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results of this experiment indicate the persistence of
rather sharp resonances through the giant-resonance
region.

Recently, Izumo® 2% has presented a theory of “partial
equilibrium” for nuclear reactions in which a few (3-7)
nucleons share excitation energy. The model is an
attempt to explain the existence of ‘“‘intermediate reso-
nances” or clumps of oscillator strength ranging in
width from 100 to 400 keV. It may be that the reso-
nances observed in this experiment below 14 MeV are
examples of such intermediate resonances.

One prediction of the Izumo theory is that the reso-

3¢ K. Izumo, Nucl. Phys. 62, 673 (1965).
% K. Izumo, Prog. Theoret. Phys. (Kyoto) 26, 807 (1961).
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nance structure of different nuclei in which the same
number of nucleons share in the excitation should look
the same (although displaced slightly in energy). The
theory of Danos ef al., on the other hand, suggests that
the photon absorption spectrum of odd-4 nuclei should
be somewhat different than even-4 nuclei, even though
the presence of the odd nucleon does not make a
dramatic difference.

It seems clear that the relative merits of the various
collective oscillation theories for heavy nuclei can only
be tested by a succession of high-resolution experiments
on a variety of such nuclei in the near future. The
results of this experiment suggest that such experiments
are possible and will be carried out.
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The pairing interaction is studied by means of the equations of motion. An approximation is derived
which adheres strictly to particle-number conservation, but is otherwise quite close to the formalism of the
Bardeen-Cooper-Schrieffer (BCS) theory. It yields ground-state energies and single-particle properties
considerably improved over those of the latter theory, as evidenced by calculations for (i) the model of
Pawlikowski and Rybarska, (ii) the model of the Ni isotopes solved exactly by Kerman, Lawson, and Mac-

. Farlane. Though it does not yet surpass in accuracy several alternative improvements of the BCS theory,
it is capable of systematic further development, including the treatment of more realistic potentials.

I. INTRODUCTION

HE present systematic theory of medium and
heavy nucleit-? is based upon ideas and methods
borrowed from the theory of superconductivity?® (the
BCS theory). During the past few years there have been
numerous efforts, detailed below, to improve on the
basic approximation of this theory—the treatment of
the properties of a given nucleus as the average of the
properties of an ensemble of muclei. If we restrict our
attention momentarily to the pairing interaction, as has
been the case in almost all work of this sort, there now

L A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110,
936 (1958); S. T. Belyaev, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd. 31, No. 11 (1959).

2L. S. Kisslinger and R. A. Sorenson, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 32, No. 9 (1960), referred to as KS.

3 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957); N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 58
(1958) [English transl.: Soviet Phys.—JETP 7, 41 (1958)7;
J. G. Valatin, Nuovo Cimento 7, 843 (1958). These equivalent
formulations will be referred to collectively as the BCS theory.

exist exactly soluble models, both of spherical* and of
deformed® nuclei against which to measure the accuracy
of the BCS theory and its proposed extensions.

One new approach has been related to Lipkin’s® idea
of allowing for the “curvature” of the separation energy
as a function of particle number, i.e., of replacing the
operator used in the BCS theory,

J=H—-N\, (1.1)
where H is the Hamiltonian, ) the separation energy or
chemical potential, and 4 the number of particles, by
a more general operator

je=H—\f(4). (1.2)

*A. K. Kerman, R. D. Lawson, and M. H. MacFarlane, Phys.
Rev. 124, 162 (1961), referred to as KLM.
® A. Pawlikowski and W. Rybarska, Zh. Eksperim. i Teor. Fiz.

43, 543 (1962) [English transl.: Soviet Phys.—JETP 16, 388
(1963)7.

$H.'J. Lipkin, Ann. Phys. (N. Y.) 9, 272 (1960).
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A version of this idea has been studied by Nilsson” and
an actual scheme of calculation developed and carried
through by Nogami? to the extent of including terms
quadratic in 4 in f(4).

A second approach has involved an elaboration of
Bayman’s method® in which one employs a number-
conserving wave function so constructed that the BCS
theory can be derived from it by an argument of steepest
descents; by extension of the same argument, the effects
of particle-number fluctuation can be studied.l~!2 A
more straightforward technique, first validated by the
studies of Kerman et al.,* has been to project particle-
conserving wave functions from the original BCS func-
tion and to use the former for the evaluation of all
observables.’®!4 Finally, we may mention some rather
more elaborate efforts to construct wave functions for
ground and exicted states,'®:'® including a method for
obtaining exact solutions.'?

Without in any way gainsaying the importance of the
above work, none of it refers to a “realistic” nuclear
interaction or even to the pairing-plus-quadrupole
model of KS. Though a brave start has been made'®
toward treating number conservation properly in the
latter model, it is clear that much remains to be done.

With this note we suggest yet another method for the
study of this class of problems, involving use of the
equations of motion and spectral decomposition of
operator products. This method has been favored pre-
viously by the authors.!9-20 Its ultimate full justification
for the present application must await the further work
in progress showing it to have the power to yield practi-
cal results for a realistic interaction. This will be the
case because of the way in which the approximations
can be controlled. Here by way of introduction we re-
strict ourselves to the pairing interaction and to an
approximation, which though conserving the number of
particles, is otherwise the simplest possible and quite
close to the BCS method. The results are seen to be a
large improvement over those of BCS. Comparing them
with the calculations of Nogami and Zucker,® for ex-
ample, we obtain slightly poorer ground-state energies,
but betier single-particle properties. The direction for

7S. G. Nilsson, Nucl. Phys. 55, 97 (1964).

8Y. Nogami, Phys. Rev. 134, B313 (1964); Y. Nogami and
I. J. Zucker, Nucl. Phys. 60, 203 (1964).

9 B. F. Bayman, Nucl. Phys. 15, 33 (1960).

1], N. Mikhailov, Zh. Eksperim. i Teor. Fiz. 45, 1102 (1962)
[English transl.: Soviet Phys.—JETP 18, 761 (1964)].

17, Bang, J. Krumlinde, and S. G. Nilsson, Phys. Letters
15, 55 (1965).

2K, Dietrich, H. J. Mang, and J. Pradal, Phys. Rev. 135,
B22 (1964).

13 M. Rho and J. O. Rasmussen, Phys. Rev. 135, B1295 (1964).

1 A, Lande, Ann. Phys. (N.Y.) 31, 525 (1965).

18R, R. Chasman, Phys. Rev. 132, 343 (1963); 134, B279
(1964) ; 138, B326 (1965).

16 S, Wahlborn, Bull. Am. Phys. Soc. 8, 626 (1963).

17 R, W. Richardson and N. Sherman, Nucl. Phys. 52, 225, 253
(1964); R. W. Richardson, J. Math. Phys. 6, 1034 (1965);
Phys. Letters 14, 325 (1965).

18], Unna and J. Weneser, Phys. Rev. 137, B1455 (1965).

1 Giu Do Dang and A. Klein, Phys. Rev. 133, B257 (1964).
» A, Kerman and A. Klein, Phys. Rev. 132, 1326 (1963).
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further improvement of the theory is indicated and will
be carried through in succeeding communications.

II. EQUATIONS OF MOTION WITH NUMBER
CONSERVATION

We restrict our study to the usual pairing Hamiltonian

H=Z haaaTaa—iG(Z saaaT(lZT)(Z sﬂaﬁaﬂ) ’ (21)
a a B

from which follows the equations of motion

(00 H 1= hata—3Gsata! (2 ssapas) , (2.2)
B

[aat,H]= —hotoa+3G(Z ssastast)seaa. (2.3)
8

Here s, is a phase factor with the property

$Sa=—S5a,

(2.4)

where @ and « refer to time-reversed, single-particle
states.

Let us take the matrix element of (2.2) between the
ground state |0(4)) of a system with A particles (4
even) and a suitably chosen state |a(4—1)) of the
neighboring (4 — 1)-particle system. The definitions

Yu(@)=(a(4—1)|a.|0(4)), (2.5)
eu(4)=Wo(4)—Wi(4—1), (2.6)

where W refers to the total energy of a state, enables
us to write

eu(4 Wule) = hau()
—3GSa Zﬁ(ﬁ(z‘l —1)|aztazas|0(4)). (2.7)

For the evaluation of the last matrix element in (2.7),
we utilize a sum over states

((A—1)| az'agap|0(4))
=Zrl<ﬁ(A—1) lazt|1(4—2)XI(A—2)|azas|0(4))

=(a(4—1)] az!|0(4 —2)}0(4—2)| a5as|0(4))

=45 (@)os, (28)
where

¢i* (@)= (a(4—1)|aat|0(4—-2)), (2.9)

op=(0(4—2)|azas|0(4)). (2.10)

Deferring temporarily a discussion of the approximation
made in (2.8), we now find for (2.7) the form

e,‘xp,,(a) = ha‘pn(a) - Asa¢ﬂ*(&) )
A= '21‘G Z Sgog.
B

(2.11)
(2.12)

A second equation for the pair of amplitudes ¥,(a),
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¢z*(a), using basically the same approximation as in
(2.8), can be derived from (2.3). It is

Leu—20(4)J¢5*(@)
= —[hz—Glea*(@)+ Asapu(a),

INA)=Wo(A)—Wo(A—2), (2.14)

and the extra term involving G on the right-hand side
of (2.13) resulted from a commutation of operators
necessary to obtain an equation for the same pair of
amplitudes as occur in (2.11).

We emphasize that the “equations of motion” (2.11)
and (2.13) are exact insofar as conservation of number
of particles is concerned. They are approximate in the
neglect of all excited intermediate states of seniority
zero in the sum (2.8) and analogous sums. To show that
one can retain some of these states exactly or all of them
approximately and still have a viable method of calcu-
lation will be the burden of future papers, where we
shall also show that similar techniques can be applied
to more realistic interactions.?

Equations (2.11) and (2.13) can be simplified, first
by the definition of new, more familiar amplitudes,??

Yu(e) = 8uasava(4), (2.15)
¢M*(a) = 8uaua(A - 2) . (2 16)

Here we shall suppose that the single-particle levels
have, as usual, a certain degeneracy 2%Q,, i.e., €x= €,
where @ is the set of quantum numbers common to all
the 2Q, levels. The amplitudes v,(4) and #%.(4—2)
satisfy the equations

(2.13)
where

Eqva(A)=—eva(4)+A(A)u(A—2), (2.17)

Ego(A—2)=eto(A—2)+A(4)va(4),  (2.18)
where

E,=—es+A1, 2M=20+G, e=hs—N1. (2.19)

Notice that discounting the difference between A
and )\1,

Eo=Wo(A—1)=3[Wo(4d)+Wo(4—2)]. (2.20)

‘Were we to ignore the difference between 4 and
(4—2), (2.17) and (2.18) would be the familiar equa-
tions of the BCS theory. Since the normalization

2 In the conventional factorization of the matrix element (2.8),
one extracts both a pairing term, as we have, as well as a Hartree-
Fock field term. (A general technique for doing this is described
in Ref. 20.) It is clear, however, that insofar as we sum over all
relevant intermediate states in (2.8), the Hartree-Fock terms
must be omitted for the pairing interaction, their inclusion in this
case involving a double counting. Since our aim in future work is
to carry through the more complete sum, we have chosen to omit
such terms here. For a more general interaction, self-consistent-
field terms will appear in the theory.

2 We remind the reader that the choice of phases in (2.15) and
(2.16) serves to satisfy the anticommutation relation {a@q,as}=0,
whereas (2.21) is the expression of {@a,as’}=38.5. In both cases
the approximation of (2.8) is involved.
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condition??
v.2(A)+u2(4)=1 (2.21)

connects the solution of (2.17), (2.18) with that for
A — A+2, however, there now arises the necessity of
treating several A values simultaneously, if we insist—
as we do—on retaining the difference

5a(A) = ua2(A - 2) - uaz(A)

as nonvanishing.
We shall therefore seek solutions to (2.17), (2.18)
subject to (2.21) and to the condition

A=Y 2Q9.2(4).

(2.22)

(2.23)

For the ground-state energy, our approximation (2.8)
applied to (2.1) yields

Wo(4)=(0(4)| H|0(4))
=3 2Quhav2(4)—[A%(4)/G]. (2.24)

III. METHOD OF SOLUTION

From Egs. (2.17) and (2.18) we find, for the quasi-
particle energies, the standard expression

E.2= e+ A2 (3.1)

On the other hand, with the help of (2.21) and (2.22),
(2.17) and (2.18) are equivalent to the equations

2u,(A—2)va(A) Ea=A(4)(1+84(4)), (3.2)
[#a*(4—2)—4*(4) JEa= ea(1434(4)), (3.3)
which yield in turn
va*(4) = (14+84)5[1— (ea/ Ea) ], (34)
#M(A—2)=(148,)3[1+(ea/Ed)]- (3.5)
From Eq. (2.12) we have
A=GY Quu (A—2)v,(4), (3.6)
which becomes, inserting (3.2),
Qa(14-8,)
=} Za: o 3.7
Finally, Eq. (2.23) may be rewritten
A =ZJ Qa[1—(ea/Ea)J(14-84) . (3.8)

For §,=0, Egs. (3.7) and (3.8) reduce to the standard
equations of the BCS theory and serve to determine A
and A. In the present instance we describe two pro-
cedures for the determination of these quantities as a
function of 4.

(i) Iterative method. This method depends only on the
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local validity (as a function of 4) of our approxima-
tions. Here we adjoin to Egs. (3.7) and (3.8) the
expression

A—2=3 200.2(A—2)

=2 2 {1—3[1+464(4)]
X[1+(ea/Ea(4))1}. (3.8)

We utilize the fact that (3.8) and (3.8’) as stated must be
satisfied by the same values of A(4), A4), §.(4).
Suppose, however, that all we know is an nth approxi-
mant 8§, (A4) to §,(4). Then the simultaneous solu-
tion of (3.7) and (3.8) will yield a set A™(4), A("(4),
whereas the simultaneous solution of (3.7) and (3.8’)
yields a different set A™’(4), A™'(4). From the
former set, we compute #,™*(4) and from the latter
u,™*(A—2) and define

BaPD(A) =g (A= 2~ (A).  (3.9)

The iteration starts with the BCS value §,((4)=0.
From (3.8) and (3.8’) follows the sum rule

Z a0.911.: 1 ) (310)

which will serve as a check on our results.

(ii) Step-by-step method. Suppose that u,2(4—2) is
known. This allows us through (3.5) to express 8§,(4)
in terms of known quantities and of A(4) and A(4).
This means in turn that (3.7) and (3.8) depend only on
the unknowns A and X and can be solved. But

#.(0)=1, (3.11)

and this is sufficient to solve (3.7) and (3.8) for 4=2,
obtain #,(2), and then proceed step by step to higher 4.

Comparing the two procedures (i) and (ii), we see
that they should give the same results if (and only if)
the theory was exact. As we know that the theory is not
exact (except in the degenerate case, see below) the
two methods may give different results. The second pro-
cedure is inherently less accurate than the first because
an error in the calculation of #,(4—2) may entail an
error in the calculation of #,(4) in addition to the error
in the theory for that A. The two kinds of errors may
compensate each other, but this can hardly be foreseen
(or expected).

IV. DEGENERATE USE

For this case of a single value of a, the theory of this
paper is exact. This is because there are no excited states
of seniority zero, and the factorization (2.8) and all
similar factorizations can be made without approxima-
tion. To solve our equations, we simply realize that

2(4)=(4/29), uX(A)=1—(4/29). (4.1)

8=(1/9),

Thus
4.2)
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TasLE I. Values of the ground-state energy in the model of
Ref. 5, both exactly and in various approximation schemes.
Except for the results of the present work, the table duplicates
one of Nogami and Zucker, Ref. 8. The energies are in units of
the single-particle separations.

\G 1.25 1.00 0.80 0.50
W\
Exact 4.953 6.828 8.213 9.998
Projected BCS 4.966 6.850 8.249 10.095
BCS 6.510 8.082 9.215 10.562
Nogami and Zucker 4975  6.864  8.264 10.067
Present work 5.256 7.182 8.617 10.490

and we can easily obtain the following exact results:

E2=(G20¥/4)[14(1/2) 2, (4.3)
A=G202(4/20)[1— (4/20)+(1/9)], (4.4)
e=1Go[1—(4—1)/2], 4.5)
A=h—3Go[1—(4—2)/2], (4.6)
e=h—Ga[1—(4—2)/2], .7
Wo(d)=—3GRA[1—(4—2)/22]. (4.8)

V. NUMERICAL RESULTS AND DISCUSSION

Numerical calculations were carried out for two ex-
amples: (i) The problem of Pawlikowski and Rybarska®
where 4 =6 particles are distributed over 5 doubly de-
generate (Q,=1), equidistant levels (ha=1, 2, 3,4, 5).
Exact calculations as well as various approximate re-
sults are available for G=0.5, 0.8, 1.00, 1.25. In Table
I, we compare our values for the ground state energy
obtained by iterative method (i) with previous calcula-
tions as compiled by Nogami and Zucker.® Though in
almost every case a considerable improvement over
BCS, the results are inferior to those of other methods,
On the other hand, Table IT illustrates that the ground-
state wave functions are rather better than those of the
other approximation methods in their representation of
single-particle properties.

A better approximation to the energy requiring the
study of excited states of seniority zero will be included
in our next communication.

In Table III, the values of §, are given. It can be
verified that they satisfy the sum rule (3.10). The re-
results for A and A are recorded in Table IV.

TasLE IT. Values of the single-particle level occupation proba-
bilities, v,2 in the model of Ref. 5. Again compare Ref. 8.

NULevel 1 2 3 4 5
UEAN
BCS 0.892 0.810 0.649 0.418 0.229
Nogami and Zucker 0.883 0.797 0.641 0.430 0.249
Present work 0.895 0.827 0.649 0.401 0.227
Exact 0911 0.853 0.716 0.338 0.182
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TasLE ITI. Values of §, [see Eq. (2.22)] for the model of Ref. 5.
These numbers may be considered as a qualitative measure of
the corrections to the BCS theory.

\G 1.25 1.00 0.80 0.50
Levels\|

1 0.146 0.122 0.091 0.028

2 0.222 0.228 0.229 0.165

3 0.262 0.298 0.357 0.614

4 0.222 0.228 0.229 0.166

5 0.146 0.122 0.091 0.028

TaBLE IV. Results for the chemical potential A and the energy-
gap parameter A, for the model of Ref. 5, in units of the single-
particle energy difference.

G 1.25 1.00 0.80 0.50
A 2.370 2.500 2.600 2.750
A 3.500 2.700 2.051 1.071

(i) As a second example, we consider the model of
the even Ni isotopes solved exactly by KLM.* Here 4
runs from 2 to 10, with the particles distributed over
four levels: /(ps2)=0.00 (MeV), k(f5/2)=0.78, h(p1,2)
=1.56, h(ge/2)=4.52, and G=0.331. The solution was
obtained by both methods and is compared with some
previous results for the energy in Table V. The energies
in this case are much nearer to the exact values than in
the previous example, indicating the relative unim-
portance for this case of excited states of seniority zero.
(This assertion remains to be verified.) In Table VI the
values of §,(4) are given, again obeying the sum rule
(3.10). From these values it is a short step to the
occupation probabilities. Finally, in Table VII, we re-
cord the results for A and A.
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TaBLE V. Values of the ground state energy in the model of
the Ni isotopes solved exactly by KLM, Ref. 4. Except for the
solutions of the present work, carried out by both methods
described in the text, the table duplicates one of Nogami and
Zucker, Ref. 8. Energies are measured in MeV.

‘\A 2(Ni58) 4 6 8  10(Nif)

Wo

Exact (KLM) —-149 -211 —-175 —-0.51 1.70

Kisslinger and —-113 —151 —-1.09 —0.22 248
Sorenson

Nogami and —1.49 -207 -—-172 -0.44 185
Zucker

Present work (i) —148 —-2.06 -—1.69 —0.40 1.83

(ii) —148 —2.06 —1.67 -—0.38 1.82

TaBLE VI. Values of 8, for the Ni isotopes.

A 2 4 6 8 10
Levels

D3 0.319 0.247 0.167 0.113 0.083
Sor2 0.094 0.139 0.184  0.207 0.199
P 0.041 0.055 0.081 0.126 0.229
gor2 0.007 0.007 0.006 0.005 0.001

TaBLE VII. Results for A and A for the Ni isotopes, in MeV.

4 2 4 6 8 10
A —0.710 —0.262 0.192 0.654 1.143
A 0.891 1.167 1.315 1.366 1.322

In conclusion, we may claim as the chief merit of the
present work a considerable step toward a more exact
solution of the pairing problem at an essentially negligi-
ble increase in complexity.



