
PHYSICAL REVIEW VOLUM E 143, NUM BER 1

Energy Loss to a Cold Background Gas. I. Higher Order Corrections to
the Fokker-Planck Operator for a Lorentz Gas
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The relaxation of an isotropic distribution of test particles in a homogeneous background gas is considered
when the mass ratio is not necessarily very small. For the most, part, the temperature of the background gas
molecules is assumed to be zero, although a method is presented for including nonzero-temperature effects.
The Soltzmann collision integral is represented by an inlnite-series diRerential operator vrhich, for all force
la@ps, reduces to the usual Fokker-Planck equation @&hen terms of second order in the mass ratio are dis-
carded. For the case of Coulomb interactions, the usual Fokker-Planck equation is obtained if either the
second-order mass-ratio terms or the terms of order 1/ink are discarded. A random-walk analysis is used
to obtain a di6'erential operator vrhich agrees arith the in6nite-series diBerential operator vrhen third-order
terms in the mass ratio are discarded. When the background-gas temperature approaches zero, the usual
Fokker-Planck equation predicts that an initial delta-function distribution will always remain a delta
funct1on dullng the relaxatlon plocessy vfhereas 1t 18 showIl that both the random-%'alk analysis and the
in6nite-series differential operator give exact values for the dispersion of the initial delta function.

I. INTRODUCTION

HIS paper is concerned with the slowing down of
light test particles in a homogeneous background

gas of heavy molecules when the kinetic energy of the
test particles is much greater than the average therInal

energy of the background molccules. In particular, we

will usually consider the limit as the background-gas
temperature approaches zero. This simplification allows

us to obtRln DloI'c complete sohltlons which provide
some insight into the approximations which are involved

when the Soltzmann collision integral is represented by
a diQerential operator, It will be demonstrated in Scc.II
that, in the limit as the background-gas temperature

approaches zero, thc usual Fokker-Planck equation"
for a Lorentz gas predicts that the distribution function
will always remain a delta function if it is initially a
delta function. A similar result has recently been shown

by May' for the case of a fast test particle losing energy

by Coulomb collisions to a homogeneous plasma of ions

and electrons.
Thc preservation of an initial delta function would

imply that every particle of a given initial energy
behaves exactly the same during the slowing-down

process. However, even when the background-gas tem-

perature approaches zero, it is apparent that the energy
lost ln R colllslon ls a statlstlcal quRntlty Rs ls the time

between successive collisions. One of the purposes of this

paper wiQ be to show that thc lack of dispersion pre-

dicted by the usual Fokker-Planck equation for a cold

background gas can be corrected by including higher-

order terms in the mass ratio.
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A random-walk analysis of the energy loss is employed
in Sec. III to take into account the stochastic properties
of the collisions, Some results for the case of constant
collision frequency are given in Sec. Iv and a partial
differential equation of the Fokk.cr-Planck type is
obtained in Sec. V for an arbitrary velocity dependence
of the collision frequency. The problem of dining the
collision frequency for inverse-power molecular forces
within the framework of thc random-walk analysis is
considered in an Appendix.

In Scc. VI we formally obtain a di6crential operator
from the Boltzmann collision integral by extending the
method of Allis' uitholt srsahsssg the assgrwptsoN that the

mass ratio is smal/. The differential operator has the
form of an infinite series where the eth term involves
the eth order partial derivative of the distribution
function and an explicit form is given for the coe%cicnts.
If wc omit thc pRrtlal dcllvRtlvcs of thlld order Rnd

higher in the mass ratio, the resulting Fokker-Planck
cquRtloIl ls ldcntlcal with thc cquatlon obtRlncd ln
Scc. V from the random-walk analysis. I"or Coulomb
forces, the diGerentia1 operator reduces to the usual
I'"okker-Planck opexator for any value of the mass ratio,
if terms of order 1/1nt). are discarded.

The problem of deriving a pax tial differential operator
from the Boltzmann equation has been considered

by several authors. ' ' In particular, Siegel' obtained
second-order terms in the mass ratio for the linear
Boltzmann equation satis6cd by a gas of in6nitely thin
disks constrained to move in one direction with a non-
zero background-gas temperature. Although the Boltz-
mann equation and its approximation by the usual
I"okker-Planck equation have nonpositive eigenvalues,

4 J. Kielson and J.E, Storer, Quart. Appl. Math. 10, 248 (1952).
s N. G. van Kampen, Can. J. Phys. 39, 551 (1961).
6 K.. Andersen and K, E. Shuler, J. Chem. Phys. 40, 633 (1964),
7 A. Siegel, J. Math. Phys. 1, 378 (1960).



ENERGY LOSS TO COLD BACKGROUND GAS. I

Siegel demonstrated that, when the second-order terms
were obtained in a straightforward manner, the second-
order operator possessed positive eigenvalues which
raised the possibility of runaway solutions which grow
inde6nitely in amplitude. This important result ob-
viously raises serious questions concerning the validity
of differential operators which are obtained by including
powers of the mass ratio greater than unity. However,
the simpli6cations introduced by the zero-temperature
background gas allow us to obtain an exact analytic
solution for the second. -order operator and show ex-
plicitly that the solutions do not grow in amplitude as
t —+~. %e remark here that our second-order operator
formally includes positive eigenvalues in the same sense
as Siegel's operator but we reserve a discussion of the
eigenvalue spectrum and the resolution of the apparent
paradox for a second paper on this topic. The analytic
solution for the test-particle distribution function ap-
proaches the appropriate equilibrium distribution as
t —+~, namely a delta function centered at the origin
corresponding to the zero-temperature background gas.

In Sec. VII, we discuss the criterion for the e8ect of a
nonzero background-gas temperature to be less than the
e8ect of the second-order terms in the mass ratio. For
constant collision frequency, exact solutions are ob-
tained for certain moments when the initial distribution
function is a delta function; the average energy and the
dispersion of the average energy for the zero-tempera-
ture background gas are shown to be given exactly by
the random-walk analysis when second-order terms in
the mass ratio are included.

II. BEHAVIOR OF THE FO&&ER-PLANCK
SOLUTION FOR A COLD LORENTZ GAS

For small mass ratios, the usual Fokker-Planck ap-
proximation to the Boltzmann equation for an isotropic,
spatiallyhomogeneous distribution function in a Lorentz
gas is

Bf 8 /' kTp 8)—=-'pn '—npv~ 1+ —(f
a/, an E mv ani

where f is the test-particle distribution function defined
so that 4n.fv'dv is the expected number of particles with
speeds between n and v+dv. The background-gas tem-
perature is Tp and p=2mM(m+M) —', where m is the
light test particle and M is the mass of a heavy back-
ground molecule. The collision frequency 2(n) is in
general a function of velocity. Equation (1) can be
obtained by expanding the Boltzmann integral in powers
of e and retaining only the 6rst term.

Siegel describes a technique for revising the second-order
operator&by including third-order terms which render the eigen-
value spectrum nonpositive; however, the revised operator
involves an arbitrary constant.

Let the temperature Tp -+ 0, so that Eq. (1) becomes

Bf 8
=

gled

8t 88
(2)

The solution of Eq. (2) which vanishes as v —+ pp is

f(v, i) = [n(vi) vi'/n(v) v'] fp(ni),

where n&(v, /) is defined by the equation

dx
=gd1

xn(/xi)

(3)

(4)

and the function fp is the initial distribution function.
By substituting back into Eq. (2), Eq. (3) can be

veri6ed, and it can also be shown that the number
density

v'f(v, )')dv,

as calculated from Eq. (3), is a constant provided that
lim, +pvi(n, t)=n*(t)=0. The last condition will be
obeyed only if lim, p n(n) is less than some constant M.
The physical meaning of this is that "soft" molecules,
whose collision frequencies increase as v —+ 0, reach the
origin of v-space within a finite time. In this case, Eq. (3)
must be augmented by the term

n 2()(v) fp(x)x'dx,

which represents the ",pool" of test particles with zero
energy.

%hen the collision frequency is independent of
velocity, Eq. (3) becomes simply

f(n ]) &(2/2) Ivif (nv(l/2) svi)

If the initial distribution is the delta function

f,= (4~v')-'b(v v,), —
Eq. (5) yields

f(n, t) = (42rn2)-'()(V —npe'""2) (6)

Coulomb forces provide an example of "soft" mole-
cules since v=o.e '. Then the delta-function solution
becomes

f(v /) = (42rv') —'h[v —(npp ——22n 2),)'/2] t(t*
= (4nv2) —'()(v), t) tv, (7)

where t*=2npp/3np is the time required for a particle
of velocity e to slow to the origin.

The results of this section show that, when we con-
sider the limit of zero background temperature in the
usual Fokker-Planck equation, an initial delta function
will be maintained with no dispersion during the slowing-
down process. Thus, it is clear that the dispersion pre-
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dieted by the Fokker-Planck equation is due only to replacedbyanintegrationand, usingEq. (10),weobtain
the random velocities of the backgroled gas molecules.

III. RANDOM-WALK ANALYSIS
G(x,t) = (4pr'o'vtx') —'t' P

—I/2

In order to obtain a Fokker-Planck equation correct
through terms of e', we consider a random-walk analysis
of the slowing-down process. Let Gp(x)dx be the prob-
ability that a particle which has undergone k collisions
retains a fraction between x and x+dx of its original

energy.
If 8; is the fractional energy loss during the ith colli-

sion, the fraction of the original energy remaining after
k collisions is

Xexp( —-', [(lnx—kts)'/ko'+(k —ot)'/otj}dk. (14)

2
f(v, t) =- f(v', 0)G(v'/v", t)dv'.

8 0

(15)

The time development of the distribution function
f(v, t) can be obtained in the form of an integral equation
by noting that the probability that a test particle which
has a speed e' at time zero will have a speed between v

and v+dv at time t is G(ot, t)2vdv/v", where x=vo/v".
Then

x=g(1—b;) =exp[+ ln(1 —b;)j. (8)
In particular, if f(v,0)= (4prvo) '8(v —vo), we have

For inverse-power molecular force laws, the discussion
in the Appendix shows that p, and 0 are independent of
particle velocity, where p and 0- are, respectively, the
mean and variance of ln(1 —b;). Since the b; are un-

correlated for these force laws, the central limit theorem, '
which holds for su%ciently large values of k, can be
invoked to show that the probability density function
for y= P ln(1 —b,) is the Gaussian distribution

p(y) = (2~ho') 't'e &~-"»'I"-" (9)

The probability density G(x,t) that a test particle
retains a fraction x of its original energy at time t is

G(x, t) = Q ho(t)Gp(x),
It:=0

and we note that ts is negative since ln(1 —b;) is always
negative in a collision between the test particle and a
stationary background molecule.

The probability density Gp(x), which may be found
from Eqs. (8) and (9), is

Gp(g) = (2srko') 't'x ' exp[—(1nx—kts)P/2kooj. (10)

f(v, t) = (2srvvoo)-'G(v'/vpo, t) . (16)

The collision frequency in Eq. (14) must now be
evaluated at vp, so that G(oo, t) must be written as
G(x,~t; vo).

IV. RESULTS FOR CONSTANT
COLLISION FREQUENCY

A. Moments of the Distribution Function

The moments of the distribution function are
de6ned as

The equations following Eq. (12) depend on the
collision frequency being independent of velocity. How-
ever, if the initial velocity is ep, it is easily seen that for
short times At the change in test-particle velocity is of
the order of -,'evpv(vp)kt. Thus, an effective collision fre-
quency exists whose magnitude is equal to o(vp)(1+6)
where the correction term 6 is of order '

pevp[8o(vp)/Bv pjest.
The correction term may be ignored for short times, and
Eq. (14) holds, provided that

v '«Itit«(pevpBo/Bvp) '

M„(t)=4pr f(v, t)v""+'&dv

(12)hp(t) = [(ot)'/k!le —"',

where hp(t) is the probability that k collisions occur in
a time t. If the collision frequency v is independent of

Assuming an initial delta function
velocity, iz&jtj is the Poisson distribution

f(v,0)= (4prv') 'b(v —vo),

(18)

which, for su8iciently large k, can be approximated in
the usual way' by the continuous Gaussian density

h(k, t) = (2prot) 't' exp[—(k—ot) /2ot j. (13)

Thus, when ot))1, the summation in Eq. (11) can be

we obtain from Eq. (16)

2 " /v'
M (t)=— Gl —,t lv'"+zdv

vop o ~vop

o W. Feller, Probability Theory and Its Applioatiols, I Uohn
Wiley k Sons, Inc., ¹wYork, 1950). ip 2' gs
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From Eq. (14) we have

(x")=(4n. o vt) ' x" 'dx k

average energy" is

(u)=u, expvtQ+-', (u'+o')]
=Noe '"'. (30)

B. Typical Values of the Energy Decay and Dispersion

The fractional energy loss in a collision is

8~ = p(1 —cosx), (24)

where x is the scattering angle in the reference frame of
the center mass.

In order to estimate the values for p, and 0', we will

assume that the scattering is isotropic in the center-of-
mass system. This assumption is exact for rigid sphere
molecules, and is a good approximation for other laws
of force."Then the probability for scattering through
an angle x is just & sinx, and the probability that
y= ln(1 —5;) lies between y and y+dy is therefore

p(y)dy= (2p) 'e"dy, 0)y) ln(1 —2p)

=0, y(ln(1 —2p) . (25)

It follows that

u= (1—1/2p) ln(1 —2p) —1, (26)

Xexp{—~s [(1nx—kp)'/ko'+(k —vt)'/vt]}dk, (20)

which can be integrated by completing the squares,
giving

(x")=expvt{np+se'(o'+p')+-', n'po'+-,'u'o'}. (21)

The average energy (u), which is given by —,'m times
the erst moment, is just

(u) =up(x) = up expvt{u+-,'(ps+o')+-,'uo'+-,'o'}, (22)

where No= ~meo'. A second quantity of interest is the
variance or dispersion of I, defined as

(u') —(u)'= ups{ (x')—(x)'}
=upse'"'v{ exp2vt[o'+ (p+o')'j

—expvt[o'+ (p+-', o')'j} . (23)

The last result is identical with the average energy
obtained from the usual Fokker-Planck equation [Eq.
(2)j.This is fortuitous since the usual derivations' ' of
the Fokker-Planck equation are not accurate to order
s'. In fact, the coeKcient ass in Eq. (1) is often taken to
be either'" m/M or' m/(m+M), which of course does
not give the correct second-order results.

In contrast to the usual Iokker-Planck equation
which gives a zero value for the variance, the variance
given by Eq. (23) is

((u—(u))') = (u)'[et""'—1$, (31)

where we have neglected terms of order e'. Thus the
dispersion becomes large compared with (u') for times
greater than ('svs') '.

The time behavior of an arbitrary moment M (t), as
given by Eqs. (19) and (21), is

(t) —
& see vl [me+—$e im—n ) l (32)

where terms of order c' are neglected. Equation (32)
predicts an exponential relaxation to zero when e«c '.
However, for extremely large values of u, both Eq. (32)
and the full Eq. (21) predict exponentially increasing
moments. This result is physically impossible since a
test particle always loses energy in a collision with a
stationary molecule. It is obvious that this error was
introduced into our calculations when we made use of
the central limit theorem to obtain Eq. (9).This assigned
a finite probability for a particle to have an energy
greater than its initial energy after k collisions, and even
though this probability is extremely small, it gives an
anomalous result when multiplied by a high enough
power of velocity. It is easily shown that if G(pp;t) were
set equal to zero for x&1 to agree with the physical
facts, only a negligible change would result in the lower
order moments, but the higher order moments would
approach zero for large t, as they should.

and

o =1+(1/2s)(1—1/2p)[ln(1 —2p)j . (27)
C. Saddle-Point Approximation to the

Distribution Function

When the masses of the test particle and the gas The distribution function given by Eq. (16) can be
molecules differ greatly, Eqs. (26) and (27) reduce to written in the form

where

f(o t)=
4s'os'(vt) "' e~(~&dk, (33)

0 2 ~ $23 (29)

with an error of order e'.
If terms of order p' are neglected in Eq. (22), the

"The exact values for y and @2+0-' for inverse-power molecules
are derived in the Appendix. It is shown that the isotropic scatter-
ing approximation is reasonable for "hard" molecules.

1 [1n(o'/sp') —kp]' (k—vt)'
J(k) = —— + +ink . (34)

2 ko' pf

"Equation (30) is unchanged if the isotropic scattering values
for p. and p,'+g' are replaced by the exact values for Maxwell
molecules given in the Appendix; the argument of the exponential
in Eq. (31) is changed to 0.966 &'s t."S. L. Kahalas and H. C. Kashian, Phys. Fluids 2, 100 (1959).



C. F. EATON AND L. H. HOLWAY. JR.

The form of the last expression suggests that thc inte-
gration can be approximated by a saddle-point integra-
tion. The saddle point occurs at the value 4 =ko which
is the solution of

1 k'ti' —Dn(o'/»'}$' 2(k —vt) 1
J'(k) = —— + +

2 $2~2

in detail. From Eq. (15),

2 " (o'
f(e, »+a»}=- /(» »}G',

}
—,a»;»')d»'

f(ox-i/' t)G(x At ox i/'-)x '"dx (41)

which leads to a cubic equation for ko.

By the usual arguments, the saddle-point integration
gives

For short times, the major contribution to the integral
comes from the neighborhood of x= 1, so we expand
f(ox '/', t) and G(x,At; i}x '/') in Taylor's series in powers
of (x '"—1).Thus,

where J (ko) is the second derivative of J'(k).
An approximate solution for ko can be obtained by

noting that value of the distribution function is small
except near o=»o }'"'/'. Thus we can write [In(o'/»') j'
= (1+!})(pit)' and consider that h(o)(&1 in the region of
interest. Substituting 'tllls form into Eq. (35)}we obtain

ko= ~tf 1+2[/"/( '+ )o3)+o(&'), (3&)

where wc have assumed pfPpi.
Substituting Eq. (37) into Eq. (34), we obtain

oi
x '/' Q —(x-'/' —1)~ —

l f(o,t)
o }i=i k! Bo~

(8
X g —(*-'/' —1) l

—G(x,At;o) dx
& Jl (Bo

1 [ln(i}'/»') —vttij'
J(ko) =——lnko+

2 / t(//, '+o')
where

38
(x

—3/R(x —i/2 1)»»)

where the error is of order O'. Similarly, we 6nd

J"(ko)=—(i t)-'[(ti'+o')/o'j+(2v'tm) —', (39)

where the anal term can be neglected for vf&&I. Equa-
tions (36), (38), and (39) yield the distribution function

x '/'(x '"—1)"G(xAt" o)Cx (43)

Omitting terms of order (At) ', we obtain from Eq. (21)

(x-"/'&=1 ', }At[n—/i -~in'(o'+ti') j,
1 ( 1

f(o,t) =
2~» k2 t(» +» })''

[in(o'/»') —
/ ~G'

where we have omitted the terms in Eq. (21) which are
of order c' or smaller. Substituting Eq. (44) into Eq. (43)
yields

~ (4» (*-"(-"-1)-&

It is easily verihed that all of the moments of thc
distribution function in Eq. (40) are in agreement with

Eq. (32).

~ (n)=(—1)" Zl . l(—1)/(«+~ij+ko j(j—1)), (45)
/=o kji

V. PASSAGE TO A. PARTIAL
DIFFERENTIAL EQUATION

It was remarked at the end of Sec. III that Kq. (15)
is valid for an arbitrary velocity dependence of v, pro-
vided we considered only short times df satisfying

Eq. (1'I). This allows a differential equation to be
derived from Kq. (15) by a method which is similar in

concept to that of Chandrasckhar, "although different

"S.Chandrascl!;bar, Rcv. Mod. Phys. 15, 1 (1943).

«——1——,'(ti ——,'(/i'+o'))»t,
~i= —2(/ —(V4)(/ '+o'))»t,
a2 ——x, (p,'+o')i At.

It follows from the combinatorial relation

j!
P(—1) l =(—1)~k! if k=n

P(~—k).
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(x '~'(x-'~' —1)")=a„ for n~2
=0 for e& 2. (46)

I

—
I

f(v') f-(v) va(v, Q)dQ

The summation in Eq. (42) is therefore terminated at
the term e= 2. (If terms of order e' and greater had not
been omitted in going from Eq. (21) to Eq. (44), the
summation wouM be cut off at v=4. )

Substituting Eq. (46) into Eq. (42) and rearranging
terms, yields

Bf p 1 8 1 8 8
(~"f)+s(~'+a') —v —{v"f)—, (4&)

8t 25 Bv 'v 8'v 88

which gives the second-order correction term for the
Fokker-Planck equation. In the case of constant colli-
sion frequency, it can be veri6ed by direct substitution
that the distribution function of Eq. (40) is an exact
solution of Eq. (47). Thus the passage to a differential
equation leads to the same result as the saddle-point
approximation to the integral equation.

VI. DEMVATION OF THE DIFFERENTIAL
OPERATOR FROM THE BOLTZMANN

EQUATION

In this section we derive an in6nite-order differential
operator from the Holtzmann equation and obtain
explicit expressions for the coeKcients in terms of an
expansion in powers of e. Our method is similar to that
used by Allis' to obtain the 6rst-order terms.

The Boltzmann equation for a, spatially homogeneous
ploblcIQ with no cxtcl"nRl 6clds hRs thc form

8
{F(w')f(v') F(w) f(v))ga(—g,Q)dQdw. (48)

83

Hcl c wc consldcl only R zero-temperature backgl ound
gas for which F(w)=%05(w), where b(w) is a three-
dimensional delta function. For the first term of the
Boltzmann operator, it is then convenient, following
Allis, ' to change the integration variable to dvv' where

dw=(I v' —w'I/I v —w'I)'dw'

and, carrying out the integra. tions over the delta func-
tion„we obtain

Bf s' '—=&Vo —f(v')v'a{v', Q)dQ,

f(v)va(v, Q)dQ, {49)

where e and ~' are the mage@Ndt. s of v and v'.
%c now consider inverse-power molecular forces for

which F=K/r'. It can then be shown' that

m'a(v' Q) = (v'/v) & "" "va{v Q)

2SE0
Lv'if(v') —vlf(v))vbdb, (50)

where the last integration is over the impact parameter
and 1.=3+(s—5)/(s —1).

It proves convenient to expand v'~f(v') in a Taylor
expansion in the variable 1n(v). Thus, we write

Bf 2m%0 1
& —&-(v) v—

I L"f(v)j,
8$ v ~-1 s! {s2)

a.(.)=
o 4 vi

(s3)

From the collision laws, it is easily shown' that,
when w'=0,

v'/v =$1—a(1—cosx)j-'~',

where x is the angle between the relative velocity vector
before and after collision. Thus, we obtain

00

B„(v)=— {lnL1—e(1—cosx)j '}"vbdb. (54)
2 (}

Expanding the logarithm ln powers of ~, we obtain

{InI 1—e(1—cosx)j—')"
e&'r(1 —cosy) &'r

Z . , (55)
Pl=1 g~ 1

where jr=j j+j,+ +j„.
The last factor in Eq. (55) can be written

*
'r JT1

(1—cosx)"= Z — (—1)'+'(1—cos'x) (56)a-i (jr—p)!p!

Following Chapman and Cowling's' notation, let

(1 cos"x)ebdb, — (s7)

1/ v'~ "/ ay"
"'f(v')= 2 —

I »—
I I

v—
I
I"f(v)j,-=. !& .i Ea.i

where, for the 6rst time, we have introduced the assump-
tion that f(v) depends only on the magnitude of v.
However, our subsequent derivation will still be valid for
a general f(v) if we interpret f(v) to be (4n ) 'J'f(v) dQ
whclc thc lntcglRtlon ls ovcI' all posslblc directions of
the velocity.

From Eqs. (50) and (51) we have
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QS i1 j j~=l glg2 ~ ' Jn

and, from Eqs. (54) to (57), we obtain the operator of Eq. (63) may be approximated by the
first few terms.

By referring to Eqs. (A10) and (A12) which define &«

and p'+o' for the random-walk analysis, it can be
seen that

( 1)k+ly &k)

&'=I (jr—k)!k! Cl=l( '+o'),
(65)

Ie=l'—&h+ +ia"1) (—jr—k)! j„
and the lower limit of the last sum is to be taken as 1
whellcvcl' jl+ ' +j„ I ls greatcl than k—1.

From the identity

it is easily veri6ed that

C~———,'e'(1 ——',A2/2 I) . (68)

For some purposes it may be preferable to write
Eq. (63) in the equivalent form

Bf ~ D„B"f—=PS V

83 ~=o s~ 8'v"

where

and thus, if we truncate Eq. (63) at rl =2, the differential
operator will be identical with Eq. (47) which was
obtMQed from the random-walk analysis. Neglecting
terms of order ~', we obtain

C = lL /(1 —)j(1—l(~ /~ )L /(1 —)3) (67)

(1—~)'

(—1)'+' Ag (d ) ' P(1—e)-'&' —17"
G= —g

—&I1+ "+&' —
& —

[
Lg&'1+" +&' —1 ln(1 —g)7 (59) D„=Q-

A) k! A 1 kdeI
(70)

The quantity P&") has been shown by Chapman and
Cowling' to have the form

Q&")= (L(rN+M)/r&IMjE) "~ls' ') l &~"AI(s), (61)

where 21(s) is a numerical constant of order unity which
has been evaluated for many force laws. The collision
frequency for momentum transfer, as defined by Allis, ' is

v= 2s/0&t &'),

so that vie can write

y&') = (v/2&rcV0) LA &, (s)/2 I(s)7.

Then Eq. (52) can be written in the form

Bf ~ 1 1—= Q —C„—s— (I&'vf),
8$ ~=& Nt $3 85

(62)

(63)

After substituting the last result into Eq. (58), the sums
over the remaining j„can be carried out, yielding

( 1)n ~ ( 1)@+I d) 1.

B„(s)= — Q — 4 &~) e' —
~

Lln(1 —c)j". (60)
2" &=i k1 A)

For the Coulomb force law, it, can be shown that'

I (—2)' k!
A&, ——2k inA+-,'Q — (A '&'—'& —1) (71)

~=' U—1) j!(k—j)!
where A=(sin-,'&&&0) ' and eo is the minimum angle of
scattering which is related to the Debye length. Terms
of order 1/lnA are neglected in all calculations of the
Fokker-Planck equation for Coulomb scattering'; if we

discard these terms, then AI, ——kA~. Substituting this
result into Eq. (64), it can be shown that all C„=O
cxccpt Cl= za LThls lcsult ls Illost easily obtained by
returning to Eq. (58) and carrying out the summation
over k.j Thus, for Coulomb forces, the usual Fokker-
Planck equation is obtained if we neglect either terms of
order e' or terms of order 1/lnA. However, the value of
lnA is not extremely large (between 10 and 20 in most
cases of interest), and the discarded terms will control
the dispersion of an initial delta function when To is
small. For example, the coeKcient C2, which introduces
the dispersion, is equal to e'/4 lnA when terms of order
e' and e2/Al are neglected.

vr here

( 1)e ~ ( 1)k+I g ( d
Z —"I —Dn(1 —~)j" (64)

2" I I k! A 1 kd

VQ. FDTITE BACKGROUND TEMPERATURE
EFFECTS

A. Differential Oyerator

So far no assumption has been made that e is small.
For small e, it is easily seen that C„ is of order e" and

In the approximation to 6rst order in the mass ratio,
the usual Fokker-Planck equation for finite background
gas temperature can be obtained' from the zero-tem-
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where, unless the collision frequency is independent of
velocity, i (e}no longer has the simple zero-temperature
form given by Kq. (61) but depends upon T,. For
example, the collision frequency for Coulomb forces
should be taken as

8me4 inASD Mv') '"
v= erf

~mMi' 2k TO&

2M '~'I' ) M 'q-

( expl ——
~kT,) 4 2kT, /

which gives agreement with the results of Rosenbluth
et al. '4 For M&&m and e' on the order of the equilibrium
thermal speed, the quantities in parentheses are ap-
proximately unity and we recover the zero-temperature
collision frequency. On the other hand, for 3f&&m and
v' on the order of the equilibrum thermal speed, the
parenthesis is approximately (4n'/3'. )(M/2k To)'i' and
v becomes a constant in agreement with the Rayleigh
gas results, ' which have been used to treat the thermali-
zation of a fast ion in a plasma by Ree and Kidder. "

The correct finite temperature equation is actually
more complicated than Eq. (72) since it would also in-
volve higher powers of the operator X). Nevertheless,
Kq. (72) is certainly a good approximation to the
correct equation since: (1) its solution relaxes to the
equilibrium Maxwellian distribution as t —&~; (2) it
reduces to the correct equation when To-+0; and (3) it
reduces to the correct equation when terms of order ~'
are neglected.

For constant collision frequency, Eq. (72) has the
forlTl

Bf 3 FBI—=em P a,, ~

—
~

f(v, ~)
B& ~=0 &Bi/

(73)

when terms of order e' are neglected. For simplicity we
will assume A~ ——A1 although, for constant collision
frequency (Maxwell molecules), the exact relationship'
is 32=1.033Ag. Then

«= 2[1+(3/4)~)
~,=-', [1+(9/4).&~+(1+a}(kT,/m~},

«———',[1+P/4) eg(k To/m)+pe~',
"M. N. Rosenbluth, %.M. MacDonald, and D. I.. Judd, Phys.

Rev. j.07, j. (1957)."F. H. Ree and R. K. Kidder, Phys. Fluids 6p 857 (1963).

perature Fokker-Planck equation simply by replacing
f(v, f) on the right-hand side of Eq. (2) by X)f(n, t) where

X)= 1+(k To/mw) (B/Be)

and S acts as a destruction operator which annihilates
the equilibrium Maxwellian distribution. Applying the
same procedure to Kq. (63), we obtain

Bf ~ 1 1 B)"—= P —C.—w
—

i (i'vnf), (72)
R ~=i ii! v' Bv/

« sic——(k T0/m) n (74)

Thc dlspci sion which occuls when thc initial distI'1bu-
tion is a delta function is due to the coefFicient of the
second derivative a2. The correction term to a2 which
has been derived in this paper is ~~~@' and is larger than
the term due to the nonzero background-gas tempera-
ture whenever v') 4k TO/em; that is, whenever the test-
pRI'tlclc cnclgy cxcccds 3 of thc RvclRgc backgiound
molecule energy divided by e.

S. Exact Moment SoLutions

where the moment M; is defined by Kq. (18) and

(B
Q;=4ir m" 'i v— (v'vlf).

p (Bv

The result of integrating Q„;by parts n time»s

le%j.
= —4m.n v "~"vfd~

( 1)n
(2j)"C' (77)

From the definition of C„ in Kq. (64),

(—1)' A~
P —[jln(1 —e)$"

de ~=1 et

~ (—1)~Ay d
~k [(1 ~)i 1]

de

The first two n, are exactly

(79)

n2 ——2e—2e'(1 —-', A p/A i) .

For the case of constant collision frequency, Eq. ('?6)
becomes

BM /Bt= —vn [M'(/') —(2j+1)(kTO/nz)M J(/) j (81)

which can be solved for successive values of j.Thus, the
zeroth equation yields Mo(/) =Mo(0) showing the con-
servation o f number density. The erst moment, normal-
ized to give the average energy, is

(I)= 2kTO+((N)0 ——,'kTO)e '"' (82)

Multiplying Eq. (72) by 4iri 2U+'i and integrating the
resulting equation yields

83f;
=Q —CQ .

8$ ~=& et
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where (I), is the initial value of (I). From the equation
for the second moment, thc mean square energy is

(I')= (1.5/4)(uT, ) +a,e= +a; --, (83)

&s= P&Tons/2(~s —e)j((N)o——,'kTo)

&1= (I')o—&s—(&5/4)(&To)'

As we have mentioned, a correct finite temperature
equation mould contain higher powers of the destruc-
tion operator S than appear in Eq. P2). However,
for constant colbsion frequency with the background
gas moleculcs in a Maxwellian distribution at tem-
perature To, it can be shown directly from the Boltz-
mann equation that Eq. (82) is an exact result for
thc cllclgy 1elaxatloll, whllc Eq. (83) ls modlf lcd
only by multiplying the constant 83 by R correction
factor (1—e'(2 —As/AI)/rrs), where the fractional in-
CI'ease is of order e.

Recently Osipov'6'~ has shown that, if the initial
distribution function is Maxwellian, the solution of the
Fokker-Planck equation Ceither Eq. (1) or Eq. (2)$
for constant collision frequency, will retain the Max-
wcllian form during the Ielaxation process. A mecessary

condition for Osipov's result is that the relationship
(u')=(5/3)(N)' be satisied throughout the slowing-

down process whenever it is satisficd initially. From
Eqs. (82) Rnd (83), lt cRI1 be sllowI1 that this colldl-

tion will be satisfied only if second-order powers of e

are discarded, and a2 is taken to be 2~. Thus, Osipov's
result is an approximation which is valid only to erst
order ln the mass ratio.

Returning to the limit To —+0 and considering the
case where thc initial distribution is a delta function,

Eq. (82) yields the ergot solution for the average energy:

(ss) =Noe—'"'

RIld Eq. (83) ylclds tile exact solution for thc dlspclsloll:

(I')—(I)'= (N)s(expL2e'(I —-', As/Al)vi) —1). (85)

These results agree exactly with the results of the
random-walk analysis in Eqs. (30) and (31) provicled we

make thc same rigid-sphere approximation, 2 =—'Al,
as was done in Eq. (31). Using the correct value,

A~ ——1.033Al, for Maxwell molecules changes the argu-

ment of the exponential in Eq. (85) to 0 966e'vt. .

VIII. DISCUSSIOK

For a cold background gas, thc results of Sec. V show

that the random-walk analysis and Chandrasekhar's

techniques for passing to a differential equation" can
bc extended to give results which are correct through

second. order in the mass ratio. Moreover, in the limit

of zero background-gas temperature, R delta-function

distribution remains a delta function throughout the
slowing-down process if the second-order terms are
neglected. For constant collision frequency, the dis-

persion due to the second-order terms is greater than the
dispersion due to finitc temperature terms whenever the
test-particle velocity is greater than 2(&To/en)'~'

In order to compare thc random-walk analysis with

the Boltzmann-equation approach, the distribution
function 1Qsldc thc collision 1QtcglRI %'Rs cxpalldcd ln R

Taylor series without assuming that the mass ratio is
necessarily small. An infinite-series diQerential operator
was thereby obtained in which the coefficient of the eth
derivative was proportional to ~".Here e proves to be a
convenient parameter rather than m/M, since e ap-
proaches zero when ec/M approaches either zero or
lnfinlty RQd hRs a InaxlIQuIQ Value of g wlicn tÃ=3f.
This differential form of the Boltzmann equation is
shown to be identical with the random-walk results if
terms of order e' are neglected. For a constant collision

frequency) wc have sho%Q froIQ thc lnfinltc-scllcs differ"

ential operator that the exact values for the relaxation
of both the average energy and its dispersion are ob-
tained when terms of order e' are neglected. It is also

shown that Osipov s'6 result indicating that a distribu-

tion function which is originally Maxwelban will remain

MaxwelllRQ during thc slowlQg-dowll pl occss ls RQ

approximation which is not valid when terms of order
RI'c included.
For Coulomb forces, it is shown that every term of

order e' or higher is divid. ed by ink. . Thus if either terms

of order e' or terms of order 1/lnA are neglected, Eq. (72)
reduces to the usual Fokker-Planck equation, in agree-

ment with the results of Rosenbluth et u/. "However,

the dispersion due to the e' terms will exceed the dis-

persion due to a nonzero background-gas temperature
whenever the test-particle velocity is greater than

2(kTo lnA/rile)'I'.
FOI' constRQt colllslon f1cq'ucncy Rnd zcI'0 bRckgl ound-

gas temperature, the distribution function f(n, i) given

in Eq. (40), which was obtained by a saddlepoint ap-

proximation of the random-walk integral equation, is
also an exact solution of the second-order operator
obtained by neglecting terms of order e' in the infinite-

scI'lcs opclatol obtained from thc Boltzmann equation.
In the limit t ~~, f(e,i) can be shown to approach the
equilibrium distribution (4se')—18(e), where the delta
function is to be interpreted according to Lighthill's

theory of generalized functions. "Here, it is important
to recall that thc definition of a generalized delta func-

tion requires that J'o" 8(e)F(e)de=F(0) only if F is a
"good" function, " that is, a function which decreases

suKciently rapidly as v —+~. The very high order

moments M„(t), for n) ,'e ', do no-t —approach zero

as t, &oo, as shown by E—q. (32), but this involves no

contradictloQ slncc 5 ls Qot R good fulictlon. H0%'-

"D. I. Osipov, AIAA J. I, 261 (1963).
'7 C. P. Ka,ton, AIAA J. 2, 2033 (1964).

"M. J. Lighthill, Iiolrier Aealys~s cad Gegeubwd Fvnctioes
(Cambridge University Press, London, 1960).
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ever, the moments iV„(t) are accurately given for /2(&e '
and the average energy and its dispersion are, in fact,
given exactly.

For the zero-temperature gas, it is physically
apparent that, when the initial distribution function is
(42r() ) 8(2/ —80)) f($)/) sllollld always be 1deiltlcally zero
for e)eo. Hovrever, the second-order solution is not
identically zero for ~)vo although it is always very small
in magnitude. The same defect is incurred either by
truncating the in6nite-series Boltzmann differential
operator after the second derivative term or by the
random-walk analysis; in the latter case it is clear that
the problem arises from the application of the central
limit theorem which gives a 6nite though small proba-
bility for test particles to lie in the tail of the Gaussian
distribution corresponding to energies greater than the
initial energy. An analogous defect occurs when the
telegrapher's equation which has a 6nite speed of propa-
gation is replaced by the diffusion equation vrhich has
an in6nite speed of propagation.

APPENDIX: COLLISION FREQUENCIES FOR
THE RANDOM-WALK AÃALYSlS

If the random-walk analysis is to be considered as an
independent method, the collision frequencies must be
obtained without reference to the Boltzmann collision
integral. In fact, for a central-force law, the force 6eld
extends to in6nity and the collision frequency is not
uniquely de6ned. However, only the products vp, and
) (@2+0') appear in the f(nal results of the random-walk
analysis.

Consider a series of cutoff angles Xo, X~,
where X„+l&x .Each of the X„is to be considered small,
and each formally defines a random-vralk problem in
which we ignore deQections in the center-of-mass system
less than X„.

Corresponding to each ~~ Is a maxlIQum UQpact
parameter b„and a collision frequency v =Tomb„2e. %e
shall show that as e -+~, v p approaches a limit vp.

From Sec. 10.3 of Ref. j. it can be shovrn that

By choosing X small enough, Eq. (A2) will hold for
x&x and Eq. (A3) becomes

2/ (e-1)

p„(X)= —
I X

—(e+1)/(e-1)

b.'(s—1) 22)
&&(x.&x&x.). (AS)

%e desire the mean logarithmic energy decrement in a
single collision for a cutoff angle x„,i.e., /((„=J'I'„(x)ydx,
where y= in| I—e(1—cosx)) from Eq. (24). For angles
less than X, y can be expanded in a Taylor series vrith
leading term ex2/2. From Eqs. (A3) to (AS), it follows
that

) „/e~—
& /e~ =LX(&2r2/2(s —2)ju2« ')2/(

)((X 2(e-2)/(e-1) X 2(e-2)(/e-1)) (A6)

Thus, in the limit, as e~~, s p, approaches a
limiting value vp, , if $)2. For the Coulomb law, a
particular value of the cuto6 angle must be chosen by
appealing to the usual arguments involving the Debye
length.

The limiting value pv can be found in terms of num-
bers tabulated in Ref. 1. From Eq. (A3) we have

yp (b)db= 2b„' ybdb. (A7)

By methods similar to those in Sec. VI, y can be ex-
panded in the form

is p„(b)db where p (b) equals 2b/b ' for b(b„and equals
zero for b&b, vrhere b„ is given in terms of X„by Kq.
(A2). The probabiTity E (x)dx that x lies in the interval
dx about g is

&.(x)=P-(b) I8b/8xl =(2/b. ')bl8b/8xl, (x&x ) (A3)

and I' equals zero for x less than X„.It follows that,
lf t@QC~

e/2
/ + ye-1 &

—1

x=2 O'I - . I
+1

I
d8,

Q sin8/
(Ai)

( 1)m( ~ )ss
y= Z I

—

I
(1-cos"x),

m &1—el

and, in the limit b e~, Eq. (A7) yields
where (2= b(mM(/2/E(m+3II)]'/('-'& when the force law
is F= E/r2. (The relative velocity is equal to the particle
velocity for stationary background molecules. ) The
quantity P is implicitly defined by P2=1—L2/(s —1)j
&( (P sin8/n)'-'. For small deiiection angles x, n)&1 and
P=i, so that

(A2)

2(m+M)E'
C= (sin8)'-'d8

Given a small cuto6 parameter X„, the probability of
an impact parameter occurring in the range db about b

( 1)sa
)/1=2X02r Q —— y(m)

m=1 7g

where @( & is defined by Eq. (S7). Only the product )/1
aBects the 6nal results of the random-walk analysis, and
it is convenient to arbitrarily choose v= 2mEoqb( ).Then,
from Eqs. (62) and (A9), we have

(—1)"
/

e )"2 (s)/=Z
m (1—e/' A 1(s)

By similar arguments, it can be shown that) „(/(„2+0„')
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approaches a limit o(ts'+a') as n —+oo. Here

r (tc„'+a ')=2cVosr y'obdb,

and using the expansion

(A11)

arbitrary, since only the products ots and o(ts'+o') are
determined, it has the advantage of making p, rather
insensitive to the particular force law so that the values
of p determined in Sec. IV by assuming isotropic scatter-
ing are reasonable approximations for "hard" molecules
(s)5). For example, At(oo) (rigid spheres) is greater
than A&(5) (Maxwell molecules) by about 16%. For
rigid spheres,

we obtain

1
(oo) =—2—

1+( 1)m

A;(s) (—1)' e(d
ts'+o'= —Q ~

—[ln(1 —e)j' (A12)
i=~,4,(s) j! (de

Although the choice of v we have made is somewhat

and it can be verified that Zqs. (A10) and (A12) sum
to give the results obtained in Eqs. (26) and (27), as
should be expected since rigid-sphere scattering is
isotropic in the center-of-mass system.
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Path-Integral Calculation of the Two-Particle Slater Sum for He't

LLOYD D. FOSDICK AND HARRY F. JORDAN

Department of Compnter Science and Department of Physics, University of Itlinois, Urbana, Illinois

(Received 27 September 1965)

The Wiener integral formulation combined with Monte Carlo sampling has been used to compute the two-
particle Slater sum for He for temperatures ranging from 273'K down to 2'K, the lower practical limit for
this computational method. This is equivalent to a calculation of the density-independent part of the pair
distribution function. A Lennard-Jones 6-12 potential has been used to describe the interaction. Contribu-
tions from exchange were found negligible at 5'K and above. Comparisons with the Wigner-Kirkwood ex-
pansion are made. The second virial coeKcients derived from these results are within two or three percent
of the results obtained from the usual phase-shift calculation.

1. INTRODUCTION

~OR a system of E identical particles of mass m en-
closed in a volume 0, with Hamiltonian II~, the

Slater sum' is

Wtt=SA!'~ Q %,*(1,2, ,N)e P~sr-
X%';(1,2, ,N), (1.1)

where +;(1, ,N) is the wave function of the system
in the state i; 1 is the position coordinate of particle 1, 2
is the position coordinate of particle 2, etc. ; X is the
thermal wavelength

X= (2sr t't'P/rn)'t';

P= 1/kT.

(1.2)

(1.3)

The wave functions are normalized to 1 in the volume 0,

e;*(1,2, ~, N)%;(1,2, ~, N)dld2 dN=1, (1.4)

f This work was supported in part by the U. S. OfBce of Naval
Research under Contract Nonr-1834(2 ).' Contrary to custom we include the multiplying factor c7!II'
in this de6nition.

1'=4~((a/r)" —(a/r)') (1 5)

where n and r are the deBoer, Michels2 values appro-
priate to He4:

o.= 14.04X10 '6 erg,
o-= 2.56X10 8cm.

(1.6)

A central feature of this calculation is the use of the
Wiener integral formulation of the Slater sum, ' de-
scribed in the following section. The Wiener integrals
have been evaluated by a Monte Carlo sampling
scheme on the ILLIAC II computer.

' J. deBoer and A. Michels, Physica 6, 409 (1939).' M. Kac, Lectures in A ppVied Jfathematics, Volume 1, Proceed-
ings of the Summer Seminar, Boulder, Colorado, 1057 (Interscience
Publishers, Inc., New York, 1958).

and the summation in Eq. (1.1) extends over all states
appropriate to the statistics of the system. A super-
script is used on H/'~ to explicitly denote Bose-Einstein
(W~ ) or Fermi-Dirac (W+) statistics.

We present here the results of computing 5'2 for
ten temperatures extending from 273'K down to 2'K.
The potential describing the interaction is the Lennard-
Jones 6—12 potential


