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Eqs. (4a) and (20) gives the following predictions for
the magnitude of the optical-rectification coeScient:

From Carpenter's electro-optic data,

(X',„,+X',„)= (1.22+0.023) &&10 ' esu; (22a)

and from Ott and Sliker's electro-optic data,

(X'.„,+X'.,„)= (1.43&0.026) X 10—' esu. (22b)

V. CONCLUSION

The measured Inagnitude of an optical-rectihcation
coefficient in NH4H2PO4 at 27'C and 6943 A is

(X',„,+X'„„)= (1.32&0.18))t,'10 r esu.

The 15 j~ uncertainty represents an improvement by a
factor of 20 over the previous absolute measurement of
an optical-rectification coeScient. '

The validity of the theoretical relationship, Eq. (3),
between the optical-recti6cation and linear electro-optic
coefficients may now be tested. Magnitudes of optical-

rectification coefficients predicted from electro-optic
data by Eq. (3), or more particularly, Eq. (4a), are as
follows:

From Carpenter's electro-optic data,

(X',„,+X',„„)p„,g;,t,g= (1.22+0.023)X 10 r esu;

and from Ott and Sliker's electro-optic data,

(X gpz+X ggv)predjeteg= (1 43+0 026) &( 10 esu

The measured magnitude agrees with each of the pre-
dicted values to within experimental error. We conclude
that these data are consistent with the validity of
Eq. (3).
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The inverse Faraday effect (IFE) occurs when circularly polarized light incident on a nonabsorbing
crystal induces a magnetic moment proportional to the Verdet constant of that material, the proportionality
constant being independent of the material. Some experimelital details relating to the observation and
proof of the IFE are presented. A microscopic, or quantum-mechanical, explanation of the IFE which also
demonstrates its connection with the Faraday eRect is given in terms of an optically induced "eRective
Hamiltonian" X,ff. Conventional calculations of the optical constants like the perdet constant compute
optical-frequency polarizabilities for a given electronic configuration. It is shown here that these same con-
stants are obtained by computing the average eRects that optical 6elds have on the atomic configuration.
The optically induced 3!,« is linearly dependent on the low-frequency components of E(t}P(t}and one can
show the thermal average iX,e)qs„,y is equal to the temporl average iE it) e iE/) )e,. Both the Verdet cott-
stant and the IFE coefBcient arise from a thermal average of the same term in X,ff. Similarly the Cotton-
Mouton eRect and its inverse arise from one other term in 3!,ff. De6nition of 3' ff is one technique for ljtnear-

izing some nonlinear optical problems. Following linearization one obtains Kramers-Kronig-type dispersion
relations between constants of seemingly diRerent phenomena. For example, a Kramers-Kronig relation
is obtained between the Perdet constant and the gain coeKcient for stimulated Raman scattering by para-
magnetic ions in a large dc magnetic 6eld. The eRective Hamiltonian is explicitly evaluated from some il-
lustrative examples and its general phenomenological form for a paramagnetic ion in cubic symmetry js
written down and discussed.

1. INTRODUCTION

'HE application of high-intensity laser radiation
to various materials has resulted in observation

of new CGects which arise from the nonlinear response of

*This work was supported in part by the Joint Services Elec-
tronics Program (U. S. Army, U. S. Navy, and U. S. Air Force)
under Contract Nonr-1866(16), and by the Division of Engineer-
ing and Applied Physics, Harvard University.

f Alfred P. Sloan Research Fellow.
$ Present address: Bell Telephone Laboratories, Murray Hill,

New Jersey.

media to optica, l-frequency Gelds. ' A number of au-
thol s have discussed diEcl cnt nonlinear opt1ca, l
CGects phenomenologically in terms of a potential func-
tion Ii, whose derivatives with respect to various Qelds

i These eRects are reviewed by ¹ Bloembergen, Nonlinear
Optics (W. A. Benjamin Inc., New York, 1965), or P. S. Pershan,
Progress in OPtics, edited by E. Wolf (to be published), Pol. P.

~ D. A. Kleinman, Phys. Rev. 126, 1977 (1962).
3 J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.

Pershan, Phys. Rev. 127, 1918 (1962}.
4 P. S. Pershan, Phys. Rev. 130, 919 (1963}.
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Le.g. , O'F/OB;*(&o)OB;(pp) etc.$ are expected to yield
nonlinear equivalents of the dielectric tensors. Although
such a potential function is both plausible and useful,
its existence is not generally proven. Prior to the work
to be discussed here, experimental evidence on this point
consisted of observation on effects of electric rather
than magnetic origin. Consider electric ffelds 8(~~),
8(&op), and 8(ppp) at frequencies &u, , &op, and ppp, respec-
tively (ra&+co&

——~p). Experiments have shown' that if in
some material one beats coj and co2 to obtain a polariza-
tion at or& and this effect is described by a tensor relation
P(cop) = tt;:8(&op)8(~r), where y, is a material constant,
this same tensor will describe the beating of M3 and co2

to obtain s)g,. P(a)g) = 8(ppp) y, 8*(o)p).
In a brief communication the present authors' have

experimentally demonstrated that a similar relationship
exists when one of the Gelds is magnetic rather than
electric, and thus increased the generality of the experi-
mental evidence for the existence of this potential func-
tion. A reciprocal relationship was demonstrated be-
tween Faraday rotation and the induction of a mag-
netization in the same eomabsorbieg ma/eria/ when
illuminated by circularly polarized laser light. This
effect was named the inverse Faraday effect (IFE).

The phenomenological considerations from which the
IFK was Grst predicted are reviewed in Sec. 2. In Sec. 3
these phenomenological results are justified from quite
general quantum-mechanical considerations. It is shown
there that one can define an "effective Hamiltonian"
(K,ff) which linearizes the original nonlinear optical
problem, and that the thermal average of 3C,« is equal to
the general potential function Ii mentioned above. One
term in X,~f is responsible for the IFE but others de-
scribe a variety of different phenomena.

Since the main purpose of this paper is to explain the
IFE, most of the results will deal explicitly with mag-
netic systems but the exisetnce of K,&f is much more
general and it should be a useful technique for other
problems.

Sections 4 and 5 illustrate the origin of several types
of terms that appear in X,~g. In Sec. 6 the general form
of X,~g will be presented in terms of microscopic
phenomenological constants as distinct from the macro-
scopic ones appearing in Ii.

Section 7 will describe how time-dependent terms in
BC,ff can induce Raman transitions and demonstrate
that through K,gg the Raman cross section can be ob-
tained from macroscopic measureInents of other phe-
nomena. The linearization accomplished by means of
3'.,gq allows the establishment of Kramers-Kronig rela-
tions between different nonlinear effects. These will be
discussed in Sec. 8 and illustrated with a stimulated
Raman effect from a Kramers doublet.

~ J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, Phys.
Rev. Letters 15, j.90 (1965);P. S. Pershan, J. P. van der Ziel, and
L. D. Malmstrom, in Proceedings of the Physics of Quantum Elec-
tronics Conference, San Juan, Puerto Rko, 2965,(to be published).

Bz=(2) '"(8 —iB„),
BL=(2) "'(8.+iBp)

(2.2)

The IFE follows from the assumption of a potential
function Ii, which for cubic or isotropic media have the
form,

F=xII(8gg Bs* 8181~)=—iyH(8, 8p* 8„8.*), —(2.3)

where H is the component of dc magnetic GeM along the
direction of propagation, the s direction. One can prove
that Ii exists for cubic or isotropic materials and that g
is a real number. 4 Faraday rotation can thus be shown4'
to follow from

Ap~= —4%O F/OBsOBs = —4ll'xH~

hpz = 4s O'F/88gBz—*=4xgH,
(2.4)

where Ae~ and hei, are the contribution of this potential
to the dielectric constant for right and left circularly
polarized light. Equivalently one can describe the Fara-
day effect by

6p,„=—Ap„,= 4+O'F/OB, *O—B„=i47rxH. (2.5)

The Verdet constant V is

V= —4n'x/ephpLrad Oe ' cm 'j, (2.6)

where eo is the index of refraction of the medium in the
absence of a dc Geld and Xo is the vacuum wavelength of
the light.

In zero magnetic Geld the magnetization is given by4

M= OF/OH= X(—BgBg* B—F81,*) —(2.7)

or in terms of measurable quantities

M =XpV(2vrc) 'LIs —Izj, (2.8)

where Ig and II, are the intensities of right and left
circularly polarized light, respectively, in cgs units and
M is in Gauss per cubic centimeter. ' The experiments
described in Ref. 5 veriGed the relationship expressed by
Eq. (2.8). The IFE thus consists of a magnetization in-
duced by circularly polarized light in a noecbsorbing
material.

B. Exyerimental Review

The IFE has been observed and Eqs. (2.6), (2.7), and
(2.8) have been experimentally veriffed. ' The experimen-

2. INVERSE FARADAY EFFECT

A. Phenomenological Discussion

Consider the 8 Geld of a plane wave at an optical
frequericy ~

Z(t) =2 Re(xB,+yB„) expi(ppt k—s)
=2 Re[2 't'(x+iy)8++2 't'(X iy)8—&j

Xexpi(&at —ks), (2.1)
where
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CLAN PRISM A/4

PLATE

C==p=
:'::-:;:-':::"::::::::::::Ti"::-::':::-'g,'

~SHIELO ~COIL

SAMPLE

FIG. 1. Schematic illustration of the experimental
geometry for observation of the IFE.

tal geometry is shown schematically in Fig. 1. Light
from a Q';switched ruby laser is focused on the cylindri-

11 h ed sample by means of a long-focal-length
a -'X latelens (f 1 m). A polarizing Gian prism and a ~ p a e

oriented to create circularly polarized light were placed
between the lens and the sample. A voltage pulse pro-
portional to dM/dt was induced in the coil surrounding
the sample (see Eq. 2.8) by the short pulse of circular y
polarized laser radiation (pulse width 30)&10 ' sec).
The voltage was amplihed by a broad-band, low-noise

amplifier' and displayed on an oscilloscope. Typica
si nals were from 100 pV to 1 mV at the coil. Figure 2
shows typical traces of signals induced in 3.1% Eu'+:
CaF2 at 4.2'K. The lower trace is a monitor of the laser
intensity and the upper curves are the signal. On the
left is shown the signal for left-hand circularly polarized
light and on the right for right-hand circularly polarized
light. Note the change of sign for d3II/dt. The second
laser pulse is considerably slower than the primary
pulse and the second dM/dt signal, reduced by both the
intensity of the laser and slower rise time, has a much
lower signal-to-noise ratio.

The electrostatic shield shown in Fig. 1 was necessary
in order to eliminate pickup signals from the laser sys-
tem. Spurious signals were detected whenever the laser
light struck the sample coil. The long focal length lens
reduced the laser cross section to a diameter smaller
than the sample diameter, so that with careful a ign-
ment it was possible to eliminate some spurious signa s.
Other signals resulted whenever the ends of the samp es
were contaminated, or if small "bubbles" and inclusions
were present in the sample. Some of these spurious
signals could be distinguished by their time dependence
(different from d3/I/dt) and by comparison with differ-
ent samples.

3. THE EFFECTIVE HAMILTONIAN

I th tion we will derive an eBective Hamiltoniann issec
'

that completely describes the eBects of ig t on e
lowest lying states of a general quantum-mechanical
s stem. The main assumption will be that the optica

and consequently there are no "Grst-order" absorption
processes.

Consider the total Hamiltonian BC=%0+V(t), where

Xp represents the Hamiltonian in the absence of a
light field and V(t) can be written in its most genera
form

V(t) =v(t) exp(is&t)+a*(t) exp( —i~t), (3.1)

where co is the mean angular frequency of the optical Geld

and v(t), e*(t) describe the fact that the radiation is not
necessarily monochromatic. Assume (w(t)v*(t+r)), in-
dependent of t and vanishingly small for

I
r

I
& r„where

7 ~))1.In the interaction representation the wave equa-
tion becomes

where

and

(tt/i) (a/a—t)P(t) =V(tg(t),

f(t) = expi(Xot/t't) P(t),

(3.2)

(3.3)

V(t) =expi(Rot/tt) V(t) exp( —iXot/tt) . (3.4)

The general solution to Eq. (3.2t is

As discussed in Ref. 5 the IFE was observed in a
tic sample Eu++: CaF2, a number of dia-

magnetic glasses, and a variety of liquids. T e &
e-

pendence characteristic of paramagnetic systems was
observed in Eu++: CaF2 and correlated with measure-
ments on the Verdet constant. The eBect was shown to
satisfy Eq. (2.8) independent of the material used. Thus
a plot of (/tI/Ig) versus V fell on a straight line for all
of the solid samples measured (Eu++: CaF2 as well as
the diamagnetic glasses). Comparison between liquids
and solids was made dificult by diBerent sample geome-
tries but there was substantial agreement between these
too.

iP(t)= 1——
h p

V(t') dt'

t 42'KFxG. 2. Typical IFE signals observed in Eu~: CaF2 at 4.2 K.
The signals are on top and the laser power is shown below. On the
left is the signal for left circularly polarized light and on the right
for right circularly polarized light.

'The ampli6er design was provided by Professor A. van der
Ziel. Equivalent commercial units are now availab e.

V(t') dt'

p

V(t") «"+" 4(0) (3 3)

Since we are interested solely in the effects of V(t) on
the lowest lying states, i.e., the states of the ground

1
'

1 t, introduce an eBective Hamiltonian
K,it(t) such that if Ia) and

I
fi) are eigenstates of the
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yields a dielectric tensor, without local-Geld corrections,
of the form

ground multiplet

t
(b—1);,=P X.b*'&Pb. ,&al1 —— SC,«(t') dt'+" lt»

h p

z

=&ui1—— V(t') dt'
p

(3.9)

where X,&'& are given by well-known expressions for
the polarizability and p&, is the density matrix for

t t' the atomic system. On substitution of the above
V(t') dt' V(t', ) dt"+

~
b&. (3.6) form of V(t) into Eq. (3.8) one can easily show that if

p p fa. b
—CO../((/CO„b+M [

Taking &a
~

V(t')
~

b& =0

&a(3:.«(t) ( t»

X.«(t).b= —P X b"8.*8.

or deGning the potential function

(3.10)

=—Z&ol V(t) l~& &~l V(t') Ib& «', (3 7)
gg n p

where the summation extends over all the excited states

~
rt& of the system. Furthermore we are only interested in

the low-frequency terms on the right-hand side. Physi-
cal sects due to high-frequency terms appear only
when K,~g is taken to higher order in the perturbation
V(t). On the assumption that ~~&&a„b~r,))1, where
~„b=(E„—Eb)/6, one can carry out the integration to
obtain X,«(t) or, in the Schrodinger representation,
[x.«(t)j b=exP[—i(~ b)tjK,ff(t).b

v, (t)v. b*(t) e.„*(t)e~b(t)
Ke«(t)~b= —h ~ Q + (3 8)

n ~nb+~

The eGects of any high-frequency, nonresonant, per-
turbation on the ground states of a quantum-mechanical
system can always be described in terms of an eGec-
tive Hamiltonian. For example, in addition to the mag-
netic effects to be discussed here, the eGects of high-
frequency phonons on the quadrupole levels of nuclei
in a solid are described by Eq. (3.8) when v is taken to be
the phonon-quadrupole interaction. There are numerous
other phenomena to which Eq. (3.8) could also be
applied; in fact, this partially parallels the list of phe-
nomena for which the generalized potential functions
would be useful. "For our purposes, however, let us
specialize to the optical case. Taking'

V(t) = —2 Re[er 8(t) expi(cot —k r)]

F=++&.~~(t).bpb. = —p X., b"8;*8,pb. (3.11)
i,j,a, b

4. EVALUATION OF R,«(Hg, =0)

Evaluation of X,« is equivalent to calculating e;, and
although the general expressions for the dielectric con-
stants are well known, it is almost always impossible to
compute a numerical value for e;; since one does not
know the excited states and their energies in sufhcient
detail. Nevertheless it will be of some interest to demon-
strate the qualitative features of the calculation.

Taking the electric G.eld of Eq. (2.1)

e(t) =+e(r+8~—r 8I), (4.1)

where r+ ——+(2) 't'(x+iy), Eq. (3.8) can be written

one has (e—1);;/47r = O' F/88—;*88;as asserted in the
phenomenological theory. ' Furthermore if one includes
in 3Cp the eGects of a dc magnetic Geld, then, since F is a
thermal average of the real Hamiltonian 3C,gq, conven-
tional thermodynamics justiaes Eq. (2.7) for M(t) when

8(t) 8*(t) changes slowly compared to thermal relaxa-
tion times of the system.

We have thus demonstrated the existence of X,ff
and for a particular perturbation illustrated how its
thermal average is related to the high-frequency re-
sponse functions, i.e., e,;. We have further shown from
microscopic considerations that in cases of thermal
equilibrium the phenomenological relations epitomized
by Eq. (2.7) are correct.

(X,«),b=e't't '[8g8g*—81.81,*]p [(r+),„(r )„b—(r ),„(r+)„bj
Qln y

—
CO

+e'tt '[8s8a*+81.81.*jQ [(r+).„(r )„b+(r ).„(r~)„bj
Q7 ~2~~2

2(e'b ') 8~81.*—Q (r+),„(r+)„b—2(e'i't ') 81„*8+Q (r ),„(r )„b. (4.2)
n nS —+

7 J. I'"iutak, Can. J. Phys. 41, 12 (1963).
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Assume that J is a good quantum number for the
ground-state manifold. Note that this does not say that
the ground state is isotropic but rather that the strength
of the "crystal-field" perturbation is weaker than the
electron-electron interactions. The particular crystal-
field ground state is a linear combination of diferent M
values fOJI'p)=+~ fOJM)(M fl"p&. A valid procedureis
to calculate all the matrix elements (OJM"fX,fffOJM)
and from knowledge of the (M

f
I'p) one can calculate

pertinent matrix elements between the states of real
interest (i.e., fOJI'p)).

This same procedure can be followed even if J is not a
good quantum number so long as L is. For example, with
a ground state lOISI'p&=g~lOIMrSM, &(MIM, l

I'p)
one replaces every J in the equations that follow with L;
all matrix elements of X,tt between states

l
OIMrSMe&

and
l
OI.Mr, 'S3IIe') will be diagonal in M, .

Relying on the theory of tensor operators' one can re-
place the matrix elements of r+ and r by

(nJ'M'l r+ lOJM)

and

2e cp z t,pJ&OJffrffnJ —1&(nJ —1llrllOJ)
C=

h tt (2J+1)(2J)(2J—1)f (cpttz —i,pJ)

J', pJ&OJllrlftt J&(~JllrllOJ&

(2J+2)(2J+1)(2J)f:(~-~.pz)' —~']

~-~+t.p~(OJllrll~J+1&&~J+1llrllOJ&
+ . (4.6)

(2J+3)(2J+2)(2J+'1)L(tp Jyt pg)2 —tpP]

The relationship between this effective Hamiltonian
and the IFE is clear. In the presence of circularly
polarized light, 8&8+*—8L,81,*, the crystal is no longer
invariant under time reversal and symmetry no longer
requires that spins parallel and antiparallel to the direc-
tion of light propagation have the same energy. Thus
8~8'*—8L, 8~* acts as an eBective magnetic field
(Xeff +gPIIeff Js)

IIeff +('48m BLBI )A(gJP) (4 7)

where (ttJ'llrllOJ) is independent of M and M'. Assume
also that the dc magnetic field is zero and that one can
neglect the dependence of co g ~ ..Og~ on M' and 3f
(i.e., tp J ~ .pj~—Cp J'.pJ).' This is equivalent to neg-
lecting the crystal-field splitting of the various J'
multiplets. If one uses states

l
OLSI'p) one must neglect

the energy's dependence on Fp. On substitution of
(4.3) into (4.2), one obtains (OJM"

l X,tt lOJM), the re-
sult depending only on J, JI/I, and 3f"and being summed
over di6erent configuration quantum numbers n.
Further simplification results from the observation
that the dependence on 3f and 3f"can be simulated by
replacing the actual functions of M and M" by matrix
elements of the type (M"

l
J, lM), (M"

l
J,'fM), and

(M"
l J+'fM). For our purposes we will neglect terms

independent of 3E. One thus obtains

X.o= (BgBa*—81,8r,*)J,A
+((AA'+BI, Br,*)f J*'—p J(J+1)]

BLB~*J '—Br,*ByJ+')C, (4.4)
where

~&OJllrll~J —1)&~J—1llrllo J)
A = (2e'/h)g

(2J+1)(2J)L(tpttg y, pg) —tp ]
2M&OJllrllnJ&(uJffrlfOJ&

(2J+2)(2J+1)(2J)f
(tp.g pg)' —tp']

~(OJllr II~J+1)&~J+1llrlloJ)
(4 5)

(2J+2)(2J+1)L(tp ~+t, p~)' —tp']-

SSee, for example, A. R. Edmonds, Angular 2lfomentum in
Qgantuns Mechanics (Princeton University Press, Princeton, New
Jersey, 1957), p. 75.

This assumption has been discussed in relation to the Faraday
effect by J. H. Van Vleck and M. H. Hebb, Phys. Rev. 46, 17
(1934).

which polarizes the spins. At thermal equilibrium, for
kT much greater than the splitting of the different
crystal-field states of the ground multiplet,

(J.)thetmllt= —[J(J+1)/3kT](BpBrt*—Br, Br,*)A (4.8)

and the inverse Faraday effect is thus described by

g J'P&Js&th ermsll (4.9)

where E is the number of atoms per unit volume.
Comparison with Eq. (2.7) shows

ggPJ(J+1)/3kT]—WA . (4.10)

These expressions and the effective Hamiltonian, from
which they were obtained, describe the paramagnetic
IFE. The diamagnetic effects arise from terms in X,gg

which depend on Hd, and which were excluded from this
calculation. This will be discussed later. The terms in
J,' and J+' will cause further splittings but in the
absence of a dc magnetic Geld they cannot produce a
magnetization.

The ion Ku++ with which the original IFE measure-
rnent were carried out, ' has ground state 'S~p and the
operator J, is equivalent to the spin operator 5,. For
this case, and similarly for all other S-state ions, A is
nonvanishing because the spin-orbit coupling, XL S,
lifts the degeneracy of the ' +'P'8 j, '+ Pq, ' +P'8+~
states. Terms quadratic in S,however, only appear when
spin-orbit interactions are taken twice. Thus for S-state
ions, if the only effect of spin-orbit interactions is to lift

~+'P degeneracy, C=0. For non-S-state ions how-

ever, spin-orbit interaction is automatically employed
in choosing a ground state 2 +'L~, and its use once more
to lift the degeneracy of the excited states is sufhcient to
ensure C/0.
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Se EVALUATION OF Ref f FOR A DIAMAGNETIC
EXAMPLE

& HtIc W 0

The general expressions (3.8) or (4.2) could be evalu-
ated using states

~
a) and

~
b) which are eigenfunctions

of a Hamiltonian BCO that contains the eBects of a dc
magnetic Geld. This would result in rather cumbersome
expressions which could not be numerically evaluated
and the equivalent of Eq. (4.5) and (4.6) for the case of
Hq. /0 will not be presented here. It will however be
possible from purely symmetry considerations, to write
down the general form of X,gf in terms of phenomeno-
logical constants like A and C. Before proceeding to that
however it will be informative to treat one special ex-
ample to illustrate the quantum-mechanical origin of
the "diamagnetic" IFK.

Consider a diamagnetic molecule" with a singlet,
isotropic ground state ~0&. Let there be two excited
states [ +)= rr [ x)+iy

~ y) and
~

—)=n
~ y)+ iv [ x) with

energies E~ Irei~ 4——ua——[(Shee)'+(gPH)']'I' and (y/a)
=gPq&&re+[(Iieet Gr)'(gpH)']"') ' take AM))hhM

))gPH where g is an effective g value for the excited
state. This is illustrated in Fig. 3. The states ~x) and

Iy& have the properties &xIXI0&=&0IXIx&=&yI VI0
= (0~ F'

~y) and all other matrix elements of r are zero.
This calculation will be done only for the s axis of the
molecule parallel to the direction of light propagation.
The result of averaging over all molecular orientations
would simply be to reduce 3' by a factor ~3. Substitu-
tion into the leading term in Eq. (4.2) obtains

X.rr =A'H(8n hrr* 8r.8r.*), — (5.1)

where A'= —(e/Ir)'gP
~
(0 (

X
~
x) (

'4oxu(ei' —M') '.
Equation (5.1) describes the fact that circularly

polarized light mixes a fraction of the excited-state wave
function into the ground state and causes the per-
turbed ground state to have a net magnetic moment,

p = —A'(8n 8n*—8i, 8r,*) . (5.2)

%ith E molecules per unit volume circularly polarized

0 ((u+b, o))

Tl QJ

h (hl-Gal)

FIG. 3. Typical energy levels for a diamagnetic system. In zero
magnetic Geld ~+) and [

—) are ~x) and [y) states, respectively,
and the splitting is due to an asymmetric crystal 6eld.

light induces a magnetization as per Eq. (2.7) but with a
temperature-independent

x=+1VA'. (5.3)

A similar term must also appear for paramagnetic
ground states and Van Vleck and Hebb' write the
general form of the Verdet constant as V =a+A/T. The
temperature-independent term is related to the effects
discussed here. The b/T factor arises from the para-
magnetic terms discussed in Sec. 4.

6e GENERAL FORM FOR 3Cef f WHEN Hdc& 0

Consider a material of cubic symmetry; then K,ff

must be invariant under all those operations that leave
the crystal invariant. It is thus possible to demonstrate
that if the ground state has an "effective spin" S

K,r =+i(8XS*) [AS+A'H] —(8 8*)[BS(5+1)+B'H'+B"(SH)]
—+„8.8 *[C(5 '—-', 5(5+1))+C'(H '—-'Hs)+C"(5 H —-', S H)]—Q (8 8se+ 8s8 *)

X[D(5 Ss+SsS )+D'(2II Hs)+D"(5 Hs+SsH )]+terms of higher order in 5, H, etc. , (6.1)

where the directions n, P, etc. , are the (1,0,0) directions
of the cubic crystal. The coefficients A, A', 8, 8', etc. ,
appear here as phenomenological constants whose values
must be inferred from either experiments or quantum-
mechanical calculation. As mentioned in Sec. 4, the

"This model is a good approximation to the derivatives of the
porphyrin molecules on which Faraday rotation measurements
have been made, and should also approximate the qualitative fea-
tures of many other diamagnetic molecules. The theory of Faraday
rotation in these and other diamagnetic molecules will be presented
elsewhere: P. S. Pershan, M. Gouterman, and R. L. Fulton,
Mol. Phys. (to be published).

coefficients of terms linear in S are linearly dependent,
and terms quadratic in S are quadratically dependent,
on the spin-orbit interaction. In the approximation for
which Eq. (4.4) was derived, taking S=J, Eqs. (4.5)
and (4.6) are expressions for A and C= 2D. In the case of

a crystal Geld, however, one may express the ground

states as a linear combination of
~
JM) states, i.e.,

~5'M'& =+sr
~
JM)(JM

~

5'M') where S' is the effective

spin. Matrix elements of X,«, given by Eq. (4.4), be-

tween ~5'M') states can be generated by Eq. (6.1) if
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A, C, and D(CW2D) are taken as proper linear combina-
tions of Eqs. (4.5) and (4.6).

Quantum-mechanical expressions for the other co-
eKcients in Eq. (6.1) could also be obtained from Eq.
(4.2) if one started with correct states ~a) and ~b)
and carried out the calculation to sufhcient order in H.
From a practical point of view, this does not seem likely
to yield new information. As mentioned above, numeri-
cal evaluation of any of these terms is similar to calcula-
tion of a dielectric constant and one almost never knows
the excited states sufficiently well to obtain a meaning-
ful number.

Experimentally one can determine A and A' from
Eqs. (6.1) or Eq. (4.10) by measuring the Verdet con-
stant. For example, in the case of Eu'+ in CaF2, ~

assuming a concentration of Eu'+ ions equivalent to
the mole fraction of EuF3 added to the mixture from
which the crystal was grown, leads to a value of
A= —3.5X10 " ergs (dyne/esu) ' or in other units
4.8X10 ' cps (V/cm) '. Since the concentration of
Eu'+ ions is likely to be smaller than this, the above
value is probably a lower limit. Theoretically one
can also obtain an estimate of A for Ku'+: CaF2 by
assuming it arises mainly from the lowest lying (f'd PP)
states and that the degeneracy of these states is lifted
by a spin-orbit interaction f'L S. Equation (4.5) can be
reduced to

A = —(Hl (~llrllf) I
"'~-,vip;p, »~~i @ '

X [(~«,vip;p, vip)' —pv'j '

Reasonable numerical values /=500 cm ', &oN v/v p v/2

=2vrc(30 000 cm '), and (f~~r~~d)=10 ' cm yields, for
ruby wavelengths, A= —1.3X10 " ergs (dyn/esu) '
which is about four times larger than our experimental
lower limit. In view of the approximations employed in
both the experimental and theoretical determination of
A these values are in satisfactory agreement.

Measurement of the Cotton-Mouton eGect could de-
termine C', C", D', and D" and possibly C and D. For
example if II is in the s direction

(p,.—p..)/4~= —[gPH'(S) (S+1)/3kT]SC"+EP1VC'
+(g'P'&'/10k'T') ['S(S+1)—s' j&C (6.2)

the last term comes from the thermal average of
(S,'—S '). The term 8"(S I) predicts an intensity-
dependent isotropic shift in the g factor and the C" and
D" terms contribute anisotropic g-factor shifts. The C
and D terms induce intensity-dependent contributions
to the zero-Geld splittings. In the presence of a dc mag-
netic Geld laser radiation can induce a magnetization
through the J3' and 8" terms but not through the 8
term which has no eGect. ' Magnetizations induced
through the B' and B" terms would not be an inverse
Cotton-Mouton eGect and could possibly be larger than
that eGect.

Numerical estimates of some of these terms for para-
magnetic crystals (in which Cotton-Mouton or Faraday

effects have not been measured) may be obtained by
comparing X,«as given by Eq. (6.1) with the phe-
nomenological Hamiltonian used to interpret the ex-
periments on linear electric-Geld shifts of electron-spin-
resonance lines. "If the ion in question is not at a site of
inversion symmetry, the phenomenological Hamiltonian
is of the form X,=P;; pv;vvH;S;Zv, +P,; r,;pS;S;El,.
Assuming an internal local ffeld E; ~ of 10v V/cm re-
sulting from this lack of inversion symmetry one may
compare q and r to the quantities C// and C, respec-
tively. Typical values of r/E;, are of the order 10—'
cps/(V cm ')' or in cgs units 6X10-"ergs (dyn/esu) '
which is comparable to our measured value of A~—3.5
X10 "ergs (dyn/esu) ' for Eu++ in CaF&. The quan-
tity y/E;, & is two or three orders of magnitude smaller.

Suits and Argyle" measured both the Faraday rota-
tion and Cotton-Mouton effects in ferromagnetic EuSe
and found them to be of the same order of magnitude
at Gelds of about 5000 G. These e8ects are related pri-
marily to the expectation values of S, and S,', respec-
tively, and the Geld dependence enters only as it changes
these expectation values. "Thus in EuSe A and either
C or C// are of the same order of magnitude. From Suits
and Argyle's measurements on paramagnetic EuSe" the
Verdet constant varies as (1/T) and is 57 times larger
than the paramagnetic Verdet constant in Eu'+:
CaF2.5 However, since EuSe is about 30 times more
concentrated, in terms of spins per unit volume, the
A's of these two crystals are approximately equal and
thus the C or (C") of EuSe must also be 3.5X10 "
ergs (dyn/esu) ' which is the A value of Eu+': CaF&.
This is consistent with our previous estimates based on
the linear electric Geld sects.

jeff =+ e«++ e«v
/ // (7.1)

where 3.",g is diagonal in the eigenstates of the un-
perturbed Hamiltonian and K",«has only off-diagonal
matrix elements. For perfectly monochromatic radia-
tion, to lowest order in the perturbation, X",fg would in-
duce no physical sects. In general laser radiation is not
perfectly monochromatic and hg and hg are functions
of time. The effective Hamiltonian was derived on the
assumption that b'av(t) and Sr,(t) could be time-
dependent [see Eqs. (3.1) to (3.8)7 and in fact all of the
equations obtained so far are still correct providing
8 (t)8s (t) is a slowly varying function of time. In this

"N. Bloembergen, in Magnetic and Electric Resonance and Re-
laxation, edited by J. Smidt (North-Holland Publishing Company,
Amsterdam, 1962), p. 39."J.C. Suits and B. E. Argyle, Phys. Rev. Letters 14, 687
(1965).

"N. Bloembergen, P. S. Pershan, and L. R. Wilcox, Phys. Rev.
120, 2014 (1960).

' J. C. Suits and B. E. Argyle, J. Appl. Phys. B6, 1251 (1965).

7'. RAMAN EFFECTS

The effective Hamiltonian, Eq. (5.3) can be separated
into
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e«(~n) = 2 X"(t) exp( —i~„t)dt, (7.2)

whele 07 = 27K'ST

X",«(t)=g X"(~„)expi~ t
and

(7.3)

Unless rather extreme precautions are taken almost all
lasers oscillate simultaneously at a number of discrete
frequencies near the mean laser frequency. "Assume a
laser with a sufliciently broad spectral output that the
envelope of the beat frequency Fourier intensities,
X «(co„), has a width Acot„„greater than some crystal
Geld, or Zeeman, splittings of the atomic system. In
weak dc fields, for example, typical splittings are of
0.01 cm ' 0.1 cm-'. If the spacing between adjacent
beat frequencies is small compared to the atomic line-
widths, the effective Hamiltonian, Eq. (7.4), will al-
ways have resonant terms that can induce transitions
between states Ia) and Ib&. The transition probability
per unit time is

W b=2vrh 'Q g((e„a&g,)I—x".«((o„).t, I', (7.5)

where g(e„—a&q,) is the atomic-line-shape function. For
convenience assume only one polarization component.
For example, one sense of circular polarization would be
suitable if X,«consists of only the A term in Eq. (6.1).
Further simpliGcation results if the Fourier components
8(&o„), 8(—&o„), 8*(ar„), etc. , are taken to be independ-
ent random variables. It follows from this that the
average of 5', b is proportional to the statistical average
(I (88*)„„I'&, where (88*)„„=+„8*(a&„)8((o„+(o,).
Taking

(I (88*)-,
I

'& = (2~)'"(T'~~~--) '(I 8(t) 8*(t)I')
Xexp{—~,'L2(~~&,.„)'& ')

as a simple distribution function satisfying

2 (I (88*)-,
I

'& = (I 8(t) 8*(t)
I
'&

one can show that for a Gaussian random process
(I 8(t) 8*(t)I')=2(8(t) 8*(t))', so that for a).g«(aa))).88,

8',g=4~h 'I (x,gf& I
'(Acorn„„)-'. (7.6)

Note that since 8(t) is complex (8(t)')=0.
The IFE measurements on Eu++: CaF2 yielded a

value of X,«corresponding to B,fr=0.01 G' Lsee Eq.
(4.7)j using an unfocused Q-switched ruby laser. Taking
a conservative value of (h&o) ~,.„=2m X10"cps obtains
W,a=16+'(2.8X10')'(2~X10") 'sec '=6.2sec ' With

' R. C. Miller and A. Savage, Phys. Rev. 128, 2175 (1962};J.
Ducuing and N. Bloembergen, ibid. 133, A1493 (1964}; Phys.
Letters 12, 290 (1964).

case slowly varying simply means slow compared to
I~~~„.I. Thus if

+T/2

10" spins per cm' this rate implies approximately
6X 10"photons/sec are inelastically scattered by 1 cm'
of material. Since the incident Aux of 6940-A photons
required to induce this transition rate was approxi-
mately 3.5&&10" photon sec—' cm—' approximately
0.04% of the incident photons are scattered per centi-
meter of path length. Unfortunately since they are all
scattered parallel to the incident beam, similarly polar-
ized, and frequency shifted by only a fraction of the
laser bandwidth, this mechanism produces a negligible
change in the incident light beam. Spin-lattice relaxa-
tion rates are also considerably shorter than 6 sec ' so
that, although this mechanism induces transitions tend-
ing to saturate the spin system, relaxation processes do
not allow a change in the dc magnetic moment.

Focused lasers are capable of producing optical power
density 100 times larger. These could induce transition
rates of 6&104 sec ' which may be short compared to a
spin-lattice relaxation time and would partially saturate
the spin system. This effect might be detected as a
change of an electron spin resonance intensity, Note
however that these power densities can only be main-
tained over a much smaller volume so that the fraction
of scattered photons only increases by a factor of 100
to 4%%uq of the incident photons. With this scattering fac-
tor the stimulated Raman mechanism may induce de-
tectable changes in the fine structure of the laser fre-
quency distribution. If the laser linewidth is not ap-
preciably larger than the Zeeman or crystal Geld

splitting, this mechanism might possibly be detected
as a change in the optical linewidth.

In Sec. 8 we discuss a particular example in which the
the spectrum consists of only two frequency com-
ponents separated by an atomic resonance frequency.
In that case this effect may be more readily detected.

This entire calculation was done on the assumption of
classical Gelds. The vectors 5 and 8* could of course be
replaced by creation and annihilation operators and the
cross section for spontaneous Raman transitions ob-
tained. The atomic cross section for scattering an inci-
dent photon with complex polarization unit vector e(0)
and frequency &oo into one with polarization e(k) and
frequency co&&(op propagating into a solid angle dQ& is

=+p+1,'C 4

XX&IZ x,.' L~(b),) i~(0),jl t ..), (7.7)
e, b ij

where the primed summation is only over states
I b& such

that Mp —0Jg=Gob 00. For anti-Stokes scattering

MIt;
—Gop=Glb ++0.

Using the measured value of A= —3.5X10 " ergs
(dyn/esu) ' from Eq. (4.4), or (6.1), and Eq. (3.10) the
cross section of Eq. (7.8) can be estimated numerically.
Consider an effective spin ~ with this value of A. Then
for p„=—,

' and light propagating perpendicular to
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the dc magnetic field the cross section for the for-
ward scattering of right circularly polarized photon at
s&e (X=6940 A) into a right circularly polarized photon
at are —gPII is (do/dQ) 4X10 "cm'. The same cross
section is obtained for an incident I-polarized photon at
ceo scattered into a V photon at a&0 —gPEI if the dc mag-
netic Geld is in either the X or V directions. If the num-
ber of atoms per cm' is $0", the total cross section
per cm' 4)(10 "cm'.

This is considerably smaller than the scattering rate
for the stimulated Raman scattering discussed pre-
viously. However, here the scattering is in all directions
and can be shifted by more than the optical linewidth.
Other terms in X,ff can also induce Raman transitions.
From the numerical estimates of the previous section
they should yield similar cross sections.

8. KRAMERS-KRONIG RELATIONS AND
THEIR APPLICATIONS

where & r„"=Bx"/(BQ,„r).For the example of an ion
in a site of cubic symmetry [Eq. (4.4)] n is unnecessary
RIll

Q "=S Qe'=(S '—LS(S+1)/3j} Q.'=S.'—Se'

and Q, re= (1/V2)(SQ„+S„S,), etc. For a more general
system Q could represent normal vibrational modes,
spin-wave modes or any other physical observable.
Dehning a normal force in the usual manner obtains

(g 2)

so that
X,ss ———Q Q F "(t).

a, l', p

(g.3)

Assuming the existence of a linear response function
obtains

where (Q„r(ee)) is the Fourier transform [see Eq.

The IFE, the inverse Cotton-Mouton eGect, and the
stimulated Raman scattering phenomena are examples
of eRects resulting from the response of the material
system to the low-frequency components of [E(t)]'.
The eRective Hamiltonian formulation provides a
simple means for linearizing these eRects in terms of
normal forces, quadratic in the Fourier components of
E(t), and the conjugate normal coordinates of the
system.

Consider the form of X,ss given by Eq. (3.10), and
expand x'& in terms of the irreducible tensor operators
Q„r, where n is a con6guration index, 1" indicates the
particular irreducible representation, and p is a com-
ponent of that representation.

X. = -Z(Q.- ).x... 8 (t) 8,*(t), (g.1)

Dispersion relations for nonlinear problems have been
discussed by Caspers'~ and Price" with results analogous
to Eq. (8.5). Bloembergen has also obtained similar
relations between the nonlinear polarizabilities involved
in stimulated Raman eRects. The assumption he makes,
equivalent to assumptions made here, is that only one
of the energy denominators in his expressions is near
resonance. '

The utility of this relation can best be illustrated
through a particular example. Consider only the erst
term in the effective Hamiltonian Eq. (6.1) for a spin-x
system

(g.6)X,ss=+iAS. 8X&a.

The other intensity-dependent terms are assumed
negligible and the system is taken to be in a strong mag-
netic field along the z direction. Consider a light wave

E(t)=2 Re[($8, exp[—(Ao' /2)(t y/c')5—

+$8, exp[+i(&s'/2)(t —y/c') j}expiee(t —y/c')7, (8.7)

where co'«co and c' is the speed of light at frequency eu

in the media. Then at a point ~'yc '&&1

X.ss
——+iAS„[8,8,* exp(iau't)

—8,8.*exp( —ise't) j, (8.8)

the normal force [Eq. (8.2)j is

F„=—iA [8,8,* exp(ire't) —8,8.* exp( —ice't) j
= —2 Re[iA 8,8,*exp(iso't) j

and the response function is

(8.9)

(S.(se')) =A(co'), , „F„(se')= iA(se'), „A—8,8,*. (8.10)

If co' is small compared to the reciprocal spin-lattice re-
laxation time S„(se) is simply the Fourier transform of
the thermal equilibrium value of S„(t),

(S„(t))= (iA/4kT) [8,8.*—e p(ice't)
—8,8,* exp( —ice't)1 (8.11)

A„„'(ce')=+h.„„'(—se') =+(1/4kT) . (8.12)

A. Abragam, The I'rslesPles of Nsselesr MegsMtssls (Oxford
University Press, Oxford, England, 1961).

"Wilem J. Caspers, Phys. Rev. 133, A1249 (1964).
"P.J. Price, Phys. Rev. 130, 1972 (1963).

(7.2)] of the change in the expectation value of Q„r(t)
caused by the normal force F„r(t);F„r(~)is the Fourier
transform of this normal force. The tensor A. will have
both real and imaginary parts A.=A'(a.&) i—A"(os) and
it follows from the fact that this is now a linear, sta-
tionary system which obeys causality that A.' and A."
are connected by Kramers-Kronig relations"

2
A'(os) =. I' —A."(a)')(u'[(a&') '—

(o&) 'j 'dec',
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In the limit ra ~ 0, (S„(/))~ 0 unless the light is cir-
cularly polarized (8,=&i8,), however

A»'(0) = lim„pA. »'(a)') =+1/4kT.

Consider the case when co' is not small but rather let
~' be near AH which is now assumed much greater than
the spin lattice relaxation times (&u))T~ '). Then it
follows from Eq. (8.10) that the average power ab-
sorbed by a single spin is given by

P= (8„P„)=+ {2''&„„"(co')A'[b. (
'~ @.

~

'} (8.13)

The imaginary part of A., i.e., A»"(~'), thus describes
the average of stimulated Raman scattering processes
in which photons at &oj~'/2 polarized along H are scat-
tered into photons at co—co'/2 polarized along x and the
reverse process. Equivalently A»" describes the aver-
age power absorbed from the optical waves by stimu-
lated Raman scattering. From the Kramers-Kronig
relation

A»'(0) =(4kT) '=2k(sgPH) ' A»"((e')d(o', (8.14)

since h.»"(co') is sharply peaked about gpH. '~

Taking

V=(—1.7X10 '/T) rad cm ' G—', g=2, l%, =6940 1
and 10' W/cm' in both beams of light, and for the very
conservative half-width Acoq, ——2x)(10' cps this cor-
responds to approximately 0.4 W/cm' at 4.2'K. If this
is equated to gPH(d/dt) —,'(X+»2—X,~&), —',(d/Ch)
X (1V+»2—S»2)= 2.2 X 10"sec ' cm—'. If we assume the
above value of 3, which was taken from a Eu'+: CaF2'
crystal that had approximately 3X10" spins/cm', is
approximately valid for a spin- —,'ground-state ion of the
same concentration, this mechanism can partially satu-
rate a paramagnetic species with T~ 0.001 0.01 sec.

The Manley-Rowe relations" can be applied here to
show that if 2.2&(10"spins sec ' cm ' make transitions
from the —-', to +-', states an equal number of photons
must be scattered into the Stokes wave. Initially the
Stokes wave had 3.5X10"photons sec ' cm ' so that if
Ty&0.001 sec at 4.2'K the spins will not saturate and
the Stokes wave has approximately 0.06%%uo gain per
centimeter of path. This percentage gain is linearly pro-
portional to the incident power density at the upper
frequency (~+&o'/2) but is independent of the incident
power density at the Stokes frequency, (co—&o'/2). '
Note also that linewidths 10 ' smaller than the h~~,
assumed above are common. It is thus possible to in-
crease the gain to 6%%u~ per centimeter of path by choice
of a suitable EPR line.

where co&, and hco& are the atomic resonance frequency
and half-widths, respectively, the total absorbed power
per spin would be

P,~;„=2(gPH/k)'A»'(0) Ao&g, '

XL~,."(~')/~-"(~~.)jA'I @ I'I ~ I', (8»)
where co', the beat frequency between the two laser
modes, is near the atomic resonance.

From Eqs. (4.9), (4.10), and (2.6)

A»'(0) = npXpV(4m'gPNA) ', (8.16)

where N is the number of spins per unit volume and U is
the Verdet constant. Exactly at resonance the total
power absorbed by all spins in a unit volume is

Pgo~~i=(gP/2z'k')H' phNVAOi 8, i'
X )

8,)'(s~b.)-'. (8.17)

For H= 1046, A = —3.5X10—" ergs (dyn/esu ')'

9. CONCLUSION

%e have demonstrated the quantum-mechanical
origin of the IFE and shown how it can be related to an
effective Hamiltonian. The general form for this effec-
tive Hamiltonian has been presented in terms of phe-
nomenological constants. On the basis of the existence
of this effective Hamiltonian it has been possible to
establish certain relationships between the constants of
seemingly different phenomena. In some cases these
relationships take the form of nonlinear analogs of the
Kramers-Kronig relations for linear materials. Numeri-
cal estimates for spontaneous and stimulated Raman
coeKcients are obtained from measurements of the
Verdet constant for paramagnetic Eu++: CaF2. The
approximation of an effective Hamiltonian is a generally
useful technique for linearizing many nonlinear prob-
lems and this should And application in the study of
many diverse phenomena.

"H. A. Haus, IRK Trans. Microwave Theory Tech, 6, 317
(1958).


