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Normal Vibrations in Aluminum and Derived Thermodynamic Properties*

G. GrL@T AND R. M. Naca. ow

Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

(Received 16 September 1965)

The experimental phonon-dispersion curves of aluminum at 80'K and at 300'K have been analyzed in
terms of axially symmetric Born—von Karman force-constant models, including 8 nearest neighbors. The
resulting models have been used to compute a frequency distribution function g(co) at each temperature
from which various thermodynamic properties have been derived. The specific-heat curve predicted by the

g(co) appropriate to 80'K fits excellently the experimental results in the temperature range 20 to 80'K.
At higher temperatures the experimental results deviate from this calculated curve and approach the curve

appropriate to g(co) at 300'K. Similar behavior is found for the experimental Debye-Wailer coefficient in

the range above 100'K. It is concluded that inelastic-neutron-scattering data and thermodynamic data
are compatible in the range of suf5ciently low temperatures where deviations from the quasiharmonic
approximation are small, provided a good force-constant model as well as a statistically adequate g(~) are
available. There is evidence that the quasiharmonic approximation in aluminum is invalid at room tempera-
ture at least for the extreme low-frequency part of g {co).

I. INTRODUCTION

HE coherent inelastic scattering of slow neutrons
is a powerful experimental technique for the study

of the lattice dynamics of crystals. In principle, detailed
phonon-dispersion curves can be determined and then
analyzed to yield information about the interatomic
forces. In practice, such analyses are made in terms of
the Born—von Karman theory which employs the har-
monic approximation and yields a set of interatomic
force constants of as many nearest neighbors as required
to fit the data. One might expect that such a force-
constant model which reproduces the experimental dis-

persion curves even approximately will also yield, via
a frequency distribution g(co), an accurate reproduction
of thermodynamic properties, e.g., the specific heat,
which are not believed to depend sensitively on these
forces. In reality, however, such good agreement gen-
erally has not been experineced, especially if the phonon-
dispersion curves were measured at high (room) tem-
perature. Probably, this lack of agreement occurs be-
cause the interatomic forces are not harmonic; i.e., the
measured phonon frequencies are temperature-depen-
dent. Barron' has pointed out that owing to anhar-
monicity, the "effective" frequency distributions g(co)
required to reproduce two different thermodynamic
properties, are not necessarily the same. The frequency
distribution function can be uniquely defined only in
the quasiharmonic approximation in which the frequen-
cies are assumed to vary with respect to volume changes
only. It is quite feasible then, that the Born—von Kar-
man model will be a good representation only if the
quasiharmonic approximation is applicable. It is ex-
pected, however, that at low temperatures, "effective"
frequency distributions will not differ appreciably from
one another. The zero-point vibrational energy, al-

though a contributor to anharmonic effects, causes shifts

*Research sponsored by the U. S. Atomic Energy Commission
under contract with the Union Carbide Corporation.' T. H. K. Barron, Lattice Dynamics, Proceedings of the Inter-
national Conference Held at Copenhagen, edited by R. F. Wallis
{Pergamon Press, Inc. , New York, 1963), p. 247.

in frequencies which are independent of temperature, '
and thus does not impair the quasiharmonic approxi-
mation at low temperatures. It might be possible that
the quasiharmonic approximation is already invalid for
many materials at temperatures ( 300'K) where most
neutron-scattering experiments have been performed.

A second reason for the inability to reproduce satis-
factorily specific-heat data from neutron-scattering ex-
periments might be of more technical nature. The speci-
fic-heat data, especially when expressed in terms of the
characteristic Debye temperature O, (T), are more sen-

sitive to the details of the force-constant model as well

as to the derived frequency-distribution function than
is generally believed. (This fact has been experienced
in our computations. ) Because of this sensitivity one
should make use of the most accurate experimental data,
try to obtain the best fitting force-constant model, and
then derive the best possible frequency-distribution func-
tion. All of these are required in order not to sacrifice
precision in the process of analyzing the data.

In view of the preceding remarks, it was desirable to
analyze inelastic neutron-scattering data obtained at
two different temperatures in order to observe any tern-
perature dependence of the frequency distribution. Such
data are now available for aluminum. Phonon-dispersion
curves in aluminum have been measured by inelastic
coherent scattering of slow neutrons at room temper-
ature in numerous experiments. '—' In one experiment~

' B.N. Brockhouse and A. T. Stewart, Rev. Mod. Phys. 30, 236
(1958).' R. S. Carter, H. Palevsky and D. J. Hughes, Phys. Rev. 106,
1168 (1957).

4 K. E. Larsson, V. Dahlborg, and S. Holmryd, Arkiv. Fysik.
17, 369 (1960).' J. L. Yarnell, J. L. Warren, and S. H. Koenig, Ref. 1, p. 57.
(We are indebted to these authors for providing us with their
detailed experimental data. }

6 R. Stedman and G. Nilsson, Inelastic Scattering of Negtronsin
Solids and Liqlids (International Atomic Energy Agency, Vienna,
1965),Vol. I, p. 211.The data utilized throughout this article were
read from graphs. More accurate data were recently available to
us (for which we are grateful to these authors), and were subjected
to the same analysis, showing that only negligibly small correc-
tions to the original analysis were required.' C. B. Walker, Phys. Rev. 103, 547 (1956).
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they have been measured by the less accurate technique
of diffuse x-ray scattering. The data chosen for the pur-
pose of the present calculations are those of Yarnell
et al. , at 300'K, and of Stedman and Nilsson' at 80'K.
These two experiments have been performed with a
triple-axis spectrometer and thus have provided the
most accurate data available for aluminum.

There have been some earlier attempts to analyze the
experimental data for aluminum in terms of Born—von
Karman models. %alker7 analyzed his own data derived
from diffuse x-ray scattering and the same data have
also been analyzed by Squires. More recently, Squirese
analyzed the data of I arsson, Dohlborg, and Holmryd. 4

Flinn and McManus' used a 6rst-nearest-neighbor
model derived from elastic constants at low tempera-
ture to calculate g(&o) as well as a specifIc heat curve.
Although all the above models agree qualitatively with
the experimental O~. (T), we believe that the calcula, tions
to be described improve this agreement.

IL BORN—VON KARMLN MODELS

The validity of an analysis of measured phonon
dispersion curves for metals in terms of Born—von Kar-
man models may be questioned, because of the pres-
ence of electron phonon interactions. At the present
stage, theories including electron-phonon interactions
imply the existence of a possible long-range oscillatory
interatomic potential. Yarnell et al. ' have pointed out
that their data indicate interactions in aluminum out
to 15 neighbors. Harrison" and, very recently, Vosko
et al." have attempted calculations of the phonon dis-
persion curves in aluminum from first principles. Since
the motivation of the present work was to attempt to
reproduce from measured dispersion curves the thermo-
dymanic properties of aluminum, it was necessary to
rely on a model which could best fit these curves. This
could be achieved at present only by a force-constant
model based on the Born—von Karman theory. Such a
model may not provide the best physically sound in-
terpretation of the lattice dynamics of aluminum, but
rather, we believe that it will provide the best available
interpolation formula both for fitting the observed pho-
non frequencies and for use in the derivation of a fre-
quency distribution, g(cu).

A model for 300'K was based on the data of Yarnlel
et al. ,

' along the [F00] and [g0] directions together
with the data of Stedman and Nilsson' along the [gf']
direction. (The only data of Stedman and Nilsson' re-
ported for the [$00] direction is for 80'K. We obtained
a 300'K [gf] dispersion curve by adjusting their re-

G. L. Squires, Phys. Rev. 103, 304 (1956).
G. L. Squires, Inelastic Scattering of Neutrons in Solids and

Iiqusds (International Atomic Energy Agency, Vienna, 1963),
Vol. II, p. 55.' P. A. Flinn and G. M. McManus, Phys. Rev. 132, 2458
{1963)."%.A. Harrison, Phys. Rev. 136, A1107 (1964),

~ S. H. Vosko, R. Taylor, and G. H. Keech, Can. J. Phys. 43,
1187 (1965).

TABLE I. Best-6t 8-nearest-neighbor axially symmetric models.
(Notation of force constants is explained in the text. )

Neighbor
and

location

Best-6& value of force Restrictions
constants (dyn/cm) for the axially
T=80'K T=300'K symmetric model

1 (110)
%8

p 1

2 (200) aP
CL2

3 (211) p
C12

p 3

p~8

4 (220) 4

A3

p 4

5 (310)
CXQ

A3

p 5

6 (222)
p6

7 (321) nj7
A2
Ck'3

pF
p 7

p37

8 (400)
a28

10107—1337
11444

2452—529
—625—182—148—296

271
321—50

461
227
198
88

142—109
—64—94—111

12
18
36

—534—116

9808—1616
11424

2494—515
—439—167—91—182

27
465—438

518
141
94

141

76—61
—49—65

74
6
9

19
—756—63

P8 =Al. —A3

pp =g(ag' —a2')
P23 =-', (aP —0.23)

P3' =n1.4—a 84

a3' =-,' (9ng' —aI')
p, 5 =g(~, 6—~,5)

3V — (8 2V 3 7)
pgV = g~ (a1.7—0.'27)
p2'= -'(a(7 —a27)
p'=(6/5)( '- ')

"G. N. Kamm and G. A. Alers, J. Appl. Phys. BS, 327 (1964).
'4 R. E. Schmunk and C. S. Smith, J. Phys. Chem. Solids 9, 100

(1959).

ported frequencies according to the average shift meas-
ured between 80' and 300' for the [+0]direction. The
300'K data of Yarnell et al. ,

' and of Stedman and Nils-
son' along the [f00] direction are in excellent agree-
ment. ) The model for 80'K was based on the data of
Stedman and Nilsson. The elastic constants meas-
ured at 300 K and at 80 K are in excellent agree-
ment with the measured dispersion curves and were
used as independent data.

A linear least-squares 6tting analysis was performed
on the squares of the observed frequencies subject to
the condition that appropriate linear combinations of
the force constants agree with measured elastic con-
stants. The experimental errors for the neutron scatter-
ing data were assumed to be 2% of the measured phonon
frequencies. The uncertainty in the elastic constants
was assumed to be 0.3%. In order to obtain a good fit
to the measured frequencies, one should include in the
fitting model interactions out to as many neighbors as
the uncertainty in the available data will allow. In the
present case the number of independent symmetry di-
rections experimentally studied does not permit the use
of a general force model which includes interactions
beyond four neighbors. In order to extend the range of
interaction, it is required to put some restrictions on
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FIG. j..The phonon-dispersion curyes in Al along the three major symmetry directions. The solid hnes represent the 8-nearest-neighbor
AS models. The experimental points at 80'K are taken from Stedman and ¹ilsson (Ref. 6) and at 300'K from Yarnell, Warren, and
Koenig (Ref. 5).

constants for any neighbor is allowed to depend only
on two independent parameters. These parameters
might be chosen to be the radial 4„'and the tangential
4 &' force constants, where

the force constants. We used an axially symmetric (AS)
model which can be extended out to 8 neighbors. It
was found that a first-through-eighth nearest-neighbor
AS model produced a signi6cantly better 6t to the data
than did either the AS model with fewer neighbors or
the general 4-neighbor model.

The notation of Squires" for the force constants is
adopted throughout this work. If C; is the force acting
on an atom at the origin along the ith direction while

the sth nearest-neighbor atom moves a unit displace-
ment along the jth direction (i,j =x, y, s) then the force
constant array representing C; is given by

C„'=(Os V/Brs)„„

Ps' Ps*

Ps' mrs' A'
Ps Pl rr3 r'= —sa(ht'i+hs'j+hs'k),

In the case of axially symmetric forces, the set of force

"G.I. Squires, Ref. 9, p. 71, wbcr|: e is thy lattice parameter and h~', It~', Its' are

Here V is the interaction potential function and r'
denotes the equilibrium position of the sth neighbor

(1) relative to the origin, i.e.,
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FIG. 2. Frequency-distribution functions for Al at 80 and 300 K obtained from the AS models by the extrapolation method (Ref. 16).

integers. The C;,' can then be constructed from

where 8;; is the Kronecker delta.
The best-fit values we obtained for the force con-

stants of the AS model for both 80 and 300'K are listed
in Table I. The number of independent parameters in
each case is 16. The dispersion curves given by these
best-fit force constants are compared to the experi-
mental data in Fig. 1. The lower part represents the
300' data, primarily that of Yarnell et al. , ' and the
upper part represents the 80'K data of Stedman and
Nilsson. ' The average Quctuation of the experimental
frequencies around the calculated values is about 1.5%
for both temperatures.

III. CALCULATIONS OF g(ro) AND THERMO-
DYNAMIC PROPERTIES

From the 8-neighbor AS models just described, we
have used the extrapolation method" to compute a fre-
quency-distribution function g(to), for both 80 and
300' K.The basic idea behind the extrapolation method,
which is an improvement of the usual sampling method,
is the following. In the usual sampling method, given a

"G.Gilat and G. Dolling, Phys. Letters 8, 304 (1964).

force-constant model, one proceeds to solve the secular
equation of the dynamical matrix for as many as pos-
sible different wave vectors which uniformly 611 the
irreducible section of the 6rst Brillouin zone of the
reciprocal lattice. Then, by sorting all the diferent
eigenfrequencies one obtains a sample of g(&o). In the
extrapolation method" one makes use of the eigenvec-
tors for every wave vector in the sample, in order to
derive the frequency gradient. This is achieved by
imposing artificial small changes on the wave vectors
(along the three orthogonal axes) and then applying a
6rst-order perturbation technique to calculate the cor-
responding changes in frequencies. After the frequency
gradients are obtained, it is easy to apply a linear ex-
trapolation by means of a Taylor expansion to obtain
the eigenfrequencies corresponding to any of the neigh-
boring wave vectors and thus extract as Inany ad-
ditional frequencies as desired. This procedure will re-
sult in a very substantial improvement of the sampling
for the same computing time. The technical details of
our computations are identical to those described by
Birgeneau et al. ,

'~ except that the statistical Ructuations
in the relatively unpopulated small-wave-vector regions
have been improved. The curves shown in Fig. 2 are
histogram plots of the computed frequency distributions
but the statistical fluctuations of each point (about 1%%u&)

"R.J. Birgeneau, J. Cordes, G. Dolling, and A. D. B. Woods,
Phys. Rev. 136, A1359 (1964), See Appendix A, in particular. r
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are too small to be seen. Each curve, representing
35 83j. 808 frequencies sorted into approximately 200
intervals, required 615 matrix diagonalizations (com-
pared to 254040 diagonalizations which would have
been required if the usual sampling method had been
used). A comparison of the spectrum g(te) at the two
temperatures reveals a rather uniform shift in frequen-
cies ( 3%) accompained by a slight change ( 10%)
in the relative heights of the peaks in g(ce) due to the
longitudinal and transverse modes. The over-all shape
of the distribution does not change appreciably.

A more quantitative comparison of the two spectra
can be made through the various moments p defined by

p~= te g((e)dte
0

g (&)d& (6)

for m&0, rs& —3.
For e= 0 and —3 we have

tee=exp -', + g((0)luce dt0 g(~) &~, (8)
0

t0 s= (k/h)O~, (0 ) (9)

where h is Planck's constant, k is the Boltzman con-
stant and O, (0') is the specific-heat Debye temperature
at O'K. The ~ are shown in Fig. 3 as a function of m

Since the p„span a very wide range, it is convenient
to define a Debye distribution of "cuto6" frequency
co„,"where

—1/n

g (Ce) dQ)

Tmx,z II. Comparison of various moments Go derived from heat-
capacity analysis to those computed from spectra at 80 and 300'K.

Moment
Heat-capacity

analysis
Computed from g(Go)

T=80'K T=-300'K

GO 3

GO

GO

GO0

GO2

GO4

GO6

5.633~0.010
5.287+0.010
5.178~0.009
5.165&0.008
5.265~0.010
5.39 &0.16
5.5 &0.9

5.657
5.303
5.206
5.207
5.335
5.473
5.591

5.373
5.094
5.029
5.051
5.201
5.367
5.497

a See Ref. 19.

4.5

for the two temperatures. Other values for several of
the p„(corrected to the crystal volume at O'K) were
derived by Salter, ' who analyzed the specific-heat data
of Phillips' and of Giauque and Meads. " These are
compared to the calculated moments in Fig. 3 and
Table II.

It is interesting to try to draw some conclusions from
the observed shifts in co as one raises the temperature
from 80' to 300'K. As long as these shifts are small, one
can apply the following expression" to describe the real
part of these shifts:

te„(T)=re„(0)(1+y„8+r„(s)), (10)

where 8 is the volume dilation L8 = (Vs—V)/Vs] at tem-
perature T, y„is an appropriate Griineisen parameter,
and (e) is the average energy per mode at T, and r„
some anharmonic parameters. In the quasiharmonic ap-
proximation, one neglects r (e) in comparison to y„8,
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g 56
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FIG. 3. Debye "cutoff" frequencies Go„Ldefined in Eqs. (7), (8),
and (9)j obtained from g(Go) at 80 and 300'K. The experimental
points were obtained by Salter (Ref. 19) from analysis of specific-
heat data. (The error corresponding to Go6

—marked by a circle—is
too large to show on the graph. )
"T. H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy.

Soc. (London) A242, 478 (1957).

Fio. 4. y obtained from the variation of Go with temperature
using Eq. (11). Uncertainties of y„areof the order of 5-10%.

"L.S. Salter (private communication)."N. E. Phillips, Phys. Rev. 114, 676 (1959).
"W. F. Giauque and P. F. Meads, J. Am. Chem. Soc. 63, 1897

(1941).
~ L. S. Salter, Advan. Phys. 14, 1 (1965).
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but it should be noted that (e) does not vanish even
at O'K owing to the zero-point energy. In the present
case, we compare cv„(300')to co„(80')and this involves
slight modifications of Eq. (10).

We proceed now to define another set of parameters
y„asfollowing:

d 1m'„(T)

If the quasiharmonic approximation were good, we
should get y„=y„for this range. In the actual calcula-
tion we get

(~(300') )—(e(80') )
V =V+r

h (300')—8 (80')
(12)

The values of f are calculated from the data of Fig. 3
and shown graphically in Fig. 4.

Unfortunately, the individual p„are not subject to
direct measurement. Use can be made, however, of the
macroscopic Gruneisen parameter given by "

yg
——P V/~C. , (13)

where P is the volume coefficient of thermal expansion
and z is the isothermal compressibility. If one assumes
quasiharmonicity one obtains"

yg(T=O)=y &

v.(2'~ )=vo
(14)

Of these two parameters, y, (0') can provide the only
evidence to the validity of the quasiharmonic approxi-
mation at room temperature, since in principle if it
were valid, one would obtain the same y, (0') from

thermodynamic data near T=O'K and from pressure
derivatives of the elastic constants. Values derived from
thermodynamic data'4 "are apparently subject to large
experimental error as temperature is lowered, but most
measurements seem to show a rising trend in y, as T is
reduced, y, being near 4. The value obtained from pres-
sure derivatives of elastic constants at room tempera-
ture" is y 3=2.61. The value that we obtain for y 3

in the present analysis is 4.2~0.6 and it probably should
be compatible with y, (0'). This leads to the conclusion
that at least the long-wave part of the spectrum in
aluminum is not quasiharmonic at room temperature. "
By applying Eq. (12) for xi= —3, we obtain

r 3((e(300'))—(e(80')))=0.02+0.003. (15)

The comparison of the high-temperature y, to the
present y„is less clear if the quasiharmonic approxi-
mation is invalid. However, if we assume the validity of
this approximation for the rest of the spectrum we get a
value of F0=2.50 which, when corrected to 300'K ac-
cording to 8arron, "yields a calculated value of p, (300')
=2.55 in comparison to the measured'5 value of 2.34.
We estimate the statistical errors involved in calculating
y„to be of the order of 5—10%.

The results obtained for the specific heat calculated
from the 80 and 300'K spectra are expressed in terms
of the conventional Debye temperature O~, versus tem-
perature plot in Fig. 5, curves (A) and (B), respectively.
The experimental O, (0') are quoted from Refs. 13, 20,
and 31. The experimental points on curve (C) are de-
rived from the smoothed C, values reported by Giauque
and Meads" corrected for the appropriate electronic
contributions. The points of curve (D) were derived
from the smoothed C„data of Giauque and Meads"
after application of the same electronic correction but
with C„—C, determined according to

C„—C =p'V2'jx
1 (16)
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Fio. 5. Comparison of calculated O, (T) with experiment.
Curves (A) and (B) are calculated from g(u) at 80 and 300'K,
respectively. Curves (C) and (D) represent the experimental
results of Giauque and Meads. (See text. ) Experimental results at
O'K were obtained from Refs. 13, 20, and 31.

"T.H. K. Barron, A. J. Leadbetter, and J. A. Morrison, Proc.
Roy. Soc. (London) A279, 62 (1964).

24 C. P. Abbiss, Eva Huzam, and G. 0. Jones, in Proceedings of
the Seventh International Conference on I.om TemPeratere Physics
(Toronto University Press, Toronto, 1960), p. 689.

"D.B. Fraser and A. C. Hollis-Hallett, Ref. 24, p. 688.
2'R. J. Corruccini and J. J. Gniewek, Natl. Bur. Std. Mono-

graph 29 (1961)."D.B. Fraser and A. C. Hollis-Hallett, Can. J. Phys. 43, 193
(1965)."J.G. Collins, Phil. Mag. 8, 323 (1963).

"Additional analysis has been done by the present authors.
The mode-dependent Gruneisen parameters taken from a paper
by W. B. Daniels, Ref. 1, p. 273, and calculated from pressure
derivatives of elastic constant were compared for four different
metals, namely, Al, Ag, and Cu with the Gruneisen parameters
calculated from the temperature dependence of the elastic con-
stants taken from the papers of W. C. Overton, Jr., and J.Gaffney,
Phys. Rev. 98, 969 (1955) and J, R. Neighbours and G. A. Alers,
ibid. 111, 707 (1958). The common feature of these comparisons
is a disagreement of about a factor of 2 for transverse modes
(the latter parameter being larger), and a crude agreement for
longitudinal modes. This pattern of behavior persists at least
down to 50'K and casts doubts about the validity of the quasi-
harmonic model even for low temperatures.' T. H. K. Sarron, Phil. Mag. 46, 720 (1955).

"M. Dixon, F. E. Hoare, T. M. Holden, and D, E. Moody,
Proc. Roy. Soc. (London) A285, 561 (1965).
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where P is the volume coefficient of thermal expansion,
V the molar volume, and ~ is the isothermal compressi-
bility. Giauque and Meads used a different formula for
C„—C„apparently due to a lack of good data for either
P or ~ in the 15'—300'K temperature range. Now, how-
ever, there are reliable data for both P""and ~ Lob-
tainable from the variation of the elastic constants
(Cii+2Ciq)/3 with temperaturej. "The difference be-
tween these corrections for C„—C„being negligible for
T'&100'K, becomes appreciable at higher temperatures
and tends to shift the experimental points )curve D)
more closely to curve (3) obtained from g(a&) at 300'K.
It should be pointed out, however, that for T)O~,/2
(2') 200'K) the experimental O~, are quite sensitive to
experimental error and thus are probably not too re-
liable.

Several observations are worthy of note. The agree-
ment between the experimental 0", and those calculated
from the g(co) for 80'K is very good in the 20—80'K
temperature range. Such agreement is considered signifi-
cant because temperature dependent anharmonic effects,
in the quasiharmonic approximation, probably contrib-
ute negligibly in this temperature range to both the
specific-heat and the neutron-dispersion-curve data.
Thus a good model based on accurate neutron data is
here shown to be capable of precisely reproducing spe-
cific-heat data in a temperature range where anharmonic
effects have not hampered a comparison. Also the agree-
ment obtained here in the 20—80'K range is substan-
tiallybetter than that obtained by Flinn and McManus"
from a first-neighbor model based on O'K elastic con-
stants. We believe the first-neighbor model must be
considered inadequate. As a matter of fact, during the
course of the present investigation several other force-
constant models have been attempted (e.g., general third-
nearest-neighbor models). A common feature of these
attempts was the high sensitivity of g(&u) to the model
chosen and resultantly the sensitivedependence of O, (T)
on the model. We found that the better the model fitted
the dispersion curves, the better was the fit of the cal-
culated O, (T) to the experimental points in the range
20-80'K.

Below 20'K the data of Giauque and Meads seem to
be less reliable. Here the e6ects of smoothing the data
are quite large, and in fact, the unsmoothed data are
in somewhat better agreement with the calculations
below 20'K. More specific-heat measurements are highly
desirable, especially in view of the slight increase in
O~, around 15'K predicted by the present calculation.
Above 80'K, the experimental 0+, deviates from the
curve obtained from the 80' g(~) and tends toward the
curve obtained from the 300' g(~). It is of interest to
note that the experimental data below 80'K cannot be
accounted for by the 300'K g(co) when a correction for
the volume dependence of the calculated 0, is based
on the Gruneisen parameter obtained from high-tem-
perature thermodynamic data, i.e., &=2.3.

In view of the explicit temperature dependence of
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Fxc. 6. Comparison of calculated O~ (T) with experiment
{Ref.32). Curves (A) and (8) are calculated from g(u) at 80 and
at 300'K, respectively.

"R. M. Nicklow and R. A. Young, Technical Report No. 3,
Project A-389, Georgia Institute of Technology, Atlanta, Georgia,
1964 (unpublished).

~ &, and, hence, possibly of other moments, the apparent
agreement found between the measured "high"-temper-
ature C„and the calculations based on g(~) at 300'K,
possibly should not be taken too seriously. Barron' has
pointed out that in the absence of quasiharmonicity the
frequency distribution obtained from inelastic neutron
scattering data is appropriate for the calculation of the
entropy 5. In principle the correct way to calculate C„
from our g(a&) would be first to calculate 5 and then to
differentiate 5 with respect to temperature, taking into
account the explicit temperature dependence of the fre-
quencies. In practice this calculation of C, is impossible
because it requires a separation of the shifts of all
the frequencies into volume contributions and explicit
temperature contributions. We have not attempted to
compare in detail the measured lattice entropy for alu-
minum" with calculations based on g(co). The g(~) ap-
propriate to 80'K must reproduce the experimental
entropy below 80'K because of the excellent agreement
obtained for C„in this temperature range. According
to Barron one expects the entropy at 300'K to be re-
produced by calculations based on the present g(~) at
300'K. The experimental entropy at 300'K,"corrected
for electronic contributions, yields a Debye temperature
0~,=386+2'K. Calculations of the high-temperature
limit of O~., with the ~0 computed from the g (co) at 300'K
(see Table II and page 13 of Ref. 22) yield a value of
386'K which is in excellent agreement with the meas-
ured value.

In Fig. 6 the Debye temperatures appropriate to re-
cent measurements" of the temperature dependence of
x-ray Bragg intensities in aluminum are shown. Al-
though the analysis of these measurements are de-
scribed fully elsewhere, " it is necessary to point out
here that the experimental and calculated Debye tem-
peratures were obtained from expressions for the tem-
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perature derivative de/dT, of the Debye Wailer factor
M. The Debye temperature obtained in this manner is
labeled O~~. Curve (A) was obtained from the 80'K
g(&o) and curve (8) was obtained from the 300'K g(&o).
At low temperatures ( 100'K) the measurements agree
well with curve (A) and tend toward curve (8) as the
tempera tuI'c lncI'cases.

All the calculations described in this section have
been performed on the CDC—1604 at the Oak Ridge
National Laboratory.

IV. CONCLUSIONS

The computations presented in this article show that
the phonon-dispersion curves in aluminum as obtained
from the one-phonon coherent inelastic scattering of
neutrons can be correlated to detailed thermodynamic
data (e.g. , specific heat as a function of temperature)
to quite a high degree of precision. In order to achieve
this consistency at low temperatures, the neutron-
scattering data must be taken at a suHRciently low'

temperature. An estimate of the required low temper-
ature can be provided by the thermal expansion co-
CScient and an estimate of the Gruneiscn parameter y, .
If P(T) is an average volume coeKent of expansion be-
tween 0' and T K, then the average shift in frequen-
cies relative to O'K is approximately

DGl/co —P'r&T . (17)

Thus A~ tends to zero quite strongly as a function of
temperature, so that in many cases 80'K may be a
suKciently low temperature to calculate a g(co) which
will reproduce thermodynamic data satisfactorily.

Having observed the dispersion relations, it is im-
portant to obtain the best force-constant model pos-
sible. By best model we do not imply that it is the best
physical description of the normal vibration, but rather,
that it presents the best interpolation formula which
is able to represent the observed frequencies as closely
as possible. Furthermore, having computed a satisfac-
tory model, one should derive the best possible fre-
quency-distribution function g(o&), which can be ob-
tained by the extrapolation method. "Special care must
be taken for low ~ (since the ~„for u(0 depend strongly
on them) by increasing substantially the sampling size
near the origin of the Brillouin zone. It has been found
that the calculated functions O, (T) and O~r (T) as well
as ~ depend quite sensitively upon the model chosen.

For example, O~, (T) can be computed to 1'K, whereas
differences in 0, using different models can reach 20'K.
Although lt ls difBcult to cstiIQatc thc experimental
uncertainty ln thc data of GlRUquc and Mcads)
present day techniques allow a determination of 0', to
much better than 20'K.

The question of the validity of the quasiharmonic
approximation at high (room) temperature in alumi-
num cannot be satisfactorily answered by the present
kind of analysis alone. A direct answer to this problem
should be sought in the pressure behavior of phonon-
dispersion curves obtained from inelastic neutron scat-
tering (a very dificult experiment itself) as well as by
the pressure behavior of the elastic constants. How-
ever, the latter source of data is available and can be
compared to the temperature behavior of the elastic
constants. In the present work we And that the value
of y 3 (2.61) calculated from the pressure dependence
of the elastic constants does not agree with the value
of y q (4.2) derived from the temperature dependence
of the elastic constants. This disagreement implies that
at least for the extremely low-frequency part of the
spectrum, the quasiharmonic approximation is invalid
at room temperature. " In light of this, care must be
taken to distinguish between y calculated from volume
changes at constant temperature and those calculated
when the temperature is allowed to vary. The p„in the
present work belong, of course, to the second category.

Observation of phonon-dispersion curves at two tem-
peratures can lead to conclusions about the size and.

nature of the anharmonic contribution, which can be
interpreted in terms of the paraIneter y„sensitive to
the over-all changes in g(~) as a function of temperature.
In the present calculation y„is a decreasing function
of e, which indicates that for aluminum the high-fre-
quency part of the spectrum (i.e., longitudinal modes)
is less temperature-dependent than the low-frequency
part (transverse modes).
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