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The usefulness of the boundary-condition model (BCM) for nuclear-matter calculations depends on the
uniqueness of its pseudopotential. This uniqueness Is examined in the present paper. A method is proposed
for comparing different potentials. Explicit calculations of the average potential energy per particle and the
energy gap for nuclear matter are carried out when a hard-core pseudopotential is introduced within the
nuclear force range in addition to the pseudopotential of the original BCM. The influence of the hard core
with various sizes on the results is discussed. It is found that the results are not sensitive to the hard core as
long as the core radius is small, showing that the BCM pseudopotential is effectively quite unique. The fact
that our results are affected greatly for larger core radius is linked to the importance of the effect of many-
body-correlation.

I. INTRODUCTION matter on the different forms of the BCM potential. A
method for comparing separable potentials and other
empirical potentials is also proposed.

In Sec. II we consider the E-matrix equation for the
many-fermion system with a general short-range inter-
action, and compare it with the K-matrix equation with
a separable potential which is assumed to give the same
two-body phase shifts as those of the original short-
range potential. It is found that we can construct a
new integral equation which under certain conditions
wiH allow us to use the usual Fredholm determinant
method and which will converge uniformly. At the end
of the section we construct a separable potential similar
to the 3CM potential, but include a bard-core pseudo-
potential within the range of the short-range nuclear
force.

In Sec. III we solve the many-body singlet S-wave
E-matrix equation with our model potential, in-
cluding the hole-hole interaction. A set of graphs with
(k~Eo~k, p) versus k is plotted. We hand that for the
case when our hard-core radius vanishes we obtain
slightly different results from those given by I omon and
McMillan. ' Since our graphs are different from those of
I.omon and McMillan we expect that our ground-state
energy will differ from theirs even without introducing
the hard core.

In Sec. IV we have calculated the 'So ground-state
energy per nucleon and the energy gap, both as a func-
tion of the hard-core radius. The results are then
plotted. It is interesting to observe that while the bind-
ing energy increases with the size of the repulsive hard
core the energy gap reaches a minimum at a~0,4 F.
Finally in Sec. V we give a discussion of our results as
well as proposing some further studies on this problem.

HE difficulties with the nuclear-matter problem
are the uncertainty of the nucleon-nucleon inter-

action potential and the lack of a technique for com-
paring the different empirical nucleon-nucleon poten-
tials. The construction of the different empirical nuclear
potentials depends on two major criteria. Firstly, it
must produce phase shifts which will match the experi-
mental data for the nucleon-nucleon elastic scattering up
to approximately 300 MeV. Secondly, it must give a
binding energy comparable with the existing empirical
binding-energy formula. Another test of the potential is
obtained by applying it to the deuteron problem. How-
ever, because of the usual difficulty with many-body
problems we are frequently unable to solve our prob-
lems without depending on perturbation methods even
when we are given a well-defined empirical potential
that will satisfy our criteria. It is well known that in the
case of separable potentials' we can solve the many-
body E-matrix equation without using perturba-
tion methods; hence different forms of separable
potentials' have been introduced. In particular, the
recent boundary-condition model' (BCM) starts with
the above-mentioned criteria in mind. However, the
major difFiculty with such a method is the nonunique-
ness of the potential. In this paper a hard-core pseudo-
potential is introduced within the nuclear force range
in addition to the pseudopotential' of the BCM. The
purpose is twofold. Firstly, it is of interest to investigate
the effect of a hard-core interaction itself on the prop-
erties of nuclear matter. Secondly, one can investigate
the dependence of the calculated results for nuclear

* Supported in part by the U. S. Air Force once of Scientific
Research.

'Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). Y. Yamaguchi
and Y. Yamaguchi, ibid. 95, 1635 (1954).' M. Bander, Phys. Rev. 139, B322 (1965).More references can
be found here.

'" E. L. Lomon and M. McMillan, Ann. Phys. (N. Y.) 23,
(1963).

II. THE X MATMX

439 Recently, one of us (K. W. W.) has shown that the
many-body K-matrix equation can be solved with a
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HARD —CORE POTENTIAI

to the original interaction potential V~~M does not
change the scattering phase shifts and the bound states
of the two-body problem, the many-body problem will

be affected.
Our separable potential V, is given by

lr = l'scM+ 1'p' (2.12)

Ke refer our readers to Refs. 3 and 6 for a more de-
tailed discussion of VgcM and Vp, .

III. SOLUTION TO THE X-MATRIX
EQUATION

In this section we shall solve for the E-matrix by
assuming that the potential vanishes in all but the
singlet 5 state. Inclusion of the triplet-spin 5 state in-
troduces no particular difhculties but it is neglected
here for simplicity. Following Lomon and McMillan,
with the potential given by (2.12), one finds that the
'So-state contribution to the V matrix can be written as

4m(k'i Vpik)=a&&&'&(k')bo&'&(k)+ap&" (k')bp&'&(k), (3.1)

Bp(q,P) =0 if q) (kr' —P')'",
= —Q if (kr' —P')'") q& kr —P, (3.6c)

if kp —E&q,

Q= (q'+P' kp'—)/2Pq.

The parameter X is introduced in (3.6a) to keep track
of the contributions from the hole-hole interaction.

Note that the energy denominator G(P,k,q) of (2.2)
is now assumed to be independent of angles and written
as G(P,k, q) in (3.5). Since Eq. (3.4) holds true for
arbitrary values of k and k', the solution is

bp&'&(k) F"(k P)+b&&"'(k) L1—F"(k P)j
fp&'&(k, P) =

D(k,P)

bp&" (k)F"(k P)+ bo"'(k) L1—F"(k P)]
f&"(k,P) =

D(k,P)

where
ap&'&(k') = L(4n-k)'/rw jrp jp(k'rp),

bp&" (k) = fp jp(kr&& )—krp jo'(kro ),
ap&'&(k') = P(47rh)'/mja jp(k'a),

bo&'& {k)= jo(ka+)+ka jo'(ka+) .

D(k P) =L1—F»{kP)jt1—F»(k P)j
—F"(k P)F"(k P) . (3.7)

(3 2) Substituting Eq. (3.7) into Kq. (3.3), one obtains

4m{k'i I&.oak, p)=1V(k', k; P)/D(k, P), (3.8)

Also, ro+=ro+e, @+=g~~, where ~ is an in6nitesimally
small positive number. In the right-hand side of (3.1),
the 6rst term is just the one considered by Lomon and
McMillan, ' the second term arises from the hard-core
interaction.

Correspondingly, by expanding the E matrix into
spherical harmonics and taking only the 5-wave con-
tribution, Kq. (2.3) becomes

4m{k'i Eoik, p)
=ap&'&(k')f&&&'&(k, P)+ap'"(k')fo&o&(kP). (3.3)

The f's in (3.3) satisfy the following equation:

ap"'(k') f "&(k P) = P a &*'&(k')b &'&(k)

where

X(k k' P)= P a &'&(k )

&& {bp&"(k)L1—I"(k,P)j+bo"&(k)F"(k,P)}. (3.9)

The two-body E matrix {k'~Eo~k) can be obtained
from Eq. (3.8) by putting P=O and &&= —1. Thus, the
hole-hole interactions tend to intensify the effect pro-
duced by the exclusion principle. 3

To evaluate the integrals in Eq. (3.5) we shall use
the effective-mass approximation so that

G(P,k, q) = P(k'/&po*) (k' —q') $-',

where

+ Q ao&"(k') fo&"(k,P)F'&(k,P), (3.4)
where the effective mass N, * must be, in principle, de-
termined self-consistently. The evaluation of the in-
tegrals are tedious but straightforward. The results are
given below:

F"(k,P)=— dq q'G(P, k,q)
(27r)' o

I"'(k,P)= —(2/4r) (4&4*/m) {(fo+1)I,
+Io+l&t (fo+1)Io+I4j}, (3.10a)

&&Go{q»bo"'{q)a "'(q) (3 5) F (k,P) =—(2/ )( */m)(I, +u„), (3.10b)

Co(q,P)=~o(q,P)—i&so(q, P),
Ao(q, P)=1 if q&k +P,

=Q if kp+P& q) {kr'—P')'&', (3.6b)

=0 if (kr' —P')'"& q,

F"(k,P) = —(1/s)(m*/4N)

&& {(Ip+Ia)1~(Io+Iu) }. (3.10d)

(3.6a) F»(k,P) = —(2/ )(m~/m){{f~+1)I,+&(I, I„)
+&(fo+1)Ip+pl&(Io —I&4)}, (3.10c)
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(3.11c)

(3.11d)

I5 (1/4x)([Ap———+X(Ap+ —A +)] cos(x

—[(n.—0p+) —X(Qp —0 —)]sin(x+ (x/Pro —2X)(Ci&P—Ci&a) }
—(1/4x)([E p +X(Ep+ E„+)]cosy—x [(s—Zp+)——X(Zp —Z )] singx+(x/Pro —2X)(Cia —Cion) }. (3.11e)

I6———,'[(ir—Qp+) cos$x+Ap —sin$x]
——,'X[(h. +—A p+) sintx —(0 —Qp

—
) costx]+(1/2Prog)(cosign —cos/P) . (3.11f)

I7 4 [(mBp+.)—cos28x+ I'p sin28x —x]+(1/8Pr08)(cos2n5 —cos2P8)

+4X[(B——Bp
—

) cos28x+(I'p+ —I' +) sin28x]. (3.11g)

I8——(1/4x)([0„+—X(0 —0 )] sintx+[A. v
—X(A~+—A +)] cos&x+(2X—x/Pro)(CI& r—Cion) }

—(1/4x) {[Z~+—X(Z~ —Z )] sinqx+ [ET X(E7+ E—+)] cosgx—+(2X—x/Pro) (Cigar —Cion) }. (3.11h)

I9 ', ([A7 +X(h+ ——A-~+)] sin$x —[.Q~—++X(0 —Q~ )]cos(x+(1/Pro()(cos(y —cosign)}.

Iio——4i([I'~ +X(F~+—F~+)] sin28x —[B~++X(B —B~ )]cos28x+ (1/2Pr08) (cos28y cos25n) }—.

Iii = 2 [(vr—Zp+) cosrix+Apsln'gx].
—-', X[(E +—Ep+) singx —(Z —Zp ) cosqx]+(1/2ProiI)(cosign —cosgP),

Ii2 ——~i ([E, +X(E' +—E~+)] singx —[X~++X(Z —Z~ )]cosj x+ (1 /Pr ~0) ( cos ryicosgu) }, —

(3.11i)

(3.11j)

(3.11k)

(3.111)

x=kro, xr =kzro, X= (x' u')/2Prox-,
n=r~(kr' —P')'", P=ro(kp+P), y=ro(kr P), —
p=(ro a)/ro, g=(ro+a)/r—o, 8=a/ro,

and where we have introduced the notation

8.+=Si2(a+x) aSi2(a —x),
y.+=Ci2(a+x) &Ci2(a —x),
0,+=Sig(a+x)~Sig(a —x),
A,+= Cig(a+x)&Ci$(a —x),
Z.+=Siri(a+x) a Sip(a—x),
E += Cig(a+x) &Cig(a —x),
B,+= Si28(a+ x)&Si28(a—x),
F,+= Ci28(a+x)&Ci2h(a —x),

with Si and Ci denoting the sine and cosine integrals as
defined in Jahnke and Einde. '

To proceed with numerical calculations we have
adopted with Lomon and McMillan that

fo —0.89, ro ————0.95 F,
which fit the YLAM '50 phase shift of Breit et gl. ' for
laboratory energies up to 160 MeV. Using kr~1.4(F) ',
we have plotted (k

~
ED~ k,P) as a function of k for dif-

ferent values of the hard-core radius. In Fig. 1 we show

(k~Eo~k, P) with ra*=m for P=O, 0.5kr, and 0.9k'
with the full hole-hole interaction included (X=1) but
in the absence of hard-core interaction. This plot should
be the same as Fig. 4 of Lomon and McMillan. ' How-

' E. Jahnke and F. Emde, &able of PNnclio77s (Dover Publica-
tions, New York, 1945), 4th ed.
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FIG. 1. The nuclear matter (kIEDIk, P) as a function of k for
various values of I' for the case of no hard-core interaction (@=0)
but when the hole-hole interactions are included () =1). Also
included is the two-body (kIEDIk) LEq. (3.8) with P=0 and
X =—1j.

where PE/A denotes the average potential energy per
particle. In the singlet 5-wave approximation, it can be
shown' that PE/2 reduces to

PEi 9
!

A ) o Tr'kp'
dP P' du u'(ki@, ik,P)

(IeJ S y 2)1/9 k'+P' —kg'
dk 0'(kiEoik, P)

2Pk

We have integrated this expression numerically both
with and without the hole-hole interactions, assuming
m*=m. The results are plotted in Fig. 7 which shows
the dependence of the potential energy on the size of
the hard core. Ke observe that as the core becomes
larger the absolute magnitude of the potential energy
per particle increases. At a=0.4 F which is approxi-
mately the empiri. cal value for the hard-core radius, the
potential energy per particle reaches —19.5 Me&, ex-
ceeding the corresponding value at a= 0 by more than 1
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FIG. 2. The nuclear matter (k(EDIk, P) in the absence of hard-
core (a=0) and hole-hole interactions (P =0}. The two-body
(k I Eo I k) is also included.

k /kF

FIG. 3. The nuclear matter (k I Eo I k,P) in the absence of hole-hole
interactions (X=0) but when the hard-core radius =0.4 F.

ever, probably due to some errors in the numerical
computations, the curves for P=0.5k~ and P=0.9k'
look appreciably different in the two plots. Figures 2—4
show the variation of (k~E'D~k, P) as the hard-core
radius is increased from zero to 0.8 F (we recall that
ro ——0.95 F) when the hole-hole interactions are neg-
lected. In Figs. 5 and 6 we show (k

~
ED

~
k,P) when the

hole-hole interactions are included. Discussions of these
results will be deferred until later.

-200

& -soo

I. P = O.Q5kF
2. P&0.5kF
5. P&0.9kF

IV. AVERAGE ENERGY PER PARTICLE
AND THE ENERGY GAP

Let us now consider the energy per particie, E/A:

-800

"looo
0 0.2

k/k~
0.6

a 08 FERMI
X=O

PIG. 4. The nuclear matter (k I ED I kP) when ,the hard-core
radius =0.8 F, but viith no hole-hole interaction.
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MeV when hole-hole interactions are included. In the
absence of hole-hole interactions, the corresponding
increase of the absolute magnitude of the potential
energy is somewhat less, being about 0.6 MeV. %hen g
exceeds 0.6 F, the variation of the potential energy be-
comes more rapid, resulting in signi6cant deviations
from the corresponding values for a=0.

%e have not attempted to calculate the effective
mass m* self-consistently. However, it has been showna

that m~ is about 0.9m when hole terms are included.
Next we consider the energy gap in nuclear matter.

Analogous to superconductivity in metals, it has been
suggested' that the ground state of nuclear matter is
separated from the normal states by an energy gap.
Emery' has proven that there exists a one-to-one cor-
respondence between the energy gap and the singularity
of the K matrix for an in6nite fermion system when the

4l -l6
ttl

X=O

l- -ie
K ~ X=l

-20—

-26 I I I I I I I

~o 0 Ol 02 0.5 0.4 05 08 07 08 09
HARD-CORE RADlUS (FERMl)

Fn. 7. The potential energy per particle as a function of the
hard-core radius for both cases vrhen the hole-hole interactions
are included and excluded.

O. l 5

"ZOO

& -400
CL
ttj
tt

UJ
y -600

I. P-" O.OlkF
R. P= 0.5kF
5, P= 09kF //

z/
/

O.l4

0.)5

O.l 2

' 0 ~l 0.2 0.3 0.4 0.5 0.8 0.7 0.8

FIG. 8. The energy gap as a function of the hard-core radius
vrhen the hole-hole interactions are included.

"l000
0

I I

O. R

I I

0.4

a =0.4 FERMI

Xal

0.6 0.8 I.O

l. P= 0,0lkF
2. P= 0.5kF
5. P= O.ekp

Pro. S. The nuclear matter (Ir HO~It, P) including hole-hole
interactions and a hard-core of radius 0.4 F.

hole-hole interactions are included, and. that the size

of the energy gap is related to the position of the pole of

the E matrix by

6= (26'/one)(k '—ke'), (4 2)

where k* is given by D(k*,P) =0 )see Eqs. (3.7) and

(3.8)j. The existence of such a pole of the E matrix
can already be discerned in Figs. 5 and 6. Figure 8 shows

the dependence of the energy gap on the size of the hard
core. %e find that the energy gap is in the neighborhood
of 0.13 MeV in agreement with the results of Emery
and Sessler. "It is interesting to observe that the size

of this gap has a minimum near @=0.35 F.

-800

-l000
0

l I l I

O.R 0.4

a = 0.8 FERMI

)t= I

I l

0.6 0.8 l,Q

Pro. 6. The nuclear matter (IrlZqllr, P), including hole-hole
interactions and a hard core of radius 0.8 I".

A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110,
936 (1958).

9 V. J. Emery, Nucl. Phys. 19, 154 (19%}.

V. MSCUSSION AND CONCLUSIONS

In this section we shall discuss the results obtained in

the two previous sections. From Figs. 1—8 we can make
the following observations: (I) In the case of no hard-

core potential (see Figs. 1 and 2) if one examines the
many body%matrices (X= I, X=O), using the two body

(k~ Eo
~
k) as a reference, one finds that, for the same I',

the many-body E matrices are modi6ed much more at
small k than at large k; and that for the same k, the
many-body E matrices with large I' are less affected

than those with small I'. (2) Due to the presence of

'0 V. J. Energy and A. M. Sessler, Phys. Rev. 119,248 (1960).
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hard-core interaction (aWO), the EC matrices with large
P are affected to a much lesser extent than those with
small P as the hard-core radius a is increased from zero
to 0.8 F (see Figs. 3—6). (3) As a increases, the E
matrices become more negative or, in other words, the
effective interaction becomes more attractive. This
effect is more pronounced for X= 1 than X=O. (4) The
average potential energy per particle decreases as the
core radius a increases. Again, the effect is more pro-
nounced for X=1 than for X=O (see Fig. 7). (5) The
energy gap is rather insensitive to the variation of the
hard-core radius as shown in Fig. 8. (6) The many-body
E matrices and the average potential energy per par-
ticle start to show significant changes when a ex-
ceeds 0.5 F.

It is well known that the Brueckner E-matrix theory
is essentially an "independent-pair" theory. The many-
body correlation effect comes in only through the ex-
clusion principle. The inclusion of the hole-hole inter-
actions tends to "intensify" the effect produced by the
exclusion principle as noted by Lomon and McMillan. '
For two low-energy (small E and small k) nucleons the
exclusion principle imposes a profound restriction on
their interaction by making the low-energy states
within the Fermi sphere unavailable as intermediate
states in the E matrix. For high-energy nucleons (large
P and k) the exclusion principle is not so restrictive
since the two interacting nucleons have relatively less
difhculty in getting out of the Fermi sphere. Therefore,
for large P and k the many-body E matrix is very much
like the two-body E matrix while for small P and k
they are rather different as observed in (1) above. In-
troduction of the hard-core pseudopotential within the
nuclear force range (u(r0) does not change the two-
body problem. The two-body E matrix remains the
same, independent of the core radius a. Therefore, the
effect of the hard core is felt only via the many-body
correlation. Here again the exclusion principle comes
into play while the hole-hole interactions tends to make
it more prominent. This explains why for large P the
hard core has hardly any inhuence on the E matrix as
remarked in observation (2). The fact that at large k
and small or moderate P the E matrix differs from the
corresponding value at a=0 has to do, of course, with
the nature of the hard core in modifying the correlations
at short ranges. Observation (3) seems to be against
our physical intuition at first in that the hard core
effectively increases the attractive interaction instead
of decreasing it. However, one must bear in mind that
our hard-core potential was introduced in such a way
that the phase shifts and the bound states of the two-

body problem remain essentially unaltered. This implies
that while we decrease the width of the attractive
potential well by postulating a hard-core interaction at
short distances, we must have effectively increased the
depth of the attractive well at the same time. The
resultant many-body E matrix is affected in a very
complicated way via the many interfering terms of the
hard core and the deepened attractive potential (such
as (q~ hard core ~q)(q~ attractive potential ~q"), (q~
hard core

~

q') (q'~ hard core
~

q"), etc.) brought about
by the many-body correlations. A priori, there is really
no reason to expect that such a change of the potential
will decrease the effective attractive interaction. In fact,
one can see by studying numerically the various terms
in Eqs. (3.7), (3.8), (3.9) that the effective attraction in
the many-body system may gain or lose in strength, de-
pending on the values of the parameters f0, r0, kr, etc.
Therefore, it should not be surprising if for the chosen
values of the parameters the many-body E matrix be-
comes more negative with the increased depth of the
attractive well. It also serves as an example to show that
other intuitive feelings may not be valid. For example,
the assumption that the reduction of the hard core to a
soft core in the two-body interaction potential leads to
a higher binding energy may not be correct if one keeps
the same two-body scattering phase shifts. As a result
the average potential energy per particle also decreases.
However, in the neighborhood of a=0.4 F, we see that
both the average potential energy and the size of the
energy gap vary slowly as a function of the hard-core
radius a.

In conclusion, we have demonstrated in this paper the
effect of the hard-core potential on the properties of
nuclear matter, namely, the average potential energy
and the energy gap, calculated on the basis of the
boundary-condition model. For reasonable values of the
core radius, the results are not sensitive to the core
radius, thus showing that the BCM pseudopotential is
effectively rather unique for practical nuclear-matter
calculations. However, the results vary greatly for
a&0.4 F, showing the important effect of many-body
correlation in this range. This is perhaps an indication
that for better agreement with experiment, three- or
more body correlation should be taken into account. "
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