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Rate of Energy Loss to Polar Modes
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The rates at which an electron is scattered by, and exchanges energy with, polar optical modes are cal-
culated for the case of weak interaction.

' 'T is well known that for polar optical-mode scattering
~ - a relaxation time does not exist for electron energies
of the order of the optical-phonon energy. ' It does not
appear to be known, however, that even in this case the
collision rate and rate of energy loss of an electron to
polar modes can be calculated accurately and simply.
In the present note we calculate these rates for the case
of weak interaction with the polar modes, as is found in
the III—V compounds, for example.

Since the interaction is weak, the calculations may be
done using time-dependent perturbation theory. We
have then for the collision frequency 1/r of an electron
having wave vector k initially:
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where q is the phonon wave vector, X~ the steady-state
number of phonons with wave vector q, and Bl„N~ the
energy of the system when the electron has wave vector
k and there are E~ phonons with wave vector g. The
Erst term of (1) represents the transition probability
due to phonon absorption, the second due to emission.
No limitation on transitions due to the Pauli principle
has been included since we shall consider only non-
degenerate materials. The square of the matrix element
for carriers having wave functions of s symmetry, as in
the conduction band of GaAs, may be written' —4
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where V is the volume of the crystal, m the effective
mass, »~=+1 for emission and —1 for absorption,
and Eo is an eBective field given by

&Eo= (r»e'fuu~/h') (1/~„—1/zo), (3)

~& being the longitudinal optical frequency (we neglect
dispersion) and ~„and zo the dielectric constants for
infinite and zero frequencies, respectively. For materials
with high carrier concentrations (2) must be modified
to take into account screening, ' but we shall not con-
sider such high concentrations here.
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It is convenient to transform the summation over q
to an integration over spherical coordinates q, 8, and q

with the k direction taken as the s axis. For this purpose
it is usually considered that the q's occupy a sphere in

g space with radius qo so chosen that the sphere contains
the correct number of normal modes. It will be seen
directly that the assumption made about the boundaries
of the region occupied by the q's is quite unimportant.
Since the matrix element depends on the magnitude of

qJ only, integration over 8 involves only the 8 function.
For the case of spherical constant-energy surfaces the
integral over 8 in the 6rst term of (1) is, except for a
constant factor,
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Applying the condition that the integral will vanish
unless the region of integration includes the point at
which the argument of the 5 function vanishes, we find

I(k+ q) =m/0% q for k[(1+A(o(/h)'~' —1]
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Outside the limits specified the integral vanishes. By a
similar procedure we Gnd for the corresponding integral
over 0 in the second term of (1):
I(k—q) =m/0'kq for k[1—(1—A(o(/8)'»)

(q(k[1+ (1—Aa)(/8)'»j. (6)

An additional condition for this integral, which occurs
in the emission term, to be nonvanishing is that 8 must
be greater than A~&. It is easily verified that the restric-
tions on q stipulated in (5) and (6) ensure conservation
of energy in the transitions.

With (5) and (6) and the matrix element (2) the
integrations over q and p are elementary, and the result
for 7. is quickly found to be

1 2eZD
—

p 8 ~'I'
X, sinh 'I. (2m')»

' &f,)
(h —h(u () 'I'

+(F,+1)sinh 'I
I

. (7)a, i
The 6rst term of (7) represents the rate at which elec-
trons are scattered out of k with absorption, the second
the rate at which they are scattered out with emission.
It is interesting to note that even where a relaxation
time does exist, i.e., for 8&&hco~, the 7 of (7) differs from
that time in the form of the dependence on energy.

The rate of change of carrier energy due to polar
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optical scattering is simp1y ~& times the di6erence
between the probability per unit time for absorption
and that for emission. To obtain this difference vre need
only change the plus sign in the angular bracket of (7)
to a minus. The resulting rate of change of carrier
energy is
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For 8))to& the rate of energy loss, according to (8),
is given actuaHy by the spontaneous emission since
absorption and, stimulated emission essentially cancel
in this limit. Because the dependence of the angular
bracket on energy is essentially Iogarithmic for h&&k~~

it is seen that the rate of energy loss decreases approx-
imately as h—'I' in the limit of large 8. This is also true
of the collision frequency. Since the rate of energy input
from the GCM is, roughly, inversely proportional to the
collision frequency, it is clear that the combination of
these two changes could result in an instability if only
this scat tcrlng mechanism were operatlvc. Of course
the appearance of breakdown in ionic crystals (to which
this calculation is not applicable since perturbation
theory is not valid there) has been connected with just
this mechanism. In the III-V compounds it seems clear,
if only on the evidence that breakdown does not occur,

that other mechanisms take over vrhen the po1ar optica1
scattering gets less CBective.

To obtain from (8) the average rate of energy loss of
all the electrons in a given sample under a given set of
external conditions, it is, of course, necessary to average
over the correct electron distribution for the given
conditions. What this distribution is depends on the
size of the electric Geld, all of the scattering processes
operative, the band structure, etc. The„"fact that a
relaxation time does not exist for the polar optical
scattering for 8 Ace~ makes the determination of the
distribution function quite dificult, of course. In the
absence of knowledge about this function it has fre-
quently been assumed that it is a Maxwel1-Boltzmann
distribution with temperature T, greater than the
lattice temperature T. When (8) is averaged over such
a distribution the result is
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where O~D is the Debye temperature, xs and x, represent
k~~/ksT and Ace~/ksT„respectively, and Es is a Bessel
function. This result was obtained earlier in somewhat
less direct fashion by taking the average of b times the
collision operator for polar optical scattering over the
Maxwell-Boltzmann distribution. 6
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A theory of the Schottky defect is given, and an explicit formula is derived for the formation energy in
terms of thc clastic and dielectric constants. The Einstein model of an ionic solid is the basis for the theory,
with ion correlations treated as a perturbation. Also, semiempirical equations are derived for thc energy of
motion of positive- and negative-ion vacancies, for both self-diffusion and monovalent-impurity diftusion.
The theory is applied to several cases, and the agreement with experiment is excellent.

S INCE the pioneering work of Jost' a number of
papers have appeared which are related to the

problem of forming and moving Schottky defects in
solids. The most noted of these eGorts is that due to
Mott and I,ittleton' which has served as a pattern for
most of the other ca1culations. ' 8
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Before discussing the present calculation it is de-
sirabIC to review earlier theoretical work on the subject.
The Jost theory has never been very useful because no
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