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Validity of the Convolution Approximation for the Van Hove G(r, f) Function
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The validity of the convolution approximation is examined by expanding the spatial Fourier transforms
of both the true and the approximate Van Hove 6(r,t) function in powers of the density. Only the lowest
order terms in the expansions are explicitly calculated. However, comparison of the latter indicates that,
for intermediate values of h, terms which are retained in the approximation are of magnitude comparable to
that of terms which are neglected. It is concluded, therefore, that the convolution approximation fails at low

density for intermediate values of k.
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where, in turn, the "intermediate scattering functions"

x, (k,t) and x(k, t), defined as

x(kt), ,(1/—=I)p (exp(—ik tl;(0))
j~l

Xexpf+ik q;(t)$)r (1.3a)

X(k,t)=(1/ss)p g (exp[—ik tl;(0)j

XexpP+ik ti;(t)j&„(1.3b)

are themselves spatial Fourier transforms of the "Van

Hove 6 functions, "viz. ,

x, (k,t)

xs(k, t)—=x—x,
[
G, (r,t)

dr exp(ik r) ) . (1.4)
1Gg(r, t)

In the classical limit, the G functions have a clear
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' L. Van Hove, Phys. Rev. 95, 249 (1954).
2 a„h and a;„, are, respectively, the coherent and incoherent

scattering lengths. ~0 and t~.
" are the wave numbers of the neutron

before and after scattering; %=&0—x'.

L INTRODUCTION

S shown by Van Hove, ' the cross section for the

~

~

~

scattering of slow neutrons is related to the
dynamical behavior of the scattering system through
the relationship

d'~/dQdk) = (1/kris) (s'/zs)

XLu..~sS,s(k,o&)+a;..'S; .(k,co)], (1.1)

where S„q and S;, (respectively, the coherent and
incoherent scattering functions') are functions depend-

ent only upon the properties of the scattering medium.

The latter have the definitions

probabilistic meaning':

G, (r,t) =probability density for finding a particle
in the neighborhood of condguration phase point
r at time t, given that at 1=0, the same particle
was located at I'=0~ (1.5)

Gq(r, t) ~ probability density for finding a particle
in the neighborhood of r at time t, given that
aeotIIer particle was at r=0 at t=0. (1.6)

However, except for some rather special cases, the
problem of calculating the 6 functions seems far from
having been resolved. Some success has been achieved
in the calculation of G, (r,t) On th.e other hand, except
for the lowest order terms in an expansion in powers of
the time, ' little is known about the exact kinetic form
of Gq(r, t). Indeed, the difhculties inherent in the calcu-
lation of the latter probability density are so great,
gross approximations most probably need be applied.

The most widely introduced of these is the "convolu-
tion approxlmatlon which asserts Gs(r~t) to be
dependent only upon the more easily calculated
G, (r, t), viz. ,

Gg(r, t)=c dr't, s(r—r')G, (r', t),

g2 being the static pair correlation function. The
primary purpose of the present investigation is to
examine whether this approximation has any utility.
Plausible thermodynamic arguments" already suggest
that the approximation, when applied to xs(k, t), fails
for small k (the hydrodynamic limit). In the following,

by using detailed statistical mechanical arguments, we
dednitively show that there is eo value of k for which
the approximation can be properly exploited. ~
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~ Cf. also, A. Rahman, Phys. Rev. 136, A405 {1964).The

latter author has performed computer calculations for a model of
liquid argon, and finds that the approximate G function decays at
somewhat too rapid a rate.
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For this purpose we utilize calculational procedures
which have been developed by Prigogine, Balescu,
Resibois, and others' to study the irreversible behavior
of many-body systems. In Sec. II, these methods are
employed to derive formal density expansions for the
I functions. The convolution approximation, itself, is
investigated in Sec. III.

II. DEDUCTIONS FROM THE LIOUVILLE
EQUATION

A. The Forma1ism due to Prigogine, Salescu,
and Resibois

From Eqs. (1.4) and (1.6), the following relationship
ls obtained:

x, (k, ()= (e—1)fsx.

Xexp(+ik tls) f„(X„;tjq„=0), (2.1)

where f„(X„;t~ qt, ) is the conditional probability
density for 6nding the particles of an isolated e-particle
equilibrium assembly to be in the neighborhood of I'
phase point X„—= (q~, tls, ,q„; yr, ,y )=—(Q,P) at
time t, given that at k= 0 a specified particle was located
at q@. Consequently, we have

the matrix elements are given by

Os(K K', s)—= (K V—s)-'g B""(k;—k ),
l.

O, (K,K'; s)=—g Q ~ ~

KI KS Ko-I

(2.5)

X~""(k,+k;-k, '-k, ') g &"(kt-kt')$ . (2.7)
lWi j

D;; is defined as D;,=B/B—y; B/B—y;, Q is the volume of
the system, and 4,, (k) is defined to be the spatial
Fourier transform of the interparticle potential 4;,(r),
viz. ,

"
4,s(k)= dr exp(ik r)4,;(r). (2.8)

&&[(K V—s)-'(K~Lt(Kt)

X(K, V—s)-'(K, IL, iK,)X "
X(K, riLtiK')(K' V—s)-'j o&1 (2 6)

V is defined as V—= (yt/sit, ,y„jrtt„) and, upon assum-
ing pairwise spherically symmetric interactions between
the particles constituting the assembly, (K ~

L&
~

K') has
the form

(K[I.,[K')—=—PP Q-t4;;((k;—k,'[)[(k,—k,') D,,

x„(ks,t) = (I—1) dP p( —ks, P,t),
We shall later take the limit Q-+ ~, for which the K

(2 2) summations appearing in Eq. (2.6) shall be replaced by
continuous integrals:

where p(ks)—=p(0, ks,0, . ) is one of the coefficients
appearing in a generalized Fourier expansion of the
n-particle probability density'.

f.(X.; t~ ) =Q-"p p(K; P,t)e'* o. (2.3)

Q ~ ~ -+(Sn'Q) ' dkr .

B. Matrix Elements at 1=0

(2.9)

[Terms appearing in the latter equation have the
following definitions:

K=(kt, ks, ,k };KQ={kt qt, ,k„q„}.$
The evolution of f„(X„;t~ ) may be obtained by

solution of the Liouville equation, given an appropriate
initial condition. Hence, Prigogine and co-workers have
demonstrated that the p(K, P;t) may be related to
initial coeflicients by the following expansion:

p(K' P; t)=V' rp p O, (K,K'' s)p(K'' P,O). (2.4)

Assuming that the stationary e-particle probability
density of the scattering assembly is canonical, the
initial condition for the n-particle conditional prob-
ability density is given by"

f„(X„;Oi ttr,
——0)

=«='M) exp[—P4(Q))ps (P)B'(q), (2.10)

where

Q 'Z (P)—=Q ' dQ exp[—P4(Q)j (2.11)

n.."(P)=-rr [(2- ~)- t -p(-e:/2 )&. (2.12)

K 0'

is the partition function for the assembly, and po'~ is
In the above expression, E—' is the inverse Laplace defined by
transform, viz. ,

ds exp( —est),
2gl 0

8 For a review, see I. Prigogine, in Non-EgliVibriues Stukstical
Mechutucs (Interscience Publishers, Inc., ¹w York, 1962);
P. R6'sibois, in Physics of Marty Particle Systems, edited by 'E.
Meeron (Gordon and Breach Science Publishers, Inc. , ¹wYork,
1966).' The (clockwise) contour C is formed hy a line drawn in the
upper half of the complex plane, closed by a large semicircle drawn
through the lower half.

'0 ~ ~ the assumption (usually tacit) heing that such a procedure
is valid even if, as is the case for any realistic intermolecular
potential with a hard repulsive core, the Fourier transform of
4 (rl does not exist. In the present investigation, these expansion
procedures are used primarily for convenient bookkeeping and a
resummation is later performed; consequently, the Fourier
decomposition is probably legitimate in this case. However in
general, one must guard against possible improprieties."R.Nossal, Phys. Rev. IBS, Aj.579 (1964).
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Consequently, from Eq. (2.3), it may readily be shown with G'(2(q, ,T) given by the solution of
that the initial value coefficients are given by ~P(2/ X P ~ / 'f ~

g Ig '2 I ~g2, 1i
I

,({k,,o,",k,„k,„"k,„"0);P,o)
=g- g, (k;„",k,, ~PD"(P), (2.13)

where j is equal to the number of nonzero wave vectors
(other than kk). In the above expression, the mth order
equilibrium correlation functions are defined by

g~($2, ,(~)=—0 Z dgmk' ' 'dg

Xexp[—PC'(4, ,(.)], (2.14)

[4=—q(—qk].

C. Density Exyansion for Scattering Functions

Let us now obtain the terms of a density expansion for
Xq(k; i) from the corresponding terms of p(—k2, P,t).
Using the initial coefficients given by Eq. (2.13), the
contributory terms can be obtained from Eq. (2.4) as
follows'2:

There are two contributions to the zeroth-order term.
One is that which corresponds to the evolution of the
associated probability density functions in the absence
of collisions and is given by the 0=0 term of series

Eq. (2.4). Designating this term as X&D('(k2, t), it can be
readily shown from Eqs. (2.5) and (2.13) that

xp'(k2 t)=c exp( —k2't'~2m(8)g2(k2). (2.15)

[To obtain Eq. (2.15), the limit 0 —k ~,
22/Q=c has been applied (c is the average density of
particles in the system). ]

The other contribution to the zeroth-order term of
Xq' (i.e. , a term proportional to c') is found, a posteriori,
to consist of all terms in Eq. (2.4) describing events such

that the designated particle (particle No. 2) interacts
owly with the particle for which the initial position is

specified (particle No. 1):

x,"'(k,d) =(n, —1)fdPq' '

X~pg p (0, —k„O, ";K',s)p(K', P,0)}. (2.«)
KI a=&

The termsk comprising Eq. (2.16) are evaluated accord-

ing to Eqs. (2.6)—(2.8); the calculations are lengthy but
otherwise without difhculty. One finds

X,D(2(k„t)

C
+co

dP d dqe'" ~'q ' i—q(q)) D, ,
8'g Bq

XG'('(T, k2,vk, v2, q)pD" (P), (2.17)
~In virtue of the momentum integration demanded by Eq.

(2.2), not all terms constituting the series given by Eq. (2.4) are
contributory to x~(k; t).

& is defined as in Eqs. (2.6)—(2.9), except that the (i,j)
summation in Eq. (2.7) is suppressed (we designate ~=2, j=1).

where
X, (k, )') =X,«)+X,&')+0(c2) (2.19)

X "'(k t) = exp( —k'P/2mP), (2.20)

and ~,&'& provided by an equation identical to Eq.
(2.17), except that G"' of the latter must be replaced
by G('& given by solution of the following integral
equation:

G(') (T,k, ()2, 2)2,q) =exp[i(v, 'k —iv2, 28/Bq) T] g2(q)

+ dTk expi(v2 k —iv2, 28/Bq) (T—T()
Sm' p

X(iB/Bqq((t) D2 k)G ' (T,,q). (2.21)

Density expansions for X, (k, t) have already been
investigated by Mazo and Zemach, ' the first few terms
of a time expansion of Eqs. (2.17) and (2.21) having
been obtained in their studies. Primary interest here,
however, is the demonstration of the similarity between
X (') and XP' Comparing Eqs. (2.17) and (2.18) with
Eqs. (2.17) and (2.21), it is seen that these terms are of
the same order in c and have the same form. The only
diGerence between the two expressions appears through
the inhomogeneous term of the integral equations.

III. CONVOLUTION APPROXIMATION

Expressed in terms- of Fourier transforms, the con-
volution approximation [cf. Eq. (1.7)] takes the
particularly simple form

xd (k, t) xd((k)0)x, (k,t) = cg, (k)x, (k, ]) . (3.1)

The cross section Xd(k, )') is never measured by itself
but always appears along with X, (k,t). Indeed [cf. Eq.
(1.1)],the coherent scattering cross section is defined as
being proportional to the full X function, i.e.,

d tTeoh

dt exp( —idDt)X(k, t),
dQda

~' R. M. Mazo and A. C. Zemach, Phys. Rev. &09, 1S64 (1958).

+ dTl exp2(V2'k2 iv2 2' c)/Bq) (T Tk)
p

X(i8/BqqI)((7) D2, 2)GD(2(Tk, q). (2.18)

In Eqs. (2.17) and (2.18),we have designated v, =P2/m;
V2, y= V2 Vy.

Note that ~„olI and Xzol2 are the only terms constitut-
ing the zeroth contribution to a density expansion of
Xq, terms of Eq. (2.4) for which more than two desig-
nated particles take part in an evolution history must
contribute at higher order, since every summation over
particles introduces powers of the density c.

In a similar manner, a formal density expansion can
be obtained for the "self" part of the intermediate
scattering function. One finds
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where

It is immediately determined from Eqs. (2.15), (2.17),
(2.19), and (3.1) that

X seessI y)sppro (:—AI(k ])10((' ) ~ ~ ~ (3.2)

with chj, the 6rst-order term neglected when the
approximation is applied, being de6ned by

Suppose that the intermolecular potential is Lennard-
Jones or similar type, with parameters o„and 0,
characterizing the widths of the repulsive core and
"attractive well" terms. Ke can ensure that p'&(p by
requiring that k er„k e&)1.

But, as shown by DeGennes, ' for k (r„&2, X(k,t) is
well represented by an expression calculated from an
ideal-gas model. Consequently, although the convolu-
tion approximation is valid in this range, it is seen to be
unnecessary s

c11,(k,t) =X,&(&(k,t) . (3.3) IV. REMARKS

Suppose, however, that one did use the convolution
approximation to calculate &(krt). Doing so would

provide

+approx(k f) X ++&approx X ((0+ (g (1)+X Oll)+0((.2)

(34)

But it is now evident that for small and intermediate
k, this procedure is in error; as seen from Eqs. (3.3),
(2.18), and (2.21), the neglected term is of the same
order of magnitude as the X,&'~ term which is retained
and, in fact, tends closer and closer to the latter as
k —&0.

At 6rst glance, the approximation seems to be some-
what better founded for large k. This is true because the
inhomogeneous g1 term appearing in Eq. (2.18) becomes
so heavily modulated by the rapidly oscillating function
exp{i(I k&) that integration over exp(i(1 k1)g1(q) in
Eqs. (2.17) and (2.18) presumably yields a very small
number.

Thus, for example, a first iteration of Eqs. (2.17)
and (2.21) plovldes a tel111 pl'opol"tlollal to a sys'teII1

constant q de6ned as

(3.5)

the corresponding term arising from Eqs. (2.17)-(2.18)
is proportional to a modi6ed constant q', de6ned as

(Eq exp(ik q)gg(q)V'C ((7).

The contribution of this paper is explicit demon-
stration of the failure of the convolution approximation
for intermediate k and low density. The reader must
be cautioned that the analysis is not applicable to an
investigation of the validity of X(k,t) for very small k.
Small momentum transfer implies small energy transfer
and, as is evident from Eq. (1.2), at small (p a scattering
experiment probes the long-time behavior of X(k,t).
However, when k is small the latter is provided by a
hydrodynamic description and, in order to obtain the
correct hydrodynamic behavior, a summation over all
powers of the density is required.

In summary, the 6rst term of an exact density
expansion of X(k,t) has been compared with the cor-
responding expansion term of the convolution approx-
imate scattering function. It has been found that for
intermediate k the unmodified convolution approxi-
mation is inconsistent because terms of importance
which are retained in the convolution approximation
are of the same order as similar terms which are neg-
lected. It is only at large k that the neglected terms
are unimportant, but in such a case X(k,t) is adequately
represented by an ideal-gas calculation and the con-
volution approximation is superQuous.
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