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Dielectric Constant of a Semiconductor in an External Electric Field*
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The eBect of a constant external electric Geld on the transverse dielectric constant of a semiconductor is
calculated. The Geld produces a sharp decrease in the dielectric constant close to the threshold for an inter-
band transition. Above the edge, the behavior is oscillatory. Numerical results have been obtained for
gallium arsenide.

I. INTRODUCTION

~ 'HE eBect of a constant electric field on the optical
absorption of a semiconductor has been studied

fairly extensively, both theoretically'-' and experi-
mentally. ' '4 Since the optical absorption is described
by the imaginary part of the dielectric constant, and
causality implies a connection between the real and
imaginary parts of this function through Kramers-
Kronig relations, " it is obvious that an electric Geld
must have some eGect on the real part of this function,
and thus on the index of refraction. "Such eKects have
been observed through measurements of the eR'ect of
an electric Geld on the reQectivity of a semicon-
ductor. '~—"We report here a direct calculation of the
change in the dielectric constant of a semiconductor in
an external electric field.

From a physical point of view, the effect may be
described as follows: In the absence of a Geld, the optical
absorption of an ideal semiconductor is zero below the
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II. CALCULATION

Our work is based on an expression for the frequency-
dependent transverse dielectric constant ~, of a solid
which is given below. "The electronic states of the solid
are represented by Slater determinants of one-particle
Bloch wave functions. These functions are characterized
by a band index (J or e) and a wave vector k (crystal
momentum representation or CMR). The result,
expressed in mks units, is

8
a,=1+ P E)(k)

m~2&o" &
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The quantities which appear in Eq. (3) are defined as
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band gap E„and rises rapidly above it, being pro-
portional to (is&a—Eo)'i', where hco is the photon energy.
The real part of the dielectric constant, ~„also has a
discontinuous derivative at the edge. It is proportional
to the function

(8,/isco)'$2 —(1+Aro/8, )'i' —(1—adios/8, )"$ (1)

for ~&E„and to the function

(E /~)s52 (1+Piro/E )'"3 (2)

above the gap, Lr &E,. This function has a cusp when
~=E„it is shown in Fig. 1. A more complete expres-
sion is given in Eq. (32) below.

When an electric Geld is applied, the absorption
constant does not go to zero when Aco=E„ instead it
has an exponential tail into the gap. It becomes a
smooth function, and so does the real part of the
dielectric constant which is the Hilbert transform of
the imaginary part. Removal of the cusp of Fig. 1
produces a sharp change in the reQectivity, which is
observed. The general nature of these arguments
indicates that similar changes are to be expected at
any sort of interband edge, as has been discussed by
Phillips and Seraphin.
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follows: The (circular) frequency of the incident radi-
ation is ot. Xt(k) is the density of occupied states in
band /. Including the usual factor of 2 for spin, we get

1Vt (k) =2 if I lk) is occupied,

Et (k) =0 if I /k) is unoccupied. .

The quantity ot t(k) is given by

Ao)„t(k) =E (k)-Et(k),

(4)

and the elements y~„are related to the usual momentum
matrix elements by

yt„(k)&(k—k') = (lk I y I
ttk') .

The sum over n in Eq. (3) includes all values of the
band index (except for tt= I), regardless of whether the
band is occupied or not.

The expression we have given above for the dielectric
constant does not involve the steady electric Geld.
%hen a field is present, we use a diGerent set of basis
functions, as will be discussed in detail below, but in a
formal sense Eq. (3) is essentially unchanged.

The dielectric function as given by Eq. (3) appears
to vary as ~ ' for small a, This dependence actuaHy
occurs for metals, but not in semiconductors and
insulators. In order to transform Eq. (3) into a more
convenient form, we use the identity

&ep ot otst o—tst(tdep ot)—
and the "f"sum rule":

2
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=1— V»'Zt(k).
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Then we get

Q Xt (k) —Vent (k)
3moPeo &j jP

The term in Eq. (9) involving VsEt gives rise to the
usual plasIIla contribution ln the case of a metal;
however for a semiconductor in which all bands / which
contain any electrons at T=O'K are also full, we can
v rite

2
+» %(k)V'Et (k) = — d'kV'Et (k)

(2tr)'

2
VEt dS=O. (10)
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FIG. 1. Zero-6eld dielectric constant. The contribution to the
dielectric constant from a pair of simple parabolic bands with no
external electric Geld is shown as a function of g =h~/EfI, vrhere co

is the circular frequency of the incident light, and Efj is the
minimum band gap. The quantity J3 in Eq. (32) has been set equal
to unity.

In the last step in Eq. (10), we have used Gauss'

theorem to obtain an integral over a surface of constant
energy in band l which surrounds all the occupied states.
For a fuQ band, however, there is no such surface, so
that the sum gives zero. Thus, for a semiconductor the
expression for the dielectric constant simplifies to

2e l1tt. (k) I'
tt,=1+ g St(k) g . (11)

3tts les &» t & tttttt(ttdttP hatt )

We are now ready to consider the effect of a steady
electric Geld, Ii =eE. We suppose the field to be along
the "x"axis, and also that this axis coincides with some
reciprocal lattice vector. Instead of using Bloch func-

tions, we use the functions introduced by Kane'4 as a
basis. These functions are eigenfunctions in the presence
of an electric field if tunneling is neglected, and have
been used in calculations of tunneling'4 "and of optical
absorption. ' They are characterized by discrete quan™
turn numbers, v, e (where v designates a Wannier
level, " n is still the band index), and by the wave
vector kt which refers to the components of the usual

crystal momentum in directions perpendicular to the
electric field. It then can be shown by a straightforward
calculation that Eq. (11) remains valid for a semi-

conductor in which all the states characterized by
different values of kt for fixed values of v and ts are
either completely full or completely empty (with
tunneling neglected) provided. that the quantities

%(k), ott„(k) which appear in Eq. (11) as defined in
the CMR are replaced by the analogous objects com-

ttt E. O. Kane, J. Phys. Chem. Solids 12, 181 (1959).
s' P. ¹ Argyres, Phys. Rev. 126, 1386 (1962).IReference 22, p. 28i.
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puted on the basis of Kane functions. Thus we have

28
I p. i,.-(k.) I'

p iver„, (k,) g ' . (12)
3Am pp» '+w&& ippp gp(ip~p, ip

—»p )

The matrix elements and energy denominators may be
obtained from Ref. 3. We have

2s.F(v' —v)
ha, , i,=W„, (k»)-W, i(k») =

«/2

+— [E„(k)—Ei(k))dk, , (13)
K «/2

in which Ai(s) is an Airy function defined by

1
Ai(s) =— cos(ss+-', s')ds,

p = 2I»F/A',

S=P iP[27r(p —v')/g+r» g /241»F j.
These expressions are substituted into Eq. (12). The

quantities inside the summation are functions of p —v

only. Consequently, the sum over u and w' can be per-
formed using the Poisson summation formula as is
done in the calculations of the absorption constant. '
The result is

p.i." (k.)=
«/2

—«/2

A „,i*(k)pi„(k)A „,„(k)dk„ (14)

g~ &PPsiPIp»(0) IP

g,=1+—
3 m2hepK

wltll

A„,i(k)=g '~' exp—
P Q

[W„i(k,)

Ei(k„rp,')—]dry, ' . (15)

ao A&2( s )spain
&&2 Z dy . . . (20)

&02' C02y
—M

in which we now have

s =p'~'[27ry/g+ h'g'/241»F j,
In Eqs. (13)—(15), g is the length of the Brillouin zone
in the "k,"direction.

The expressions for the dielectric constant involve
all bands. For this reason, Eqs. (11) and (12) are too
complicated to be computed completely. Our interest
here is principally the change in the dielectric constant
produced by an external Geld. The arguments of the
Introduction, which are supported by the calculation
which follows, indicate that this change is largest at a
frequency which corresponds to the onset of some
inter-band transition (or more generally at some Van
Hove singularity in the joint density of states). We will

obtain the most important features of the effects in
which we are interested if we use a band model appro-
priate to the region near a minimum gap.

More specifically, we will determine the contribution
to the dielectric constant from a pair of bands which
are closest at k=0, where they are separated by a band
gap E„and are described by an effective mass approxi-
mation. Let

2sFy rs'k»P Asg'

tripp»(y) = +Eg+ +-
K 2P, 24@

The sum over k~ can be converted to an integral in the
usual way:

d2k~.
(2~)P

P e' '»= g 8(y—e). (22)

The integral over k~ can then be performed. Since the
integrand decreases as k~ ' for large k~, the upper limit
on the k& integration may be made infinite without
serious error. From the derivation of the expression for
the dielectric constant in Ref. 22, we see that the
integral is to be interpreted as a Cauchy principal
value. Also, the sum over j and the integral over y
can I:e transformed with the aid of the relation"

and
E» =E„=—r»'k'/2m„,

E2 E,=Ep+ f'sl '/2m„——

s» '=m '+m

(16b)

(16c)

After a straightforward calculation, we obtain

2s s'p" Ip~»(0) I'
g,=1+

3KIt tS Cps

00 ~n
Ai'( —s„) In —,(23)

n—oo GO g CO
—8~

We wilI suppose that the CMR interband matrix
element p,„=p» is independent of k, corresponding to
an allowed transition. Then from Ref. 3 we have

p„p „i»——(2s P'i'/g) pp» (0)Ai(—s),

27 G. Goertzel and N. Tralli, Some Mathematical Methods of
I'hysics (McGravr-Hill Book Company, Inc., Neer York, 1960),

(17) p. 123.
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in which s„ is obtained from Eq. (21) by replacing y by
s) and

- .30

a = fs '(F.,+27rmF/x+kV/24@) (24)

Equation (23) is our fundamental expression for the
dielectric constant. It is worth noting that this result
can also be obtained from the expressions of Ref. 3 for
the absorption constant with the use of a Kramers-
Kronig relation in the form

I.50

I.30-
I.20—

j. I 0—

.20

. IO

2 c "nn(o~')
Kg= 1+—— dG&

I 7

7P M 0 CO —6)
(25)

p .9 ~l.s l.4 e

in whichn is the absorption constant and n is the index
of refraction. "A similar procedure was employed by
Seraphin and Bottka."

Equation (23) contains a sum over terms arising
from the discrete Wannier levels. In the low-Geld limit
(and also because of the smearing of these levels by
collisions), it is legitimate to replace the sum over e
by an integral. Then let

f(s ) =Q f[P'&s(2~is/ir+ Qsx&/24pF)g —+

dsf D3"'(2~s!x+&'x'/24uF)] = f—(P"'~)«
—00 2X QQ

--IO

—.20

Fzo. 2. Dielectric constant in the presence of an electric field.
The upper curve (left-hand scale) shows the contributiori of a
pair of simple parabolic bands to the dielectric constant in the
presence of an electric Geld as a function of g =Am/E, . The lower
curve (right-hand scale) shows the difference between curve 1
and the zero-field dielectric constant for the same pair of bands.
The curves have been calculated with parameters appropriate to
the light-hole conduction-band transition in GaAs and a Geld
strength of t 10' eV/cm.

sorption constant 0. in this case can be written as

Thus,

ye'p'i'I ysi(0) I'
x.=1+

3&m'A'e po)'
d& Ai'( —&P»s)

with
n=ns(Aoi —Eg)»',

no= 2s.E @'8/(nb&ac) .

(29)

X»Lo'(~)/(l~ —~(~) I l~+o(~) I)j. (26)

8=ha/8„
p=g P»s/F

e lysi(0)l t'2y)s~

12'.srgss, y (g,j

(27)

With these substitutions Eq. (26) becomes

In order to obtain a more convenient expression, we
introduce the variable s=Ft/F„and define dimen-
sionless parameters

Ai( —x) = (~'"x'i') ' sin(-'x'~'+-'s. )

Ai(x) = (2~»'x»4) ' exp( —sxsi') . (30)

From this we see that for very large p, only the portion
of the integrand coming from positive values of s
survives. We have

Our numerical computations, which are discussed
below, are based on Eq. (28). Before considering these
in detail, it is desirable to see how Eq. (28) behaves as
the electric Geld becomes very small. In such a situation,
p is large, and we can introduce asymptotic expansions
for the Airy functions. Let x be a large positive number.
Then

Kg= 1
2%BY'l2 8 "ds (1+s)'

ir, (F=0)=1+— ln (31)
8s s s"s

I
8—1—sl I 8+1+sl

(1+s)' The integral can be performed in a straightforward
ds Ai'( —ys) ln ~ (2g) manner. We obtain

I8—1—sl I8+1+sl
Kg=1 2%8&8' &2—1 8 '~' —1—8&'i' I

The quantity 8 can be obtained from the optical
absorption in the absence of a steady 6eld. The ab- (8&1) ~ (32)

Kg
——1+(2m-8/8 )L2—(1+8)'~'j (8)1).

28 In performing the calculation leading from Eq. (25) to Eq.
(23), one should note that the constant E in Ref. 3 is too large
b~ @f@oror of 4 and ther we have ro~]seed I

e, ri I by its average The ProPerties of this function were discussed in the
Introduction. The change in the dielectric constant
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Fxe. 4. Change in
reQectivity of GaAs.
The change in the
reQectivity of GaAs
in the presence of a
Geld of 10' eV/cm is
shown as a function
of 8=bc'/E, . The
second minimum at
8=1.22 is produced
by the split-o8 va-
lence band.

FIG. 3. Change in dielectric constant for GaAs. The change in
the dielectric constant of gallium arsenide in an electric Geld of
10' eVjcrn is shown as a function of photon energy in electron
volts.

produced by the 6eld can now be computed as the
difference of Eqs. (28) and (32).

Air= s( F) Ir, (0). — (33)

)&10 cm ' eV '~' close to the edge. The resulting change
in the dielectric constant, including all three valence
bands, is shown in Fig. 3.

The Geld-induced change in the dielectric constant
has been observed through measurement of the change
in the reQectivity. " ' The reQectivity is given by

III. RESULTS AND DISCUSSION

The dielectric constant in the presence of an electric
Geld for a pair of parabolic bands is shown in Fig. 2 as
computed from Eq. (28). In this example, we also show
the change in the dielectric constant, D~ for the same
pair of bands. The quantity d a has a cusp when kco= E,
and oscillates with decreasing amplitude when A~&E,.

We have also evaluated hz using band structure
parameters appropriate to gallium arsenide. One minor
complication arises from the complexity of the valence-
band structure. Two bands are degenerate at k=0, and
a valence band, detached from the erst two, by spin
orbit coupling lies approximately 0.33 eV below. It is,
however, not dificult to include these three bands,
since their effective masses are known. According to
Ehrenreich, "the conduction band has an effective mass
ratio nz,*=0.072, while the three valence bands have
masses ns„~*=0.68, m, 2*——0.13, m, 3*——0.20. The band

gap at T=O'K is E,=1.515 eV, while from the optical
absorption measurements of Sturge, "we have F0=5.6

I' H. Ehrenreich, Phys. Rev. 120, 1951 (1960).
'0 M. D. Sturge, Phys. Rev. 127, 768 (1962).

I (F)-1)'+I~'(F)
R=

I n(F)+1js+IP (F)

in which n(F) is the index of refraction and E(F) is the
extinction coeKcient, both in the presence of the 6eld.
The index of refraction is related to dielectric constant
by

(35)n(F) =
I s, (F))'~s

~' B.O. Seraphin (to be published).

(when the absorption is small). Close to the gap, the
extinction coeS.cient is negligible, and the change in
the reQectivity is dominated by the behavior of the
dielectric constant. The change in the reQectivity hR
for GaAs in a field of 10' eV/cm is shown in Fig. 4.

The change in the reQectivity of GaAs in an external
6eld has been observed. "It is qualitatively in agreement
with our results (Fig. 4); however quantitative com-
parison is not possible because of lack of knowledge of
the precise electric fields existing in the material, and
of the complicating effects of impurity and surface
states.


