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Theory of the Hall Effect in Disordered Systems: Impurity-pand Condttction
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A general quantum-mechanical formula for the low-field Hall eBect is derived in the density matrix ap-
proach, thus making it possible to treat this eftect in disordered systems. With some assumptions about the
one-electron matrix elements involved, the Hall and ordinary conductivities are correlated for the impurity-
band conduction in the "metallic range. "According to our results, the sign of the Hall eGect depends on the
degree of filling of the impurity band.

1. INTRODUCTION

&HE thepry of the Hall eGect is an unclarified

problem in disordered systems, such as impurity
bands and amorphous semiconductors. In these systems

he classical "scattering approach" to the transport
prob]em fails, because in any approximation the elec-

tronic states can npt be regarded as quasifree; conse-

quently, such a basic concept as the effective mass can

npt be defined. But it is not clear what other parameter
would then govern the sign of the Hall eGect.

Some qualitative considerations, as yet unproved, can

be found in a paper by Mott and Twose. ' A rigorous

basis for a future theoretical investigation of this prob-

].em is contained in R. Kubo's work' concerning the

general theory of low-field Hall effect.
In this work, we derive the general formula fpr the

lpw-field Hall conductivity in a manner different from

that of Kubp, introducing adiabatically both the elec-

tric and magnetic fields (Sec. 2). Such an approach
seems to be simpler. For a system of dynamically npn-

interacting electrons, using the second quantization

formalism, we express the transverse conductivity in

terms of products of certain one-electron matrix ele-

ments (involving momenta and the disordered poten-

tial), and Fermi distribution functions (Sec. 3).

The formula which has been obtained is applied to
the case of high-concentration impurity-band conduc-
tion, where some simple assumptions about the matrix
elements are possible (Sec. 4). According to our results,
the sign of the Hall effect depends on the filling of the
impurity band.

2. THE GENERAL FORMULA OF HALL
CONDUCTIVITY

Let us consider the density-matrix equation

iltdp/dt =$H+H'(t), pj,

where II is the Hamiltonian of a dissipative system.
and H'(t) is the adiabatically turned-on external-Geld
Hamiltonian (electric and magnetic).

For a calculation of low-field Hall conductivity it is
sufficient to consider the terms of the density matrix
which are bilinear in the external electric and magnetic
fields.

The second iterative solution of Eq. (1), with the
initial condition

pl ~„=pe(&)

[p() (H) =grand canonical equilibrium density matrix) is

0 0

(S) dt dt err(t+tr)e(Ht/itpI eiSrt /rr[IIt pegg
iHt /A]g tSrt//t ~ —(S~ +— O)

Q2
(2)

As we had mentioned before

where, in the second quantization formalism,

B'=Bss+Qtt,

es

err= drrr(r)( ttxt) +—terr ~r„(r)
tttc 2trtc'

as= dr 4t(r) ( et')y(r). —
(3a)

[We have chosen the dc magnetic and electric fields along Os and Oy axes, respectively, with the potentials

(p= —hy and A.= (O,Se~,O).]
j N. I'. Mott and W. D. Twose, Advan. Phys. 10, 107 (1961).
'R. Kubo, J. Phys. Soc. Japan 19, 2127 (1964).
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Taking into account that the equilibrium average of any of the involved one-electron operators p„p„, /( vanishes,
we need retain in Eq. (8) only the terms in which all the matrix indices are coupled. After a somewhat cumbersome
regrouping of terms the calculation gives

8/I2/Il . ~f18 I (1 I)//I//2 I

05$ C Plr92rI8 6/Is 8//I+SOS

(( ). ~ (2).».+( ).» (/ )")(2 )" I / /fn /Ifw

)8//2 8//I+SOS -6//2 8//1~6//2 6//2+sks 8/Is 6//I+sks

1 hfsa ~faa
(10)

GPSS
—

6~g CPS
—6PI ZAS

GPSS
—

6P1 ZAS

We mention that the same result may be obtained without the use of the second quantization formalism, by
introducing into Eq. (4) a one-electron Hamiltonian and a Fermi-Dirac one-electron density matrix.

If we put into the Liouville equation (1) a term sA(p —p())/r, which represents an ideal relaxation law, we obtain
instead of Eq. (10) a similar expression, in which the adiabatic parameter s is changed to 2 . To verify our for-
mula, it is easy to calculate o-~ for such an ideally relaxing free-electron system. Such a calculation gives the
classical formula

= (usa/n~") X".
Returning to our Eq. (10) for infinitesimal s=hs, and using the identity

)/' ~f»/ &f»' ')) ~f'»+~ fr» ~fir.

8,(.„—8;+;—8 8» 8;+a—sJ (8» 8;+a—s) (8» 8;+s—s)
'

we have

e'A' 1

, 3' Z I . I 8sr.IIV.)„rl'~f»
Qr/2 C //I //ri//2 6//2 6/II+LB

+((~)//I//2 (0//)//2//3+ (~)//2l/2 (t W)i/Illa) (0&)I/2//I

&fas+~ faa ~fas ~faa+—~fas ~fss

Cps 6pp~Z6

(By interchanging the indices 1 and 3, it may be seen that this expression is real. )
With the notations

~(81)~(82)~(81,82) = 2 19.)w-l'
Plr P2

(6I»1 412 8p2 =52)

618/ 6P]~$6

(13)

rs(81)ra(ss) rs(sa) B(81,82, 88) =
@12822 P8

(6p1 &lr &/M2 522 Cp8 68)

~ pl@2 y IS2P3 ~ 5+188 V Islf8R & PIPl &

and n(8) for the density-of-states function, Eq. (12) reads

e'k'
SC d81 dss — ls(81)rs(82)&f»B (81,82)

Qm'c 62—61+M

~f18+~fsa ~faa ~fas+~ f18 ~fss
+ d61 /fss dna ra(61)rs(&a)N(&8)B(81/82/88)

dt1 Ca—81+18 68—82+$6 68 81+sf

4. IMPURITY CONDUCTION

In disordered systems, of course, this expression must be averaged also over all the possible arrangements of the
atoms. In the following, we shall assume, as is usually done in such problems, that after averaging, in Eq. (14),
ra(8), & (81,82), and B(81,82, 88) will appear with their mean values.

If the energy dependence of the averaged A and 8 is sufficiently smooth, they may be taken outside the inte-
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grals. Such a case probably occurs in impurity-band conduction, at least in the so-called. "metallic range, " as is
shown in Kasuya s approach. Thus, in the case considered, using the well-known identity

we have

where

(x+ie) '=Px ' ix—b(x), e~ +0

orr = —(e'h'/Qmsc) XLAI+8 (J'o+Iy)j,
1

I= del des P s(el)'+(es)kf1s
day eg—Cy

dl(e) df(e)
Jp ——2s' de e'(e)

d6 d6
(15a)

1 1 1
Il= de1 des P S(el)S(e2)kfls d sSe( )e~sP +P

dc]. 62 &1 es es

Let us consider a density of states in the impurity band, of the type

e(e) = (N/s. A) L1+ (e/6)'j —' (16)

where N is the total number of impurity states. With such a resonance-type function, the integrals (15) can be
easily solved in the complex plane. For the integrals involving the symbol d(Px—')/dx we used the artifice

d/ 1 d
dx q(x)—~

P =lim —-dx q(x)P
dx& x "'da x+o,

The result is

with

esi'ss N'2 " — 2x(3—x') df(x) x(7—x')
olr —— X dx f(x) +7

Qm'c m.A' „(1+x')' dx (1+x')'

y =BN/ci 6 (dimensionless coeScient)

(17)

and x being the energy in units of A.
If k2'((6, then f(x) may be approximated by 0(p—x) where p= p/6 (p= chemical potential). Then, in the "me-

tallic range, " for low temperatures, the Hall conductivity reads explicitly

e'O' NsA 5—Bp' p(7 —ps)
O~= —— X +7 (13)

Qm'c mA' 6(1+p')s (1+p')4

On the other hand, concerning y, we can observe that

(e) u (Io)usu (P ) m (0 0 ) u&(PV)u u (0 )" m'(»~/~y)—u u (P.)'u (P.)u
m g J.ll.3 y P2J3 m g l.ly 7I yl2 y k2P3 g l3J1

&(A@3)

m (x~~/c7y)uius(Pu)u2us(Pu)usw.

The erst term of this expression is essentially real and
positive, but the others have no definite sign. We may
expect that their average value over a chaotic distribu-
tion of atoms will vanish. If this is correct, then

B=2A'/m.

Thus

ages, may be expressed also in terms of A. Thus,
according to the well-known quantum theory of elec-
tric conductivity, 4

df(e. )
l(p.)..I'5(. —") (19)

08$ P 1~ P2 tf6yl

(lga) After averaging over the imPurities, we obtain

mesh df(e)
o = — A. de n'(e)

Qm2 d6

y = 2AN/mA.

But we may easily show that the ordinary con-
ductivity, with the same assumption about the aver- (20)

' T. Kasuya, J. Phys. Soc. Japan 15, 1096 (1958). ' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
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We may observe that the Hall and ordinary con-
ductivity are correlated in a simple manner, through
the phenomenological parameter A:

hero- 5—3p' p(7 p') — -
(
e[X

&a= +7 Xe j iso=
6(1+p') (1+p')' mc

(21)

y= (2s-m/e'h)h(1+p')'/(~/Q)Xe (21a)

By inspection of Eq. (21) and by comparison of its
sign with that of the classical formula (11), we can
conclude that the first term in (21) always gives a
positive-charge contribution to the Hall effect, while
the second gives a negative one for p(0 and a positive
one for p)0. Therefore, for p&0, that is for hole con-
duction in the impurity band —at least in the "metallic
range" —we must have a positive-charge Hall effect.
For low electron concentration our formula shows that
a negative-charge Hall effect is very plausible; this
seems, indeed, to be true because an estimate of y
/through Eq. (21a), using the data of the experiments
of Fritzsche and Cuevas'j gives y))1. It is interesting
that even so, there is a slight asymmetry in favor of
the holes.

S. CONCLUSIONS

Introducing into Eq. (20) our density of states (16),
we get the following formula which is valid in the
"metallic range" for low temperatures:

(r = (e'0/Qm') (iV'A/vrA') (1+p') '. (20a)

dynamically independent electrons. We think that such
a formulation is possible for the majority of transport
problems, particularly for disordered systems.

Assuming the constancy of certain matrix elements
(averaged over all the possible arrangements of the
atoms), we have correlated the Hall conductivity for
an impurity band with its ordinary conductivity LEqs.
(17), (20)j. (Here we neglected the possible overlap of
the impurity band with the nearest band of the host
crystal, which occurs at too high impurity concentra-
tion. ) Our assumption seems to be justified for the non-
localized states, which are characteristic for the "me-
tallic range" of impurity-band conduction. In this case,
for low temperatures (kT«h), according to our formula
(18), both negative and positive Hall effects are possible
(depending on the position of the Fermi level), in con-
tradiction with Mott's arguments. ' Nevertheless, the
change of sign occurs when a symmetrical impurity
band is less than half filled.

It seems that in the impurity-band case, as in the
Sloch-band case, the sign of the Hall effect is governed
by the sign of the first derivative of the density of
states in the conduction region.

A thorough comparison of our results with the ex-
periments could not be performed because only in-
complete and uncertain experimental data are presently
available.

We intend to apply our general formulas (5) or (14)
to other interesting cases, such as the problem of the
Hall conductivity of the amorphous semiconductors
within the model used by one of the authors. '

We have derived the general quantum-mechanical
formula for low-Geld Hall conductivity. This is neces-
sary for the discussion of the Hall effect in disordered
systems, where such concepts as "effective mass" and
"quasifree" approach are of doubtful value. Our for-
mula was put in its one-electron form for a system of

5 H. Fritzsche and M. Cuevas, Phys. Rev. 119, 1238 (1960).
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