa (MeV F1) — 1.539 4.615 — 0.970 1.948 — 0.792 0.326 — 0.772 0.160
W (MeV F7) 0.095 0.713 0.088 0.386 — 0.005 0.130 — 0.028 0.087

a See Ref. 15.

b See Ref. 17.

o See Ref. 18.

(1.2 F), with R4 the nuclear radius. The relation be-
tween the forms in Egs. (9), (20) and Eq. (13) may be
obtained by straightforward comparison.?® The plus
sign in Eq. (13) refers to incident protons, the minus
sign to incident neutrons, respectively. Table I contains
values of the coefficients U;; and W;; and may be com-
pared to the table of Johnston.!s Only the first terms of
the first-order coefficients are similar; Bethe!® has
pointed out that this is to be expected from any sets of
phase parameters which generally fit the total cross
section in nucleon-nucleon scattering.

Nucleon distributions have been used which yield
analytic forms for the form factors. This is a matter of
convenience in evaluation of the first-order potentials
and is justified by the electron scattering experiments,
which are insensitive to reasonable distribution func-
tions so long as the radial and surface parameters R,
and ¢, are the same.5 Specifically, the result of Ehren-
berg et al3® was used for carbon, and the Gaussian-
uniform shape introduced by Helm® for Al, Fe, Cu, Pb,
with constants adjusted to the Ry, ¢, values for specific
nuclei given by Hofstadter5 or interpolated among his
values. The calculation of the first-order potential then
involves a numerical evaluation of Eq. (9). The inte-
grals over ¢ were cut off at g=2k,, since this is the limit
of momentum transfer in the free two-nucleon case, and
the input scattering amplitudes are not defined beyond
this point. Apart from the assumption that nothing
drastic happens to the scattering amplitude in the non-
physical region of the free two-nucleon case to give
sizable contributions to the integrals for ¢> 2k, it was
clearly necessary to check that the decrease of F(g) was

sufficiently rapid so that use of the integrals was reason-
able. A test of this point was made by numerical evalu-
ation of the integrals assuming constant amplitudes to
see whether the integral when cut off at 2%, would
closely reproduce p(r) and dp/dr. The Hill-Ford distri-
bution® fails this test, due to its having no exponentially
decreasing part, so that it was not used even though it
has an analytic form factor. The distribution chosen is
satisfactory, although some errors occur in the potential
at small distances. The small-angle scattering of interest
here is caused predominantly by the long-range part of
the potential, and it has been confirmed by direct
calculation that the errors in the potential do not affect
the observables in the angular range studied.

The parameters entering the calculation may now be
summarized : the phase parameters used to calculate the
elements of the two-nucleon scattering matrix are from
the Yale study'”!'®* with one-pion phase parameters
included; the nucleon distribution function is taken
from electron scattering experiments®* and the initial
values of the correlation lengths from specific models of
nuclear matter.!® None of these was derived from the
phenomenon to be studied. Since the real and imaginary
parts of the scattering matrix do not have the same
dependence on g, the first-order potential, Eq. (9), will
have different radial and thickness parameters for the
real and imaginary parts, and each may be different
from p(r) itself. The second-order central potential at
any energy is of the form constXp(r), so its principal
effect is to change the potential depth, although clearly
not simply by a multiplicative factor.

The most straightforward comparison with phenom-
enological results can be made in terms of volume

» F, A. McDonald, thesis, Yale University, 1965 (unpublished).  integrals® of the potentials, since differences in choice

® H. F. Ehrenberg, R. Hofstadter, U. Meyer-Berkout, D. G
Ravenhall, and S. E. Sobottka, Phys. Rev. 113, 666 (1959).
st R. H. Helm, Phys. Rev. 104, 1466 (1956).

#D. L. Hill and K. W. Ford, Phys. Rev. 84, 1617 (1954).
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F16. 1. Volume integrals of the first-order theoretical optical
potential, as defined in Eq. (14), compared with phenomenological
values taken from Hodgson.* The values shown are for nuclei with
N=Z such as carbon. Note that the negative of WSI is shown.

of form of p(r) are eliminated, dependence on 4 is
minimized. In Fig. 1 is shown the volume integral of the
first-order potential as a function of incident-nucleon
energy, with

1
v1-1—iWI=—Z / VO (r)dr

4
=——(1.2)Uw
3
= 7.23 Uoo )
1
VSI+iWSI=j4- / VO (r)d*r
=14.46W o, (14)

where

1d
VO @)=——V,0'(y).
r dr

Here T3=0, i.e., the nucleus has N=_Z. The final rela-
tions of Eq. (14) are not dependent on using the forward-
angle approximation for V,®(r) and V.,V (r). Phe-
nomenological results, tabulated by Hodgson,® are
shown for comparison except for the imaginary spin-
orbit part, where phenomenological values are small in
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agreement with theoretical ones but scatter too much
for useful presentation. The refinement of taking into
account neutron excess as well as effects of second-order
potentials could easily be included theoretically, but the
scatter of phenomenological values makes this unfruit-
ful. The general trend of the phenomenological values
is reproduced theoretically, as has been the experience
with earlier analyses,’* but the detailed variations are
not given. That deviations from theory, especially for
VSI, are essential in fitting some data will be discussed
later.

The effect of including the ¢ dependence of the two-
nucleon scattering matrix in the first-order potential is
illustrated in Figs. 2 and 3, for the case of protons
incident on aluminum. For the imaginary central
potential over the whole energy range (~100-350
MeV), and for the real central potential at the lower
energies, the depth at =0 is reduced and the potential
tail is extended, compared to the values for the forward-
angle approximation. The depth at »=0 of the (rela-
tively small) real central potential at 300 MeV is
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Fi16. 2. The first-order central potential for protons incident on
aluminum, comparing the integrated potential V,® with the
potential V@, which employs the forward-angle approximation.
Curves J6 and J9 are phenomenological potentials of Johansson
et al. (Ref. 33). The negative of the potential is shown in each case.
The quantity p=Fkr.
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Fi1c. 3. The first-order spin-orbit potential, for protons incident
on aluminum, comparing the integrated potential V,® with the
potential V4@, which employs the forward-angle approximation.
Curves J6 and J9 are phenomenological potentials of Johansson
et al. (Ref. 33). The negative of the real potential is shown. Note
the enlarged scale on the ordinate for ImV,®.

increased slightly. Also shown are phenomenological
potentials obtained by Johansson et al.® for a range of
moderate-mass nuclei, with radial dependence given by
the Woods-Saxon shape. A potential having a volume
integral given in Fig. 1, but with the same Woods-Saxon
shape as J6 and J9, would have depths at r=0 of
—16.7 and —17.4 MeV, for real and imaginary central
potentials, respectively. The peak of the real spi?-
dependent potential is reduced and shifted from that in
forward-angle approximation. The imaginary spin-
dependent potential is negligible in all cases.

Effects of further modifications may be sampled in
Fig. 4. The theoretical potentials are for neutrons on
copper at 156 MeV. The contribution of the second-
order potential, with both choices of correlation lengths,
is shown, and the effect of radically varying the phase
parameters is shown by computing potentials with the
Gammel-Thaler (GT) values. Only the Brueckner-
Gammel correlation lengths are used for the second-
order contribution with the Gammel-Thaler phase
parameters. The imaginary first-order central potentials

# A Johansson, G. Tibell, K. Parker, and P. E. Hodgson, Nucl.
Phys. 21, 383 (1960).
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TasLe II. Shape parameters for the first-order potential.
Phenomenological values are taken from Refs. 5 and 6. Quantities
given are defined and discussed in the text.

Target nucleus C Al Fe
Elab (MCV)
(protons incident) 156 310 156 310 156 310
Shape
Potential parameters Values of shape parameters (F)
Phenom.»
ReV, and Ry 375 375 479 479
ImV, ts 286 2.8 286 2.86
Phenon.p Ry 3.3
ReV, ts 2.9
Ry 4.2
ImV, ts 2.9
ReV o, ® Ry, 230 230 295 295 406 4.06
ImV® 1s 2.05 205 270 270 2.48 248
ReV,® Ry, 227 148 279 239 3.8 3.75
ts 286 3.15 343 3.51 355 3.06
ImV.® Ry 221 215 2.80 285 3.83 3.92
: ts 3.07 2.85 354 324 3.63 324
ReV,® Rupy F 1.03 1.51 217 217 3.60 3.62
ReV4® Ru, F 180 1.80 2.50 2.50 3.80 3.80
(ReV,M/ReVo®),o 0.82 132 094 124 1.00 1.09
(ImV.D/ImVe®),0 0.78 092 0.88 093 095 0.98
(ReV D) max/
(ReVoo®)max  0.88 0.85 092 0.89 0.87 0.85

a Reference 5.
b Reference 6.

for the two sets of phase parameters are quite similar,
reflecting the fact that the total nucleon-nucleon cross
section strongly influences the part of the scattering
matrix contributing to ImV,®.

In Table II are shown the range and surface param-
eters for V,® and V,o® for sample cases to show the
effect of ¢ dependence of the two-nucleon scattering
matrix, together with phenomenological results for
comparison. The summary of Hofstadters supplied the
phenomenological shape parameters in which real and
imaginary parts of the potential have the same values,
and the analysis of Hodgson® the results for aluminum
at medium energies (actually about 160 MeV) in which
the possibility of having different ranges for the real
and imaginary parts was examined. The latter refine-
ment allowed behavior at diffraction minima for the
cross section to be more faithfully reproduced. While
the present approximation would not be expected to
hold at larger angles where higher order multiple
scatterings could contribute, the influence of the ¢
dependence of the two nucleon scattering matrix is to
give different shape parameters for the real and imagin-
ary potentials. Included also in Table II are values of
the radius R., at which the real spin-orbit potential
reaches maximum, for both V,® and V,,®, ratios of
depths of the central potentials V,®) and V. at r=0,
and ratios of maximum values of the real spin-orbit
potentials.

The trends of the shape parameters with energy and
mass number as shown in Table IT are typical of all the
calculations of this study, especially in the striking
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F16. 4. The theoretical central potential for neutrons incident
on copper, showing all potential approximations: V®, the inte-
grated first-order potential, Eq. (9); Vo™, the first-order potential
in forward-angle approximation; Vg® and Vz®, the sum of VI
and the second-order potentials of Eq. (10), with Brueckner-
Gammel (Ref. 27) and Fermi gas correlation lengths, respectively.
The designation GT denotes use of Gammel-Thaler (Ref. 19)
phase parameters in place of those of the Yale group (Refs. 17, 18).
The negative of the potential is shown.

point illustrated by the entries: the surface thickness
s is much more strongly effected by inclusion of the
angular variation of the two nucleon scattering matrix
than is R, the radius at half-maximum. Compared to
the value of R for the nucleon distribution itself; i.e.,
for Voo, the value for the integrated potential is
always smaller, though by amounts ranging only from
a few to 109, (except for carbon at 310 MeV). On the
other hand, ¢, is larger for the integrated potential by as
much as 50%,. An rms radius for V,® would exceed that
for the nucleon distribution, therefore, but because of
an increase in ¢, rather than R;. Schenter and Downs®
have noted the importance of the surface effect, while
Kerman et al.® assumed that the radial parameter was
most important—a conclusion not supported by these
calculations. The increased radial parameter for the
imaginary part required by Hodgson® and Johannson

#R. E. Schenter and B. Downs, Phys. Rev. 129, 2292 (1963).
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et al?® is exhibited in several cases by the integrated
potentials, but by nothing like the phenomenological
amount. No difference in #;, was found necessary by
these investigators (the possibility of varying ¢, as well
as R; on an equal footing was apparently not thoroughly
explored).

Although the first- and second-order potentials have
somewhat different radial dependence, the principal
effect of the second-order potential may be seen by
comparing the potential depths at #=0. This is shown
for neutrons on copper for a few energies in Table IIT

TaBrLe III. Ratio of second-order potential to first-order
potential at =0, for neutrons incident on copper. The labels B
and F indicate that correlation lengths are taken from Brueckner-
Gammel and Fermi-gas models of the nucleus, respectively.

Epgp
(MQV) (ReV:.@/ReV W), (ImV,®/ImV,®),_o

B F B F
95 0.50 0.25 —0.15 -0.30
156 0.33 0.10 0.10 —0.25
300 0.30 —0.15 —0.20 —0.07
350 0.60 —0.50 0.20 —0.03

for the central potentials. The labels B and F indicate
that the Brueckner-Gammel or Fermi gas models of
nuclei have been used for the correlation lengths R;,4
which enter Eq. (10). Although the percentage changes
in the real part of V,® are quite large at high energies,
the size of the potential is small compared to the
imaginary part, so that effects on observables are not
large.

III. COMPARISON WITH DATA
A. Differential Cross Section

The differential cross section and polarization in
nucleon-nucleus scattering are now calculated from the
potential discussed in Sec. IT. Phase shifts are obtained
by numerical integration of the Schrédinger equation
on a digital computer; a portion of the scAT4 program?®
was used here. The data used for comparison in the
present work are indicated in Table IV. Only tabulated
data were used, and the energy given is that at which
the calculations were made; the experimental energies
may differ by one or two MeV. For comparison with
data for protons incident, a Coulomb potential was
added to the nuclear potential of Egs. (9) and (10).
Since the 1/r tail of this potential is the dominant
feature, the potential corresponding to a uniform charge
distribution was employed. A Coulomb spin-orbit term
caused by the magnetic moment interaction’” was also

3 A, Johansson, U. Swanberg, and R. E. Hodgson, Ref. 14.

36 M. A. Melkanoff, D. S. Saxon, J. S. Nodvik, and D. G. Cantor,
A Fortran Program for Elastic Scatiering Analyses with the Nuclear
Optical Model (University of California Press, Los Angeles, 1961).

37 W. Heckrotte, Phys. Rev. 101, 1406 (1956).
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TasLE IV. Sources of data used for comparison with theory.
Some comparisons have been omitted from presentation here
(in Figs. 5-16), where no new information would have been
illustrated.

Energy
(MeV) Targets Data type Reference
Elastic neutron scattering
84 Al, Cu, Pb o a
95 C, Al, Cu, Pb 4 b
137 C, Al, Cu, Pb I c
156 C, Al, Cu, Pb s, P d
300 C, Al, Cu, Pb L4 e
350 C, Al, Cu, Pb a f
350 C, Al, Cu, Pb P g
Elastic proton scattering
95 C o, P h
137 C a, P i
156 C, Fe P j
156 Al a, P k
180 C, Al, Fe 7 1
200 C s, P m
300 C, Al, Fe o, P n

a A, Bratenahl, S. Fernbach, R, H. Hildebrand, C. E. Leith, and B. T.
Moyer, Phys. Rev. 77, 597 (1950).

b G, L. Salmon, Nucl. Phys. 21, 15 (1960).

¢ C, P. Van Zyl, R, G. P. Voss, and R. Wilson, Phil. Mag. 1, 1003 (1956).

d R. S. Harding, Phys. Rev. 111, 1164 (1958).

e W. P. Ball, UCRL-1938 (unpublished).

f A. Ashmore, D. S. Mather, and S. K. Sen, Proc. Phys. Soc. (London)
71, 552 (1958).

g R, T. Siegel, Phys. Rev. 100, 437 (1955).

b J. M. Dickson and D. C. Salter, Nuovo Cimento 6, 235 (1957).

i J. M. Dickson and D. C. Salter, Ref. h, above.
a ; ‘;R7) Alphonce, A. Johansson, and G. Tibell, Nucl. Phys. 4, 672 and 643
38; 1?1 é]’é)sl)ansson, G. Tibell, K. Parker, and R. E. Hodgson, Nucl. Phys. 21,
(1;?1‘) Johansson, U. Swanberg, and P. E. Hodgson, Arkiv Fysik 19, 541

m T, T. Thwaites, Ann. Phys. (N. Y.) 12, 56 (1961).

» O, Chamberlain, E. Segré, R. D. Tripp, C. Wiegand, and T. J. Vpsilan-
tis, Phys. Rev. 102, 1659 (1956).

used, but its contribution to the polarization is numer-
ically insignificant.

The scattering of neutrons provides the clearest test
of the theory, since Coulomb scattering does not ob-
scure the effects of potential variations at small angles.
Figures 5 and 6 show the results for all potential types
in four sample cases, and Figs. 7-11 give a more nearly
complete survey. The extension of the potential tail and
change in depth of the integrated first order potentials
compared to those calculated in forward-angle approxi-
mation (for the two-nucleon matrix) result in a narrower
diffraction pattern and increased small-angle cross
section, i.e., a “rotation” of the calculated cross-section
curve. This rotation gives an improvement in fitting the
angular dependence of o(f) in every instance, although
not always as great as required by the data. The addi-
tion of the second-order potential shows up principally
as a shift in level of the cross section. Use of Brueckner-
Gammel correlation lengths usually results in improved
agreement with data, since the second-order potential
computed with them raises the cross section. Although
at the higher energies, this shift leaves the theoretical
result still low, the curves labeled Vz®, meaning that
all refinements discussed here have been included and
Brueckner-Gammel (BG) correlation lengths used for
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Fi1c6. 5. Differential cross-section data for neutrons incident on
C and Cu at 156 MeV, compared with theoretical predictions. 8y
is the scattering angle in the nucleon-nucleus center-of-mass
(Nc.m.) system. Curves are labeled by the potential designation;
see caption of Fig. 4. See also the potentials in Fig. 4.
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F16. 6. Differential cross-section data for neutrons incident on
C and Cu at 300 MeV, compared with theoretical predictions.
Notation is that of Fig. 5.
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Fic. 11. Differential cross-section data for neutrons incident on
C, Cu, and Pb at 350 MeV, compared with theoretical predictions.
Notation is that of Fig. 5.

R,,q, give the best of the theoretical fits. Cross sections
predicted from potentials using Fermi gas correlation
lengths are consistently low in this range. At lower
energies the preference for BG correlation lengths is not
so clear; the predictions from the Vr® potentials are
too low for light nuclei, but are larger than those for
Ve® for heavy targets, and provide at least an equally
good fit to data. One should emphasize at this point the
over-all good quality of the data fits illustrated in Figs.
5-11 (and subsequently), despite the fact that no
arbitrary parameters have been used in the calculation.

It may also be noted that the use of Gammel-Thaler
(GT) phase parameters for the two-nucleon scattering
matrix provides in the Vp@® approximation, a fit to
data of reasonable character, although the regularities
noted above do not appear : the theoretical cross sections
are sometimes larger, sometimes smaller than the
experimental ones (see Figs. 5 and 6). These calcula-
tions, therefore, are relatively insensitive to the two-
nucleon phase-parameters. While on the basis of the
whole survey they tend to rule out the GT fit, they
could not be used to select among several good fits to
nucleon-nucleon data.

Proton-nucleus scattering is illustrated in Figs. 12
and 13. The treatment of the Coulomb interaction
appears adequate, as the lowest angle data are well
fitted in all approximations. At 95 and 137 MeV, the
proton-carbon theoretical cross sections are all large
compared to experiment,?® the only such cases. In this
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regard, it should be noted that Gerstein et al.%® report
results 25-35 percent greater at 95 MeV. Also, com-
parison with data for neutrons incident (see Fig. 8)
shows that Coulomb effects have accounted for only
half the experimental differences ; the nuclear potentials
are identical for neutrons and protons incident, since
T3=0 for carbon. It is possible, therefore, that the
experimental normalization of the cross-section data
shown is in error. Comparison of theoretical and
experimental values for the other cases again supports
the superiority of the V5® potential, although Coulomb
effects obscure the differences. The curves marked J6,
J9 in Fig. 12 are predictions from the phenomenological
potentials of Johansson e al.3, which were shown in
Figs. 2 and 3. Although J6 and J9 give poorer fits than
the other curves, it should be pointed out that they were
determined® by fitting data for a range of nuclei, not
just aluminum, and the treatment of Coulomb effects
may have differed.

B. Polarization

Nucleon-nucleus polarization provides the severest
test of the theory, and emphasizes the importance of
having data over a range of energies and targets.
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F16. 12. Differential cross-section data for protons incident on
C at 95 and 137 MeV, and on Al at 156 MeV, compared with
theoretical predictions. Notation is that of Fig. 5. The curves J6
and J9 correspond to phenomenological results of Johansson ef al.
(Ref. 33). Compare also the potentials in Figs. 2 and 3.

38 J, M. Dickson and D. C. Salter, Nuovo Cimento 6, 235 (1957).

® G. Gerstein, J. Niederer, and K. Strauch, Phys. Rev. 108, 427
(1957) ; see also G. L. Salmon, Nucl. Phys. 21, 15 (1960) for results
with neutrons at this energy.
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F16. 14. Polarization data for protons incident on C at 95 and
137 MeV, compared with theoretical predictions. Notation is that
of Fig. 5. The curves labeled FBA result from using the first Born
approximation for the potential V®. In this figure the curve
Vo® is indistinguishable from V®,
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Comparisons with data in Figs. 14-16 show a major
discrepancy : although the small-angle polarization is
consistent throughout, at lower energies the theoretical
polarization does not reach the experimental maximum,
while at higher energies the maximum theoretical values
are too large by about the same amount. The recent
work of Jarvis and Rose,* which shows that the polari-
zation results of Dickson and Salter®® presented in
Fig. 14 should be reduced by 159, causes a decrease in
the discrepancy at 137 MeV for p-C polarization, but
does not remove it.
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| I I

T

An~Cu,i56 MeV
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il j Il
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Fi1c6. 15. Polarization data for protons incident on C and Al at
156 MeV, and for neutrons incident on Cu at 156 MeV, compared
with theoretical predictions. Notation is that of Figs. 5 and 14.
The curves J6 and J9 correspond to phenomenological results of
Johansson et al. (Ref. 33). Compare also the potentials in Figs. 2-4.

The theoretical results for polarization are found to
be quite insensitive to the several refinements in the
calculated potential discussed in this work, as might be
expected from the fact that a ratio of scattering ampli-
tudes is involved so that changes in magnitude of the
amplitudes tend to cancel out. For example, the curve
marked V®(BA) in Fig. 15 is the result of using the
first Born approximation for the nucleon-nucleus
scattering amplitude from the potential V@ added to
the exact Coulomb amplitude. The agreement with the
exact calculation with V@ is good, although the Kohler-
Levintov® theorem does not strictly apply since the

“ 0. N. Jarvis and B. Rose, Phys, Letters 15, 271 (1965).
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F16. 16. Polarization data for protons incident on C and Fe at
310 MeV, compared with theoretical predictions. Notation is that
of Figs. 5 and 14.

radial dependence of V,® is not proportional to the
radial derivative of V,®, and the proof of the theorem
fails when two potentials are present. The discrepancy
between theoretical and experimental polarization
noted is not, therefore, reduced significantly by the
successive approximations to the nucleon-nucleus
potential studied here.

An exception to the several illustrations of the dis-
crepancy is the curve corresponding to use of the GT
phase-parameters at 156 MeV (Fig. 15) for the polari-
zation of protons on carbon. In this case the theoretical
peak value and shape are more nearly consistent with
‘experiment than other examples. This confirms the
calculation of Johansson e/ al3% made in first Born
approximation. However, this fit must be regarded as
accidental, as a study of all the GT cases in Figs. 5, 15,
and 16 will show. For example, the theoretical proton-
iron polarization at 310 MeV (Fig. 16) shows a dis-
crepancy of the same type as observed with the Yale
phase parameters.

The discrepancy in fit to the polarization data has
also been noted at 310 MeV by Cromer'® and Batty,*
but in the absence of results from other energies and a
variety of targets they suggested an explanation based
on the experimental uncertainty in separating effects of
inelastic scattering. Tt appears from this work that a
theoretical explanation must first be sought.

41.C. J. Batty, Nucl. Phys. 23, 562 (1961).
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There is a slight 4 dependence of the discrepancy:
it is a little smaller for heavier nuclei than for light, but
there are not enough examples at enough energies to
make this point strongly. It appears particularly im-
portant to have more polarization data available,
especially in the 150-350-MeV range of energies and
also at lower energies for incident neutrons to illuminate
this disagreement between theory and experiment.

The phenomenological potentials predict a polariza-
tion maximum in general agreement with the data
(see Fig. 15) and it has long been known that this is
possible over a range of energies and targets.*> One may
see the principal source of difference between the
phenomenological and theoretical polarization predic-
tions in Fig. 1. Here the phenomenological value of
VSI is considerably larger than the theoretical curve at
160 MeV, and smaller at 300 MeV. As Figs. 15 and 16
show, this is just the correction needed for the theo-
retical potential. While there is more in detail to it than
this, most of the discrepancy between theory and
experiment can be made up by the indicated changes in
VSI. It will be seen in Sec. IV that no immediate
modifications of the theory are likely to produce the
variations with energy of VSI as shown for the phenom-
enological cases in Fig. 1.

IV. ESTIMATES OF EFFECT OF APPROXIMA-
TIONS AND PARAMETER VARIATIONS

A. The Impulse Approximation

The error incurred by replacing t, in Eq. (3) by the
free nucleon-nucleon operator 7, has been estimated by
Fowler and Watson® to be of order (Bay/2e€0) f/A, where
B,y is the average binding energy of nucleons in the
nucleus, f is the scattering amplitude. This predicts an
error of about 109, at 100 MeV and 59, at 300 MeV.
If the propagator for ¢ is corrected by including the
dispersive energy of the nucleon moving in the nuclear
medium,* the relative error is reduced to (Bav?/8ed®) f/A;
i.e., about 19, and 0.5%, respectively, at 100 and 300
MeV. A numerical estimate of this correction may be
made by evaluating the two-nucleon ¢ matrix at an
energy lower than the experimental energy. Calculations
were made with energy shifts of 18 MeV and 35 MeV,
respectively, for an incident energy of 95 MeV, and 19
and 28 MeV for an incident energy of 156 MeV. The
cross-section predictions are raised several percent by
these shifts, in general agreement with the Fowler-
Watson estimate, so that the error due to the impulse
approximation, quite roughly estimated here, may be
of the order at low energies of the corrections to Vo®

2 F. Bjorklund, I. Blandford, and S. Fernbach, Phys. Rev. 108,
795 (1957); F. Bjorklund and S. Fernbach, in Proceedings of the
Second International Conference on Peaceful Uses of Atomic Energy,
(United Nations, Geneva ,1958) Vol. 14, p. 24.

@ T, K. Fowler and K. M. Watson, Nucl. Phys. 13, 549 (1959);
see M. L. Goldberger and K. M. Watson, Collzsion Theory (John
Wiley & Sons, Inc., New York, 1964) for a detailed account.

4 K. M. Watson, Phys. Rev. 105, 1388 (1957).
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given by the integrated potential and the second-order
contributions. The polarization predictions are hardly
affected by the estimated changes, and the discrepancy
in cross-section level at higher energies for heavy nuclei
is not removed.

B. Neglect of Target-Nucleon Momentum

Momenta of the target nucleons may be 359, of that
of the incident nucleon, but being isotropically dis-
tributed it is expected that in taking the average of the
¢ matrix their momenta may be taken as zero. A numer-
ical estimate,”® drawing on work of Dabrowski et al.*
shows that for incident energies above 100 MeV a
change in ImV'® of less than 39, results from assuming
zero target momentum.

C. On-Energy-Shell Approximation

The error in using free-nucleon kinematics has been
estimated by evaluating the factors relating the  matrix
in the nucleon barycentric system to that in the nucleon-
nucleus system, assuming nucleon-nucleus kinematics.
The correction factor is unity at forward angles and
decreases to 0.63 at the maximum momentum transfer
allowed by the free nucleon kinematics. However, in the
integrated potentials, the principal contributions to
V® are from forward angles, so the effect on the poten-
tials is small.

A rough estimate of the effect of evaluating the two-
nucleon scattering matrix off the energy shell was
obtained by using the first Born approximation for
scattering amplitudes calculated from the nucleon-
nucleon potentials fitting the scattering data.t” This
calculation was used to continue # off the energy shell:
the magnitude was fixed by making it agree with the
phase-parameter results on the energy shell. Only the
central and spin-orbit parts of the potential contribute
to 4(9) and C(6) of Eq. (7), and only C(f) is affected in
these estimates. The correction obtained for ranges of
g required by the nucleon-nucleus kinematics produces a
change of about 5%, in the polarization for high energies
and heavy targets and less otherwise, and this is much
too small to remove the discrepancies in the fit to
polarization already noted.

D. Antisymmetrization Approximation

The failure to antisymmetrize the wave function for
A1 nucleons neglects target exchange, as has been
mentioned. Takeda and Watson? estimate that correct
antisymmetrization would introduce a correction of
order 3%, at 100-MeV incident energy, and a smaller
one at higher energies. In a more recent calculation,

4 J. Dabrowski and J. Sawicki, Ref. 14.

46 C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.
23, 1 (1945).

4 K. Lassila, M. H. Hull, Jr., H. Ruppel, F. A. McDonald, and
G. Breit, Phys. Rev. 126, 881 (1962).
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Sawicki*® develops a correction for the optical potential
which includes target exchange terms. These corrections
are of order 0.5%, at 80 MeV and 0.19 at 230 MeV, and
thus are smaller than others discussed above.

E. Variation of Nuclear-Structure Parameters

Although the assumption that the charge and nucleon
distributions are the same, and that electron-scattering
analysis gives the charge distribution, does not allow
the parameters of p(r) to be considered free in this
calculation, the effect of variations has been investi-
gated. It was found that at 300 MeV (Fig. 6) an increase
of 109, in the range parameter produced a further
“rotation” of the theoretical curve for ¢ (f), which tends
to improve the angular dependence in comparison with
experiment. Excellent agreement with the data could
be then achieved by increasing the magnitude of the
Brueckner-Gammel-type correlation lengths to R,=R,
=—2.10 F, an increase by a factor 2.5. Similar results
were obtained by increasing the surface parameter by
309 and the correlation lengths by a factor 2.75. The
polarization prediction is reduced by these changes, but
by only about one-tenth the amount necessary to
produce agreement with experiment. At higher energies
these changes would produce similar improvements in
all cases, but at lower energies only the increases in
range and surface parameters would be allowed by the
data. The polarization discrepancy would, in any case,
remain. While these calculations suggest that the
nucleon distribution might be longer ranged than the
charge distribution, and that the correlation® lengths
should be larger in magnitude than those given by the
Brueckner-Gammel wave functions, there is not com-
plete consistency for all data at all energies. In view of
the uncertainties in the theoretical calculations, out-
lined above, such conclusions are not justified. For
example, better treatment of off-energy-shell behavior
of the ¢ matrix might give greater extent to the nuclear
potential with use of the original shape parameters for
the matter distribution.

F. Variation of Nucleon-Nucleon Phase Parameters

Recent improvements® in the phase-parameter fits to
nucleon-nucleon data have also been considered in these
calculations. The differences between these and the
older fits'>!8 used in the bulk of the calculations is much
smaller than between the Gammel-Thaler parameters
and the older fits, and the changes in nucleon-nucleus
cross-section and polarization curves are at most 49,
which is well within both experimental and theoretical
uncertainties. An arbitrary change of the magnitude of
C() to produce agreement with nucleon-nucleus
polarization is completely incompatible with nucleon-
nucleon data.

#8 J. Sawicki, Nuovo Cimento 15, 606 (1960).
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V. SUMMARY AND CONCLUSIONS

In common with earlier work®?* the first-order
nucleon-nucleus potential with nucleon distribution
given by electron scattering reproduces the experi-
mental cross section in order of magnitude when the
newer phase parameter analyses are used for the two-
nucleon scattering matrix. Use of the integrated
potentials, including angular dependence of the nucleon-
nucleon scattering matrix,'® improves the angular
dependence of the cross section, and addition of the
second-order potential’® with Brueckner-Gammel cor-
relation lengths generally improves agreement with
data in magnitude. These two corrections are of the
same order of magnitude, and must both be included
on the same footing in a consistent calculation. At higher
energies and for heavier targets, the improvements do
not succeed in producing a good fit to the cross-section
data, however.

The polarization predictions are relatively insensitive
to the corrections discussed, and the theoretical
potentials do not lead to a fit to the experimental values
near the first maximum, although at lower angles there
is general agreement with data. This disagreement is
emphasized by use of the more recent!’-® nucleon-
nucleon phase parameters. The importance of compar-
ing predictions with data over a range of energies and
targets is brought out in detailing this discrepancy, and
the desirability of further experiments for neutron
polarization at all energies and proton polarization
between 200 and 300 MeV for several targets is
indicated.

Estimates of the errors in the theoretical treatment
do not suggest an answer to the polarization dis-
crepancy, since all the estimates indicate effects much
too small, and none clearly has the needed energy
dependence. At the same time, the estimates are large
enough to suggest caution in drawing conclusions about
nuclear-structure parameters and in attempting to
select from among several good fits to nucleon-nucleon
data by an analysis along these lines of nucleon-nucleus
scattering.

However, the generally good agreement between the
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present calculation and a wide range of data as illus-
trated in Figs. 5-16 should not be overlooked. No ad koc
parameters have been introduced : the phase shifts come
from analyses of nucleon-nucleon scattering, the nuclear
charge distribution parameters from electron-nucleus
scattering, and the correlation lengths from models of
the nucleus used to discuss its static properties. While
careful calculations, going well beyond first Born
approximation estimates, have been required, rather
strong evidence for the usefulness of the impulse
approximation in relating nucleon-nucleon to nucleon-
nucleus scattering has resulted.

Effects of third-order terms in the multiple-scattering
expansion have not been estimated. The possibility
that unusual contributions to the second-order term,
such as strongly excited low-lying collective modes,*
could change the potential in the required way has not
been investigated. The work of Clegg® which appeared
as the present paper was in preparation, gives some
information on this point. He makes a similar suggestion
to explain the same discrepancy in the polarization
prediction for 155-MeV protons scattered from C'?2
found in this work. Estimating the effect on the calcu-
lated polarization of excitation followed by de-excitation
of states in the target nucleus of a specific type such as
are identified experimentally, he makes it plausible that
an enhancement of the predicted polarization values is
possible. However, no calculations are given, and the
question of the reduction in predicted polarization
required at higher energies is not investigated.
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