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approaches a limit o(ts'+a') as n —+oo. Here

r (tc„'+a ')=2cVosr y'obdb,

and using the expansion

(A11)

arbitrary, since only the products ots and o(ts'+o') are
determined, it has the advantage of making p, rather
insensitive to the particular force law so that the values
of p determined in Sec. IV by assuming isotropic scatter-
ing are reasonable approximations for "hard" molecules
(s)5). For example, At(oo) (rigid spheres) is greater
than A&(5) (Maxwell molecules) by about 16%. For
rigid spheres,

we obtain

1
(oo) =—2—

1+( 1)m

A;(s) (—1)' e(d
ts'+o'= —Q ~

—[ln(1 —e)j' (A12)
i=~,4,(s) j! (de

Although the choice of v we have made is somewhat

and it can be verified that Zqs. (A10) and (A12) sum
to give the results obtained in Eqs. (26) and (27), as
should be expected since rigid-sphere scattering is
isotropic in the center-of-mass system.
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The Wiener integral formulation combined with Monte Carlo sampling has been used to compute the two-
particle Slater sum for He for temperatures ranging from 273'K down to 2'K, the lower practical limit for
this computational method. This is equivalent to a calculation of the density-independent part of the pair
distribution function. A Lennard-Jones 6-12 potential has been used to describe the interaction. Contribu-
tions from exchange were found negligible at 5'K and above. Comparisons with the Wigner-Kirkwood ex-
pansion are made. The second virial coeKcients derived from these results are within two or three percent
of the results obtained from the usual phase-shift calculation.

1. INTRODUCTION

~OR a system of E identical particles of mass m en-
closed in a volume 0, with Hamiltonian II~, the

Slater sum' is

Wtt=SA!'~ Q %,*(1,2, ,N)e P~sr-
X%';(1,2, ,N), (1.1)

where +;(1, ,N) is the wave function of the system
in the state i; 1 is the position coordinate of particle 1, 2
is the position coordinate of particle 2, etc. ; X is the
thermal wavelength

X= (2sr t't'P/rn)'t';

P= 1/kT.

(1.2)

(1.3)

The wave functions are normalized to 1 in the volume 0,

e;*(1,2, ~, N)%;(1,2, ~, N)dld2 dN=1, (1.4)

f This work was supported in part by the U. S. OfBce of Naval
Research under Contract Nonr-1834(2 ).' Contrary to custom we include the multiplying factor c7!II'
in this de6nition.

1'=4~((a/r)" —(a/r)') (1 5)

where n and r are the deBoer, Michels2 values appro-
priate to He4:

o.= 14.04X10 '6 erg,
o-= 2.56X10 8cm.

(1.6)

A central feature of this calculation is the use of the
Wiener integral formulation of the Slater sum, ' de-
scribed in the following section. The Wiener integrals
have been evaluated by a Monte Carlo sampling
scheme on the ILLIAC II computer.

' J. deBoer and A. Michels, Physica 6, 409 (1939).' M. Kac, Lectures in A ppVied Jfathematics, Volume 1, Proceed-
ings of the Summer Seminar, Boulder, Colorado, 1057 (Interscience
Publishers, Inc., New York, 1958).

and the summation in Eq. (1.1) extends over all states
appropriate to the statistics of the system. A super-
script is used on H/'~ to explicitly denote Bose-Einstein
(W~ ) or Fermi-Dirac (W+) statistics.

We present here the results of computing 5'2 for
ten temperatures extending from 273'K down to 2'K.
The potential describing the interaction is the Lennard-
Jones 6—12 potential
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g(S) =W~(S). (1.19)

The results exhibited here are appropriate to a de- g(S), in the approximation represented in Eq. (1.16),
scription of the pair distribution function ns(1,2) at is given by
very low densities. This function is given by

n2(1,2) =
(1V—2)!X'~QN

Our results can also be used to compute the second
virial coefFicient, given by

X W~(1,2, , N)d3, d4, , dN, (1.7) 8=—2mlVO (Wm(S) —1)S'dS,
0

(1.20)

where Q~ is the partition function

W~(1,2, , N)dld2, , dN. (1.8)

With the normalization used here

for
np(1, 2) —+ E(E—1)/0'= p'

f] —2) —+ m,

(1.9)

(1.10)

where v is the density. At sufficiently low densities an
expansion of the pair distribution function in powers of
the activity, s, can be made4:

n2(1,2) =j,—' P lb((1,2)s'+',
Z=1

where we use the following deinition of s:
QA' 1/QN ~—(1.12)

b2(1,2) = LW, (1,2,3)—W2(1,2)W, (3)fd3
2A,'

The functions b~ are modified cluster integrals; for
l=1 and l=2 they are given by

4(1,2) =W2(1,2),

where Eo is Avogadro's number. We have made this
calculation and found good agreement with other
calculations of B.

A secondary reason for presenting this work is to
illustrate the use of Wiener integrals as a computational
tool. Although the Wiener integral formulation has
been known for some time it has found relatively little
use as a computational tool. The reasons are probably
twofold; although it has been known, it has not been
well known, and the computational labor is enormous.
Modern computing equipment is helping break down
the second barrier and we hope that this work wi11 help
break down the 6rst.

2. PATH INTEGRAL FORMULATION FOR
THE SLATER SUM

The path integrals, or more explicitly, the conditional
Wiener integrals in terms of which we express the
Slater sum, may be defined in the following way. Let
the parameter r be de6ned on the interval (O,P) and let

r(r) = (xg(r), yg(r), sg(r), , x~(r), y~(r), sn (r)) (2.1)

denote a continuous function of r, with the condition
r(0) =0; it is convenient to picture r(r) as the generator
of a path in the 3g-dimensional coordinate space of the
system as r goes from 0 to P. Let Ffr(r)$ denote a
functional of r(r). Finally, let

At very low densities the activity is approximated by
r(r; n) = (x,(r; n), y, (r; n), s,(r; n),

Xxpr(r, n), y~(r; n), sN(r; n)) (2 2)

and, using just the 6rst term in Eq. (1.11),

n, (1,2) ="W,(1,2) .

(1.15)

(1.16)

denote an r(r) which is piecewise straight and. has
breaks at ~'y T2 ~ ' ~ 7 y' such a function is displayed
in Fig. 1 for m=4 and one space coordinate. The end

Because of spherical symmetry in the interaction,
Eq. (1.5), W, (1,2) depends only on

(1.17)

and so we may write

W, (1,2) = W, (S) . (1.18)

FIG. 1. Example
of x(&, 4).

It is tacitly assumed here that 0 is so large that boundary
effects can be ignored. The radial distribution function,

' J. deBoer, Rept. Progr. Phys. , London 12, 305 (1949).
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points of the v interval are

ra=0, r =P. (2.3)

The conditional Wiener integral, E(F
~ r(P) =R), of the

functional FI r(r)j is defined by

~P'I~0)=&)=~~~ f " ~L~(~;N))4. , (2&)

VrIICX'C

dp„=A„Q (2w(r~g-r;)) '""

(—(r;,i—r)q .-'
&&exp~ I

gd'Nr;; (2.5)
2(r~i—r*) &

(r~i—r')'= Z((*~(r'+i' ~)—* (r" I))'

where, on the left, the r interval is (O,P), R,R' are two
points in the 3E-diInensional coordinate space, and
(R'—R)' is the square of the distance between them
Lcf. Eq. {2.6)]; and on the right, the sum extends over
all eigenstatcs, characterized by eigenvectors +; and
ClgCnVRluCS Es Of thC equation

z(Z(~'/»')+(~'/~r'')+(~'/»'))

X@+(8—V))))4=0, (2.13)

vrhere t/"~ is required to give a discrete spectrum.
Equation. (2.13) is the Schrodinger equation in units

chosen to IIlake ms=A=1, and vre novr adopt these
units; the thermal wavelength is now (2z.P)')'. It is to
be noted that the potential energy, I/"~, appears in the
functional

+(r~(r'+~' ~)—r (r'; ~))'

+(sg(r~), e)—s;(r; e))') (2.6)

Ft r(r)g=exp— V~(r(r)+R)dr, (2.14)

d'~r;= gdh;(;; e)dr;(;; e)dz; (v;, I); (2.'/)

(2.8)

which is averaged over all paths. Because r{r)+R
appears in the argument of t/~, vre may picture the
elective path as one in vrhich the system goes from
point R to point R in the r interval (O,P}.This picture
appears again vrhen it is recognized that the tvro sides of
Eq, (2.12) are two ways of writing the Green's function
fo1 thc Bloch equation

Piecewise continuity of FLr(r) j is sufficient to ensure
the existence of the limit in Eq. (2.4), and we will
assume that this suKciency condition is satis6cd.

%c vrish to dravr attention to tvro features exhibited
in the above relations. The measure dp„ is a Gaussian
probab111ty Rnd so onc Dlay loosely regard thc cond1-
tional Vhencr integral as an average of the functional E,
where the average is taken over all paths r(r), with the
property r(0) =0, r(P)=R; the statistical weight of a
path being characterized by the fact that the inGni-

tesimal increments r(r+8r) —r(~) are governed by a
Gaussian distribution. The measure dp, is invariant to
the tI'Rnsf ormatlon

v' —+ r, r'{r') ~ r(r),

r(r) =n')'r'(7'), (2.10)

(2.11)

Hence the 7 interval can always be normalized to (0,1)
by a change in the space coordinates.

The basic relation connecting the conditional wiener
integral to the Slater sum is'

(R'-R)
(2zP) '~)2 exp—

II~= ae/ap.

The above formulation ignores syIrox. etry condi-
tions on the elgcnfunctlons. Taking these conditions
1nto cons1dcx'ation, lct I dcnotc thc pclmutRtlon
operator~ Rnd COIlst1uct syIHxnetrlc Rnd RntlsymIQctrlc
eigenfunctions,

0', ,,= (1/QN!)Pp 2%;(R), (2.16)

@., g
——(1/QN!)Pp opPe";{R), {2.17)

where Op=+1 or —1 according as the permutation is
even or odd. Novr by applying I' to both sides of Eq.
(2.12), with the convention that P operates on the
prHQ~d coordinates, Rnd sunlIQlng ovel. +, onc obtR1

(R'-R)
Pg P(2mP)~~)' exp—

gI 2

V~(r(r)+R)d7
~ r(P) =R'—R

=P;+;*(R)+.,;e-sz, (2.18)

(R'—R)
P~ apP(2zP) '~)2 exp—

2)9

P

yF. exp — Vgg(r(7)+R)d7 ir(P) =R'—R

=g;%;*(R)@;(R')e-))~', (2.12)

0

V~(r(r)+R)dr ir(P)=R' —R

=Q +'(R)% e-' '. (2 19}



We now impose the requirement that R be a point because of the symmetry degeneracy, and that in a
derived from R' by some permutation of the particle sum over these 4' s, @,; is constant and +,,; changes
coordinates. Noting that for any E; there are Ã.4 s sign rve have the fundamental relations

(R'—R)'l
Pg PexpI — — IE exp—

2P

(R'—R)'q
Pp or P expI — IE exp—

2P

P

V~(r{r)+R)dr Ir(P)=R' —R =WN~,

P

VN(r{r)+R)dr Ir(P)=R' —R =Wpgr,

(2.20)

(2.21)

where 8'~~ and 8'~~ are the Slater sums for Bose-
Einstein and Fermi-Dirac statistics. The relation shovrn
in Eq. (2.20) was used some years ago in a study of the
P transition of helium. '

3. FORMULAS FOR THE CALCULATION OF S'2~

To compute 8 2 it is convenient to use the center of
mass and relative coordinates. The Slater sum separates
into the product of two Slater sums, one for the center-
of-mass coordinate R, , which can be evaluated im-
mediately, and one for the relative coordinate S,

r,~=K,~—F',~,

@&here the direct term, F2~, is given by

WP =2»s) s P; y;*(S)y,(S)s-»',

and the exchange term 8'2~ is

(3.3)

(3 4:)

(3.5)

WP=2'~s)'Q y*(—S)y;(S)e»'. (3.6)

center-of-mass coordinate but changes the relative
coordinate S into —S, so

It is to be recognized that the sums in Eqs. (3.5) and
(3.6) extend over all states without regard to symmetry.
Incorporating the physical constants into Eq. (2.12)
and performing the normalization of 7 to the interval
(0,1) according to Eqs. (2.9), (2.10), and (2.11) on.e
obtains,

g
—&& Ro~.g—B(&~/4)

(2s.)'
&«"'"- Z'4'*(S)4'(S)s "'

=2'") 'Z'q'*(S)q'(S)s-"', (3.1)

where p, {s) satisfies the Schrodinger equation for the
relative coordinate, Wp=E exp —p VI r(r)+8 Idr Ir{1)=0i~'4'(S)+(E'—V(s))e'(S) =0 (3 2)

(3.7)
The interchange of the thoro particles does not alter the and

( X
Wp=s '"I"E exp —p-VI r(r)+S Idr Ir(1)=-

(ps i
2'.

S (3 g)

where r(r) is the generator of the path of the system in the 3-dimensional relative coordinate space as r goes
from 0 to 1. A transformation can be performed on r(r) in Eq. (3.8) to make the condition at r(1) the same as
that in Eq. (3.7). The result is

Wp=e ' 8'~"'E exp —p VI — r(r)+S—2rS Idr Ir(1)=0 (3.9)

01

Let F[r(r)j denote either of the two functionals,

EP"Ir(1)=0)=

Then the numerical scheme for evaluating the condi-
tional Wiener integrals in Eqs. (3.7) and (3.9) is to

{)+S Id {310) approximate each by a 3n-dimensional integral,
00

P~[r(r)j=exp —P VI r(r)+S—2rS Idr
0 I m

' R. P. Feyninsn, Phys. Rsv. 91, 1291 (iN3).

where dp„ is given in Eq. (2.5) with rs=r„=0. The
break points in the piecewise straight path r(r, I) are
chosen at equal time intervals, r,=i/I, i =0, 1, ~ ~ ., e.
The Be-dimensional integral is then evaluated by a
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Monte Carlo sampling procedure. The sampling is done
by choosing the coordinates of the break points
r, =r(r, '

, n) of r(r, ts) according to the distribution dp .
F[r(r', I)) is then evaluated with this path for a set
of values of 8=!S!.Further piecewise straight paths
are then chosen and F[r(r; I)) is averaged over all
paths for each value of 5.

Concerning the choice of the r;, it is evident that the
distribution dp, „does not give independent Gaussian
increments (r,+r—r,) due to the condition r„=0; how-

ever, the choice of the r; can be made to depend on inde-
pendent Gaussian random variables by use of an in-
terpolation formula for a conditional Brownian motion
path. ' lf ro, r~, ~ ~ ~, r; are fixed then,

r'( -—~)+r.( '+r— )

((r~r r') (r ——r~r) ) '"
(3 13)

are independent and Gaussianly distributed with mean
0 and variance 1.

The labor involved in the evaluation of F[r(r ,'I)) is
reduced by the fact that it is not necessary to evaluate
the v integral to a high order of accuracy. On the basis
of some earlier workv we can expect the approximation
represented by Eq. (3.12) to have an error not less than
0(1/e). s It is therefore sufEcient to evaluate the r in-

tegral by applying the trapezoidal rule to the intervals
(r r, r;), i=1, 2, , N. Then,

F [r(,; ~))=e p! —- P V! —r,+S ! ! . (3.14)
n '=o kg~ J)

Let M paths r'(r'e), j=1 2 3f be chosen
according to the sampling scheme described above, let
V be given by Eq. (1.5), and introduce the dimension-

less variables,

p= (ogz)/X, y=4nP, d= (Sgs)/X. (3.15)
rn T'I

Then the numerical approximations to 8"2~ and t/t/'2~

where the coordinate random variables of g= (]„P„,&,) are given explicitly by the formulas,

1 sr y —&((r,'+d ''s (r +d
Ws =—P e~ —P!!'

M ~.-r ts *~(E p 4 p

1 sr 7 r- (r &+d(1—2r;)q-" (r ~+d(1—2r;) ~-s
WP=—P exp —P (

M j=r rs ~m ( p ) ( p )

(3.16)

(3.17)

WP —+ exp( —PV(S)),
8"2~—+ 0.

(4 1)

(4 2)

One can see from a simple qualitative argument that
for 6xed e the approximation, Eq. (3.12), is expected
to improve as X —+0. In this approximation the true
ensemble of paths has been replaced by an ensemble
of broken straight line paths, one straight line segment
in such a path corresponding to a "time" interval of
1/ts in length. If we consider a 6ner subdivision, ob-
tained by chopping each of the n intervals in half, then
each straight line segment wiB have a break at the
center as illustrated in Fig. 2 for one space coordinate.
We can now think of the deviation, $, at the center of
the 6rst interval in Pig. 2 as a random variable. Prom
the interpolation formula, Eq. (3.13), it follows that
it may be regarded as a Gaussian random variable with
variance 1/4e. Thus, in our original approximation,

6 P. Levy, I.a 3Auvemeet Bro amies, Memor. , Sci. Math. I'asc.
126 (Gauthier-Villars, Paris, I954).

4. RESULTS OF THE CALCULATION OF 8'2~

It is evident from the formulas in the last section
that they approach the classical result when the thermal
wavelength vanishes; i.e., when X-+ 0, Eqs. (3.7) and

(3.8) give

with time segmen. ts 1/I, we are, roughly speaking,
ignoring Quctuations in each space coordinate of the
ordel

() /g~) (1/4 )'~';

the factor X/gs. enters because it multiplies the path
coordinate in Eqs. (3.7) and (3.8). It is therefore
reasonable to assume that the accuracy of our approxi-
mation will improve as 'A~o. Conversely, we can
expect a larger error as X —+ ~; i.e., as the temperature
becomes small. The above aryunent suggests that a
decrease in temperature must be compensated by an
increase in n such that TN remains constant, if the
error is to remain constant as the temperature is
lowered. Since the computing time depends critically
on n, it is clear that one cannot expect to pursue these
calculations to arbitrarily low temperatures.

Computing time restrictions led us to use t'he value

n =512=2' (4.3)

' Lloyd D. Fosdick, Math. of Comput. 19, 225 (196S).
Since the Lennard-Jones potential at r =0 does not satisfy the

conditions required in Ref. 7, we cannot say with certainty that
the error is 0(i/I) hut only that it is not likely to go to zero faster
than 1/n.

in almost all of the calculations. It is extremely diKcult
to get an u priori estimate of the error to be expected
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x(v; 4)
x(v;I j

therefore it can be expected that the Wiener integral in

Eq. (3.9) will be very small except when X is large
enough to make

(X'/~)r'(-', )&~' (4.'?)

Fxo. 2. Illustration
of the error in using
paths g(~; 4). Fluc-
tuations represented
by g are ignored.

with a nonvanishing probability. If we simply replace
r'(-', ) by its mean value, —,

' )see Eq. (3.13)), this in-

equality becomes

T&2.8'K. (4.8)

for a given temperature and value of n. However, one
can get a useful picture of the error in the following way.
As a consequence of the argument in the last paragraph
we certainly must restrict our attention to temperatures
such that fluctuations in position of the order

(44)

are small compared with the range of the potential. Re-
taining 0.1% (relative to the potential minimum) ac-
curacy ln the potential then from Eq. (1.5), it Is
reasonable to regard the range of V as 40", i.e., to regard
V=o for r&40. Hence, our criterion becomes

g7 EQ e
—0.54K+(10jF)

2 (46)
Our results show that 8 2~ is considerably smaller than
this bound. The most likely explanation for this is the
following one. Examination of Eq. (3.9) shows that
at the midpoint of the path (7=—',) the potential is

I'((? /C~)r(-')),

'This bound has also been discussed by Sigurd Yves Larsen,
John E. Kilpatrick, Klliott H. Lich, and Harry F. Jordan, Phys.
Rev. 140, A129 (196:-'

must be small, relative to unity, or, substituting the
values of k and 0., 0.03/QT must be small relative to
unity. This crude argument ignores the fact that V
changes very rapidly when r/0 & 1, however this neglect
is not so serious as it might appear since e & is practi-
cally zero for these values of r.

Except at low temperatures, the exchange term 8"2~
should be small. An estimate of the upper bound for this
term is easy to construct from the present formulation.
To get this estimate we make a sbght change in the
potential and insist that V(r) = ~ for r&0 and other-
wise is given by Eq. (1.5). Under this condition the
Wiener integral factor in Eq. (3.9) is zero for ~S~ &0.
and cannot exceed ee for ~S~ &0.. It follows that Wp,
for this modi6ed potential, satis6es the inequality'

z+ e—(2m o~/x~)+Pa (45)

and substitution of the values of the physical constants
gives

This argument suggests that we can only expect a
signihcant contribution from the exchange term below
2.8'K, and our numerical results support this conclu-
sion. This argument points to an interesting picture of
contributions to the exchange term. One contribution
comes from the exponential factor which, as we have
seen, introduces a factor of

e
—2vra~/) I

in the bound. Thus this factor will make the exchange
term go to zero like e ~~ as T—+ ~. One can picture
this contribution as coming from the kinetic energy
associated with the relative n1otion when the particles
exchange position. Another contribution comes from
the interaction during the exchange in position and this
contribution also makes the exchange term vanish as
T~ ~; see Fig. 3. Our results suggest that the latter
e6ect is probably more important than the kinetic
energy effect in making the exchange term smaB.

In Fig. 4 the Slater sum, W~, as a function of S/0.
for different temperatures is displayed. Some results
have been omitted to improve the legibihty of this
figure. Only the curve for T= 2'K explicitly includes the
exchange term. At T=5'K the exchange term was
found to be negligible coD1pared with the direct, term
so it was not calculated for the higher ten1peratures and
is omitted in the results for T=S'K and above. The
locati.on and height of the maximum is given in Table I.

There are two important sources of error in these
calculations, one arising from the Monte Carlo sampling
and the other arising from the approximation repre-

ON TEMPERATURK
PATH

X

MPERATURE
ATH

Pro. 3. Two-dimensional illustration of the qualitative difference
between a high-temperature exchange path and a low-temperature
exchange path (relative coordinates). As the temperature becomes
higher the path tends to folio& more closely the straight line con-
necting points 5 and —S.
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r ('I)
2
5

10
20
30

50
75

100
273.18

1.94
1.55
1.40
1.28
1.22
1.18
1.15
1.11.
1.09
1.04

Sjo.

1.52
1.46
1.39
131
1.27
1.24
1.22
1.19
1.18
1.14

TAsLz I. Maximum value of 5'~~ (column 2) and the loca-
tion of this maximum lcolumn 3) for different temperatures
(column 1}.

lIHllii,

0 ~ g y ~

i
I l l

05 . I.O l.5 2.0 2.5

sented in Eq. (3.12). For reasons just discussed, it is to
be expected that these errors will be most important at
lower temperatures. A measure of the Monte Carlo
sampling error is shown in Figs. 5(a) and (b) where the
calculated points with standard deviations are shown
for T=5'K and 30'K. The length of the vertical line

l,5-

l.o

0.5

see ee
el ~i +++we

T~ 50'K

0
0

I s I

0.5 l.0
i i I I

l,5 2.0 R5 3.0 ~

l.5—

0.5-
P73.l

FIG. 5(a). 5'2~ as a function of S/o for T=5'K with the Monte
Carlo sampling error shown. Total length of the error indicator,
represented by the vertical line segment, is twice the standard
deviation of the sample mean, represented by the dot. (b). 8'2
as a function of Sjar for T=30'K with the Monte Carlo sampling
error shown. Total length of the error indicator, represented by
the vertical line segment, is twice the standard deviation of the
sample mean, represented by the dot.

0
0

I

0$ I.0 l.5 2.0 2.5 3.0—
PIG. 4. IVY as a function of S/o for T=2,

5, 10, 75, and 273.18'&.

@Private communication. The calculation of Larsen, Witte,
and Kilpatrick is based on a direct calculation of the wave func-
tions which had been made earlier in a calculation of the second
virial coeKcient of He . See Sigurd Yves I.arsen, Kathleen Witte,
and John E. Kllpatlick, J. Chem. Phys. (to be published).

at a point is twice the standard deviation of the sample
consisting of '1000 independent paths. Standard devia-
tions are not shown in the tails where they are too small
to draw on this scale. Some measure of the other error is
given by comparing results based on other values of e,
the number of straight line segments in the path. In
Fig. 6 the results of calculating WP (the direct term)
at T=2'K for m=100 and x=512 are shown.

In our initial calculations we only went down to
T=s'K because we suspected that the errors encoun-
tered at lower temperatures would be too large. After
learningM that Larsen and Kilpatrick had calculated
8'2~ at T=2'K in an entirely different way we were
stimulated to push our calculations down to 2'K. The
results compared with those of Larsen and Kilpatrick
are shown in Figs. 7 (a) and (b); the direct term is shown
in Fig. 7(a) and the exchange term is shown in Fig. 7(b).

2.0-
T~2~K
DlRECT TERM
~ p ~5l2
a n =l00

~ a ~
ao

4

sa
s

~ g
4 ~ y a+ as~ ~

a a+ I 1 I I I I

0 0.5 I.0 l.5 2.0 2.5 3.0 3.5 +
FxG. 6. 8 2D (the direct term) at T=2 I for I=100and n=512.

"D.ter Haar, EIemeets of Sta@stical 3fecha77ks (Holt, Rinehart
and Winston, New York, 1960), p. 192.

The sampling error at a representative set of points
is shown.

It is of some interest to compare these results against
the pure classical value of 8"2 and its value from the
first few terms of an expansion" in powers of X, some-
tln1cs called thc %lgncr-Klrkwood cxpanslon. Thc
classical value is given by

Ws(classical) =e &~. (4.9)

The signer-Kirkwood value displayed here is obtained
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where we coinpare location and height of the 6rst
maximum in g(5) and the point at which g(5) first.
increases above zero for He' according to measurements

by Henshaw" with our results. %e note that although
there is a marked difference in the height of the maxi-
rnum, the other parameters are in fairly good agree-
ment. It is to be noted that the position of the maximum
moves to higher 5 as the temperature increases while
our results show the opposite behavior. This qualitative
difference is almost certainly due to the fact that
the approximation used here, Eq. (1.19), includes

0.5—
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o t

EXCHANGE TERM
T~ a'K
~ THIS WORK—LARSEN AND KILPATHICK
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/
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j

0 0.5 I.O I S a.o as
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FIG. f (a). Comparison of our results with those of Larsen and
Kilpatrick for the direct term at T=2'K. The Monte Carlo
sampling error [as in Figs. 5(a), (b)) is shown. (b). Comparison of
our results with those of Larsen and Kilpatrick for the exchange
term at T=2'K. The Monte Carlo sampling error gas in Figs.
5(a), (b}g at a representative set of points is shown.

by truncating the expansion at terms in 1/8" to obtain

I
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and where y and p are given in Eq. (3.15). This com-
parison is made in Figs. 8(a), (b), (c) at T=2', 10',
and 30'K. Only the direct term is shorn.

One cannot of course expect good agreement but it is
nevertheless tempting to compare the radial distribu-
tion function in the present approximation against ex-
perimental results. This comparison is made in Table II,

7=M~ K

- CLASSICAI.
---- W-K

THIS WORK

ThaLE D. Comparison of parameters of g(S), the pair distribu-
tion function according to the present calculations, using the
approximation of Kq. (1.19), and the experimental results of
Henshaw (Ref. 12, Table I, lines 1 and 3).

I

I.O

(c)

0 i I I I

0 0.5 I.5 a.o a.5

T('K)
20
50

position where
g(5) rises from

zero (3)
This
work Henshaw

2.1 2.25
2.1 2.20

Position of
1IlaxlIQunl ln

g(~) (~)
This
work Henshaw

3.89 3.70
3.74 3.94

Height of
InaxlIQllIQ of

g(~)
Th18
wo1k HeQshaw

1.94 1.4
1.55 1.3

FIG. 8(a). Comparison of the classical approximation, a Wigner-
Kirkwood approximation LEq. (4.1Q)j, and our results for Wsn
at T=2'K. (b). Comparison of the classical approximation, a
Wigner-Kirkwood approximation LEq. (4.1Q)j, and our results
for 8'P at T=10 K. (c). Comparison of the classical approxima-
tion, a Wigner-Kirkwood approximation L'Eq. (4.1Q}j, and our
results for 5P at T=30'K.

"D.G. Henshaw, Phys. Rev. 119. 14 (1960).
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T('K) This work

B
Kilpatrick

et al. Experiment

2
5

10
20
30
40
50
75

100
273.18

—182.84—59.41—21.30
2.49
3.68
6.59
8.26

10.28
11.08
11.65

—177.39—59.14—21.34
2.53
3.57
6.49
8.16

10.14e
11.02e
11.59e

—193.3a
—62.2b
—23.4b

4.04b
2.42b
6.57(40.09'K) '
8.06 (50.09'K) '

10.70(75.01'K) '
11.85 (100.02'K) '
11 77d

a Obtained by linear extrapolation of the data in W. E. Keller, Phys.
Rev. 97', 1 (1955).

b David White, Thor Rubin, Paul Camky, and H. L. Johnson, J. Phys.
Chem. 64, 1607 (1960).

o W. H. Keesom, Helium (Elsevier, Amsterdam 1942).
d W. G. Schneider and J. A. H. Duffie, J. Chem. Phys. 17, 751 (1949).
e Obtained by us from the high-temperature expansion (Ref. 14).

no dependence on density. Henshaw's measurements
were taken at T=2.2'K, density=0. 146 g/cm' and
T=5.04'K, density=0. 095 g/cm'.

TABLE III. The second virial coeScient compared with the
computer results of Kilpatrick, Keller, Hammel, and Metropolis
and with experiment.

The second virial coelficient, Eq. (1.20), obtained
from our calculations is compared with results by
Kilpatrick, Keller, Hammel and Metropolis" in Table
III. The results marked by an e were obtained by us
using the high-temperature expansion. " Experimental
results are displayed in column 4.
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Method for the Determination of Atomic-Resonance Line-Oscillator Strengths from
Widths of Optically Thick Emission Lines in T-Tube Plasmas*

R. LINCKE) AND H. R. GRIEM

University of j/Iaryland, College Park, Maryland

(Received 25 October 1965)

Using the neutral-helium resonance line as an example, a method is described for the measurement of the
product of oscillator strength, Stark width, and ground-state density. Directly measured is the width of the
line (as emitted by an essentially homogeneous but optically thick layer), which is proportional to the
square root of the above product. A T tube is filled with a known helium-hydrogen mixture, and the tem-

perature is calculated from the measured intensity ratios of helium and hydrogen lines. Measured widths of
(opticaliy thin) visible lines yield electron densities, which then give the theoretical Stark width oI the
ultraviolet line. These densities are also used in Saha equations to calculate the ground-state density from
the measured temperature and the mixing ratio. This leaves the oscillator strength as the only unknown,
whose accuracy is limited in the helium case mostly by the error in the ground-state density to about 25%,
when the plasma is sufficiently dense and long-lived for local thermal equilibrium to hold.

I. INTRODUCTION

HE atomic resonance lines of many elements lie
in the vacuum-ultraviolet spectral region, i.e.,

below 2000 A. Several physical and technical difficulties

appear in this region in addition to those encountered
in the measurement of f values of visible spectral lines,
and this situation is mirrored by the scarcity of data

*Jointly supported by National Science Foundation, OfFice of
Naval Research, and U. S. Air Force OfBce of Aerospace Research.

f Some of the material in this article is part of a Ph.D. thesis sub-
mitted by R. Lincke in partial fulfillment of the requirements for
the Degree of Doctor of Philosophy at the University of Maryland.
See also R. Lincke, V. S. Air Force Cambridge Research Labora-
tory Report No. AFCRL-64-960, 1964 (unpublished).

concerning experimental vacuum-ultraviolet oscillator
strengths. Apart from the early life-time measurement
performed by Slack' for the upper level of Lyman-o. ,
Ave further experiments can be quoted: Prag et al'. '
measured the f values of the Nz and Oz multiplets near
1200 and 1300 A, respectively, by means of resonance
absorption in afterglows. They determined the abun-
dances of atomic nitrogen and oxygen by an NO
titration technique and found P gf=0.39&0.12 and
0.30&0.08, which is in good agreement with recent

' F. G. Slack, Phys. Rev. 28, 1 (1926).
A. B. Prag, C. E. Fairchild, and K. C. Clark, Phys. Rev.

137, A1358 (1965).


