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The relaxation of an isotropic distribution of test particles in a homogeneous background gas is considered
when the mass ratio is not necessarily very small. For the most part, the temperature of the background gas
molecules is assumed to be zero, although a method is presented for including nonzero-temperature effects.
The Boltzmann collision integral is represented by an infinite-series differential operator which, for all force
laws, reduces to the usual Fokker-Planck equation when terms of second order in the mass ratio are dis-
carded. For the case of Coulomb interactions, the usual Fokker-Planck equation is obtained if either the
second-order mass-ratio terms or the terms of order 1/InA are discarded. A random-walk analysis is used
to obtain a differential operator which agrees with the infinite-series differential operator when third-order
terms in the mass ratio are discarded. When the background-gas temperature approaches zero, the usual
Fokker-Planck equation predicts that an initial delta-function distribution will always remain a delta
function during the relaxation process; whereas it is shown that both the random-walk analysis and the
infinite-series differential operator give exact values for the dispersion of the initial delta function.

I. INTRODUCTION

HIS paper is concerned with the slowing down of
light test particles in a homogeneous background
gas of heavy molecules when the kinetic energy of the
test particles is much greater than the average thermal
energy of the background molecules. In particular, we
will usually consider the limit as the background-gas
temperature approaches zero. This simplification allows
us to obtain more complete solutions which provide
some insight into the approximations which are involved
when the Boltzmann collision integral is represented by
a differential operator. It will be demonstrated in Sec. IT
that, in the limit as the background-gas temperature
approaches zero, the usual Fokker-Planck equation!?
for a Lorentz gas predicts that the distribution function
will always remain a delta function if it is initially a
delta function. A similar result has recently been shown
by May? for the case of a fast test particle losing energy
by Coulomb collisions to a homogeneous plasma of ions
and electrons.

The preservation of an initial delta function would
imply that every particle of a given initial energy
behaves exactly the same during the slowing-down
process. However, even when the background-gas tem-
perature approaches zero, it is apparent that the energy
lost in a collision is a statistical quantity, as is the time
between successive collisions. One of the purposes of this
paper will be to show that the lack of dispersion pre-
dicted by the usual Fokker-Planck equation for a cold
background gas can be corrected by including higher-
order terms in the mass ratio.

18. Chapman and T. G. Cowling, The Mathematical Theory of
Non-Uniform Gases (Cambridge University Press, New York,
1960). .

2 W. P. Allis, Handbuch der Physik edited by S. TFliigge
(Springer-Verlag, Berlin, 1956), Vol. 21, pp. 383-444.

3R. M. May, Phys. Rev. 135, A1009 (1964).
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A random-walk analysis of the energy loss is employed
in Sec. IITI to take into account the stochastic properties
of the collisions. Some results for the case of constant
collision frequency are given in Sec. IV and a partial
differential equation of the Fokker-Planck type is
obtained in Sec. V for an arbitrary velocity dependence
of the collision frequency. The problem of defining the
collision frequency for inverse-power molecular forces
within the framework of the random-walk analysis is
considered in an Appendix.

In Sec. VI we formally obtain a differential operator
from the Boltzmann collision integral by extending the
method of Allis? without making the assumption that the
mass ratio is small. The differential operator has the
form of an infinite series where the »th term involves
the nth order partial derivative of the distribution
function and an explicit form is given for the coefficients.
If we omit the partial derivatives of third order and
higher in the mass ratio, the resulting Fokker-Planck
equation is identical with the equation obtained in
Sec. V from the random-walk analysis. For Coulomb
forces, the differential operator reduces to the usual
Fokker-Planck operator for any value of the mass ratio,
if terms of order 1/InA are discarded.

The problem of deriving a partial differential operator
from the Boltzmann equation has been considered
by several authors.'~® In particular, Siegel’ obtained
second-order terms in the mass ratio for the linear
Boltzmann equation satisfied by a gas of infinitely thin
disks constrained to move in one direction with a non-
zero background-gas temperature. Although the Boltz-
mann equation and its approximation by the usual
Fokker-Planck equation have nonpositive eigenvalues,

4 J. Kielson and J. E. Storer, Quart. Appl. Math. 10, 248 (1952).
5 N. G. van Kampen, Can. J. Phys. 39, 551 (1961).

6 K. Andersen and K. E. Shuler, J. Chem. Phys. 40, 633 (1964).
7A. Siegel, J. Math. Phys. 1, 378 (1960).
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Siegel demonstrated that, when the second-order terms
were obtained in a straightforward manner, the second-
order operator possessed positive eigenvalues which
raised the possibility of runaway solutions which grow
indefinitely in amplitude.® This important result ob-
viously raises serious questions concerning the validity
of differential operators which are obtained by including
powers of the mass ratio greater than unity. However,
the simplifications introduced by the zero-temperature
background gas allow us to obtain an exact analytic
solution for the second-order operator and show ex-
plicitly that the solutions do not grow in amplitude as
t—o. We remark here that our second-order operator
formally includes positive eigenvalues in the same sense
as Siegel’s operator but we reserve a discussion of the
eigenvalue spectrum and the resolution of the apparent
paradox for a second paper on this topic. The analytic
solution for the test-particle distribution function ap-
proaches the appropriate equilibrium distribution as
t—oo, namely a delta function centered at the origin
corresponding to the zero-temperature background gas.

In Sec. VII, we discuss the criterion for the effect of a
nonzero background-gas temperature to be less than the
effect of the second-order terms in the mass ratio. For
constant collision frequency, exact solutions are ob-
tained for certain moments when the initial distribution
function is a delta function; the average energy and the
dispersion of the average energy for the zero-tempera-
ture background gas are shown to be given exactly by
the random-walk analysis when second-order terms in
the mass ratio are included.

II. BEHAVIOR OF THE FOKKER-PLANCK
SOLUTION FOR A COLD LORENTZ GAS

For small mass ratios, the usual Fokker-Planck ap-
proximation to the Boltzmann equation for an isotropic,
spatially homogeneous distribution function in a Lorentz

gas is

af d kT, 0

—=%e‘1}“2~—[v3u<1+—— -—->f:l , )
at v my v

where fis the test-particle distribution function defined
so that 4w fo?dv is the expected number of particles with
speeds between » and v+dv. The background-gas tem-
perature is 7'y and e=2mM (m=+M)~2, where m is the
light test particle and M is the mass of a heavy back-
ground molecule. The collision frequency »(») is in
general a function of velocity. Equation (1) can be
obtained by expanding the Boltzmann integral in powers
of e and retaining only the first term.

8 Siegel describes a technique for revising the second-order
operatorgby including third-order terms which render the eigen-
value spectrum nonpositive; however, the revised operator
involves an arbitrary constant.
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Let the temperature Ty — 0, so that Eq. (1) becomes
af 3
—=%a2—(%f). 2)
at v
The solution of Eq. (2) which vanishes as v — is
F@t)=[v(v1)v:®/v(2)0* ] fo(21) , ©)
where v1(2,t) is defined by the equation
1 dx

I} wllal)

Gel 4)

and the function f is the initial distribution function.

By substituting back into Eq. (2), Eq. (3) can be
verified, and it can also be shown that the number
density

/°° 22f(v,t)dv,

as calculated from Eq. (3), is a constant provided that
limyq0 91(3,8)=2*(¢)=0. The last condition will be
obeyed only if lim, .o »(v) is less than some constant M.
The physical meaning of this is that “soft” molecules,
whose collision frequencies increase as v — 0, reach the
origin of »-space within a finite time. In this case, Eq. (3)
must be augmented by the term

v*(¢)
725(2) f So(x)x2dx,

which represents the “pool” of test particles with zero
energy.

When the collision frequency is independent of
velocity, Eq. (3) becomes simply

f(v,t) =G0t fo(yeinet) (5)
If the initial distribution is the delta function

fo=(4mv?)18(v—1),
Eq. (5) yields

S(v,8)= (4mv?)~18(v—voe=?'2) . (6)

Coulomb forces provide an example of “soft”” mole-
cules since »=av~%. Then the delta-function solution
becomes

F,t)= (4mv?)~186[v— (v®— Saet) /3], 1<t*
= (479%)"15(v) , >t¢, (1)

where #*=2v,%/3ae is the time required for a particle
of velocity v to slow to the origin.

The results of this section show that, when we con-
sider the limit of zero background temperature in the
usual Fokker-Planck equation, an initial delta function
will be maintained with no dispersion during the slowing-
down process. Thus, it is clear that the dispersion pre-
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dicted by the Fokker-Planck equation is due only to
the random velocities of the dackground gas molecules.

III. RANDOM-WALK ANALYSIS

In order to obtain a Fokker-Planck equation correct
through terms of €?, we consider a random-walk analysis
of the slowing-down process. Let Gi(x)dx be the prob-
ability that a particle which has undergone % collisions
retains a fraction between x and x4dx of its original
energy.

If §; is the fractional energy loss during the sth colli-
sion, the fraction of the original energy remaining after
k collisions is

x_‘H(l 61) eXP[Z 11'1(1 51)] (8)

=1

For inverse-power molecular force laws, the discussion
in the Appendix shows that u and ¢ are independent of
particle velocity, where u and o are, respectively, the
mean and variance of In(1—34;). Since the §; are un-
correlated for these force laws, the central limit theorem,?
which holds for sufficiently large values of %, can be
invoked to show that the probability density function
for y=3" In(1—4;) is the Gaussian distribution

P(y) (271'}30'2)—1/2 (y—ky)zlgka»ﬂ (9)

and we note that u is negative since In(1—4;) is always
negative in a collision between the test particle and a
stationary background molecule.

The probability density Gi(x), which may be found
from Egs. (8) and (9), is

Gi(x)= (2nka?)~12x~! exp[ — (Inx— ku)?/2ks?]. (10)

The probability density G(x,f) that a test particle
retains a fraction x of its original energy at time ¢ is

Gla)= g In()G(x), (11)

where 7;(¢) is the probability that % collisions occur in
a time ¢ If the collision frequency » is independent of
velocity, 4x(£) is the Poisson distribution

() =L(0)*/kte, (12)

which, for sufficiently large %, can be approximated in
the usual way® by the continuous Gaussian density

h(k,t)= (2mvt)~1/2 exp[ — (k—vt)?/ 20t]. 13)

Thus, when »£3>1, the summation in Eq. (11) can be

9 W. Feller, Probability Theory and Its Ap plications, I (John
Wiley & Sons, Inc., New York, 1950).
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replaced by an integration and, using Eq. (10), we obtain

G(x,t)=(4n20%ix?)~12 | E-L2

—00

Xexp{—3[ (Inx—ku)2/ko?+ (k—vt)2/vt]}dk. (14)

The time development of the distribution function
f(v,?) can be obtained in the form of an integral equation
by noting that the probability that a test particle which
has a speed " at time zero will have a speed between v
and v+dv at time ¢ is G(x,!)2vdv/v"*, where x=12/"
Then

2 00
fo)=— / WG . (15)
vJo

In particular, if f(v,0)= (47v2)~16(v—1,), we have
f(0,0) = Q2mve2) G (v2/e%,1) . (16)

The equations following Eq. (12) depend on the
collision frequency being independent of velocity. How-
ever, if the initial velocity is v, it is easily seen that for
short times A¢ the change in test-particle velocity is of
the order of 1evpw(vo) AL Thus, an effective collision fre-
quency exists whose magnitude is equal to »(v,)(14A)
where the correction term A is of order % ezg[ 9v(29)/ dvq AL
The correction term may be ignored for short times, and

Eq. (14) holds, provided that
V—'1<<Al<<(%€7)oav/31)o)—l . (1 7)

The collision frequency in Eq. (14) must now be
evaluated at v, so that G(x,) must be written as
G(x,At; o).

IV. RESULTS FOR CONSTANT
COLLISION FREQUENCY

A. Moments of the Distribution Function

The moments of the distribution function are
defined as

M. ()= 41rf flo,0)v2 (D (y (18)
0
Assuming an initial delta function
f('l),O) = (47”)2)_15(7’_7)0) )
we obtain from Eq. (16)
S g L -
0
=1g2" j 2"G(x,t)dx
0
=2o2"(x"). (19)
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From Eq. (14) we have

<xn>__. (47(’20'21/0_”2[ xn—ldx/ k12
0 —®

Xexp{—3[(Inx—ku)?/ko?+ (k—vt)?/vt]}dE,
which can be integrated by completing the squares,
giving

(xmy=exprt{nu+3in(c®+pu?)+3iniuc’+-niet}. (21)

The average energy (u), which is given by m times
the first moment, is just

(w)=uo(x)=uo expri{u+35(u>+o2)+3uc+iot}, (22)

where #,=3%muvs%. A second quantity of interest is the
variance or dispersion of #, defined as

(u?)— (u)*=ue*{{x*)— (x)*}
=uyZe?#{expi ®+ (u+a2)%]
—expriL o+ (u+30%)7]} .

(20)

(23)

B. Typical Values of the Energy Decay and Dispersion
The fractional energy loss in a collision is

8;=e(1—cosy), (24)

where x is the scattering angle in the reference frame of
the center mass.

In order to estimate the values for u and o2 we will
assume that the scattering is isotropic in the center-of-
mass system. This assumption is exact for rigid sphere
molecules, and is a good approximation for other laws
of force.”® Then the probability for scattering through
an angle x is just %siny, and the probability that
y=1In(1—4;) lies between y and y+dy is therefore

p(y)dy=(2¢)tevdy, 0>y>In(1—2¢)

=0, y<In(1—2e¢). (25)
It follows that
p=(1—1/2¢) In(1—2¢)—1, (26)
and
o?=1+4(1/2¢)(1—1/2¢)[In(1—2¢) 2. (27)

When the masses of the test particle and the gas
molecules differ greatly, Egs. (26) and (27) reduce to

p=—e(143¢) (28)
and
o?=1e?, (29)
with an error of order €.

If terms of order € are neglected in Eq. (22), the

10 The exact values for y and p*-+o? for inverse-power molecules
are derived in the Appendix. It is shown that the isotropic scatter-
ing approximation is reasonable for “hard” molecules.
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average energy!! is

(uy=1u, exprt u+%(u2+o?]

=",

(30)

The last result is identical with the average energy
obtained from the usual Fokker-Planck equation [Eq.
(2)]. This is fortuitous since the usual derivations!:? of
the Fokker-Planck equation are not accurate to order
€%, In fact, the coefficient 3¢ in Eq. (1) is often taken to
be either'!2 m/M or? m/(m-+M), which of course does
not give the correct second-order results.

In contrast to the usual Fokker-Planck equation
which gives a zero value for the variance, the variance
given by Eq. (23) is

((u—(u))?y= (u)Le?*—1], (31)

where we have neglected terms of order €. Thus the
dispersion becomes large compared with (#2) for times
greater than ($ve?)L.

The time behavior of an arbitrary moment M ,(z), as
given by Egs. (19) and (21), is

Mn (t).__vo2ne—vl[ne+§e2(n—n2)] , (32)

where terms of order € are neglected. Equation (32)
predicts an exponential relaxation to zero when n<<e L
However, for extremely large values of z, both Eq. (32)
and the full Eq. (21) predict exponentially increasing
moments. This result is physically impossible since a
test particle always loses energy in a collision with a
stationary molecule. It is obvious that this error was
introduced into our calculations when we made use of
the central limit theorem to obtain Eq. (9). This assigned
a finite probability for a particle to have an energy
greater than its initial energy after % collisions, and even
though this probability is extremely small, it gives an
anomalous result when multiplied by a high enough
power of velocity. It is easily shown that if G(w,f) were
set equal to zero for x>1 to agree with the physical
facts, only a negligible change would result in the lower
order moments, but the higher order moments would
approach zero for large ¢, as they should.

C. Saddle-Point Approximation to the
Distribution Function

The distribution function given by Eq. (16) can be
written in the form

1 )
where
J(k)=_1{[1n(v /o) — k] } (k—vt) I lnk} . G
2 ka? vt

11 Equation (30) is unchanged if the isotropic scattering values
for p and p?’+o? are replaced by the exact values for Maxwell
molecules given in the Appendix; the argument of the exponential
in Eq. (31) is changed to 0.966 ¢t.

2S. L. Kahalas and H. C. Kashian, Phys. Fluids 2, 100 (1959).
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The form of the last expression suggests that the inte-
gration can be approximated by a saddle-point integra-
tion. The saddle point occurs at the value 2=%, which
is the solution of

1 (k%u2—[In(v¥/0e2]? 2(k—»t) 1
Jl(k)='——{ D ( / 0 ] lr ( V)Jr
2 k% vi k

=0, (35)

which leads to a cubic equation for .
By the usual arguments, the saddle-point integration
gives

Fo, )L 420v U= 2 /ot ] (o)) 27 0

where J”/(ko) is the second derivative of J(%).

An approximate solution for %, can be obtained by
noting that value of the distribution function is small
except near v=1v4¢~#*/2, Thus we can write [In(v%/no?) ]?
= (14-8)(urt)? and consider that §(»)<1 in the region of
interest. Substituting this form into Eq. (35), we obtain

ko=vt{1+3[n*/ (W>+0*) 18} +0(3%), (37

where we have assumed v£>1.
Substituting Eq. (37) into Eq. (34), we obtain

[In(v*/v0’) —vip]*
vi(u+0o?)
where the error is of order §2. Similarly, we find

T (ko) =— (1) [ (u*+0?)/a* ]+ (20%)7,

where the final term can be neglected for »£>1. Equa-
tions (36), (38), and (39) yield the distribution function

WILVART
16, 2008 2avt(u+to?)

{ _ [n(@*/ve?)—wniT?
2t(u+0?) .

(36)

1
J(ko) = —-2‘ {Inko+

oo

(39)

(40)

It is easily verified that all of the moments of the
distribution function in Eq. (40) are in agreement with
Eq. (32).

V. PASSAGE TO A PARTIAL
DIFFERENTIAL EQUATION

It was remarked at the end of Sec. III that Eq. (15)
is valid for an arbitrary velocity dependence of », pro-
vided we considered only short times A¢ satisfying
Eq. (17). This allows a differential equation to be
derived from Eq. (15) by a method which is similar in
concept to that of Chandrasekhar,!® although different

185, Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
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in detail. From Eq. (15),

2 = 2
f(o, t+Af)=- f& )Gl —, ALy )dv'
vJo o
= f flx 120G (x,Al; v~ V2)x—32dx.  (41)
0

For short times, the major contribution to the integral
comes from the neighborhood of x=1, so we expand
flx~124) and G(w,At; v2~/2) in Taylor’s series in powers
of (x~1/2—1). Thus,

f(v,t)+At?f
ot

- [ eonlg, (2 s

X {i f’_—j(x—m— 1)f<§;>jG(x,At; %) } dx

i=o0 7!

% n a n
-5 3’—(—) L2t — )7 f(0,)],

n=0 721 \ 90

(42)

where

(w312 112— 1))

= / a3 (x12—1)"G (x,At; v)dx.  (43)
0

Omitting terms of order (A#)?, we obtain from Eq. (21)
(e Py=1— A3+, (44)

where we have omitted the terms in Eq. (21) which are
of order € or smaller. Substituting Eq. (44) into Eq. (43)
yields

<x—3/2(x—1/2_ 1)n>

— (=1 ;(j)(— Di(ark-arj+iaiGi-1), (5)
where
ao=1—3(u—3W*+e))At,
a1=—3(u—(7/4) (w>+-o))vAt,
ay=3%(u+o?rAL.

It follows from the combinatorial relation

n [n 7! . ) _,
> (=1) (j)(j_k)!—(—n Bl if k=

=0

=0 if k#£n
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that
(a32(x112—1)) =g, for n=2
=0 for n>2. (46)

The summation in Eq. (42) is therefore terminated at
the term »n=2. (If terms of order ¢ and greater had not
been omitted in going from Eq. (21) to Eq. (44), the
summation would be cut off at n=4.)

Substituting Eq. (46) into Eq. (42) and rearranging
terms, yields

of wlo i P
S e~ o |, @)
ot 2 92 Jp v% dul. v

which gives the second-order correction term for the
Fokker-Planck equation. In the case of constant colli-
sion frequency, it can be verified by direct substitution
that the distribution function of Eq. (40) is an exact
solution of Eq. (47). Thus the passage to a differential
equation leads to the same result as the saddle-point
approximation to the integral equation.

VI. DERIVATION OF THE DIFFERENTIAL
OPERATOR FROM THE BOLTZMANN
EQUATION

In this section we derive an infinite-order differential
operator from the Boltzmann equation and obtain
explicit expressions for the coefficients in terms of an
expansion in powers of e. Our method is similar to that
used by Allis? to obtain the first-order terms.

The Boltzmann equation for a spatially homogeneous
problem with no external fields has the form

a
5{= / (FOW)S(V)—F(W) (V) }go(g,2)ddw.  (48)

Here we consider only a zero-temperature background
gas for which F(w)=N,d(w), where 6(w) is a three-
dimensional delta function. For the first term of the
Boltzmann operator, it is then convenient, following
Allis,? to change the integration variable to dw’ where

dw=(|v'—w|/|v—w'|)}dw’

and, carrying out the integrations over the delta func-
tion, we obtain

%{= NO[ / (—Z—’)sf(v’)v’tr(v’,ﬂ)dﬂy

- / footoan |, (49)

where v and " are the magniiudes of v and v’.
We now consider inverse-power molecular forces for
which F=K /7% It can then be shown! that

Vo (v, Q)= (v//0) =91~V (2,0),
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so that Eq. (49) becomes

o [ s

2w

No [®
- [ we)—seows, o
0

?

where the last integration is over the impact parameter
and L=3+4(s—5)/(s—1).

It proves convenient to expand v'Zf(2’) in a Taylor
expansion in the variable In(v). Thus, we write

V)= i(lnﬁ)”(v%)”w@n, (51)

n=0 7! ]

where, for the first time, we have introduced the assump-
tion that f(v) depends only on the magnitude of v.
However, our subsequent derivation will still be valid for
a general f(v) if we interpret f(v) to be (4x)~1/ f(v)dQ,
where the integration is over all possible directions of
the velocity.

From Egs. (50) and (51) we have

ot oL

af 2xNo o 1 a\"
2 —5.)(e) G401, 6D

n=17! v

) 'U, n
By(v)= / (ln—) vbdb .
0 v

From the collision laws, it is easily shown? that,
when w'=0,

where

(53)

v'/v=[1—e(1—cosx) ]/,

where x is the angle between the relative velocity vector
before and after collision. Thus, we obtain

1 0

Bn(v)=2— / {In[1—e(1—cosx) T1}™bdb. (54)
"Jo

Expanding the logarithm in powers of ¢, we obtain

{In[1—e(1—cosy) T}

o ©  er(1—cosy)’r
=X X, (55
n=1 Jn=l J172"**Ja
where jr= j1+jot- -+ + 7n.
The last factor in Eq. (55) can be written
. T ]T!
(1—cosy)ir=3 (—1)*1(1—cos*x). (56)

k=1 (jr—Fk) k!

Following Chapman and Cowling’s! notation, let

d® = / (1—cos*x)vbdb, (57)
0
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and, from Egs. (54) to (57), we obtain

€T

1 » ©
Bi)=— % - % ——

27 j1=1 Jn=1 j]jg' . 'j,,
T jT!
X 3 T (g
k=1 (jr—k) k!
1 o (—1)k ® w it Finm1
=— o® 3 3 ——G, (58)
2%k=1 k! =1 dnm1=l f1*** fa—y
where )
o Jrl  en
6= 3 =

. ?
in=k—(itt+ - in=1) (fr—Fk)! jn

and the lower limit of the last sum is to be taken as 1
whenever ji+ - - -+ ja—1 is greater than k—1.
From the identity

w ¢in

In(l—e¢=—3 —

in=1 Jn

it is easily verified that

d\*
G= — eb—(irt++ -+j,.—1)<_> [eitt+imiln(1—e)]. (59)

de

After substituting the last result into Eq. (58), the sums
over the remaining 7, can be carried out, yielding

—1)» —1)%+1
B,,(v)=( ) Z( )
2% k=1 k!

& k<d>k[l (1—e) (60)
o ®e - n(l—e)]".

The quantity ¢® has been shown by Chapman and
Cowling! to have the form

¢® = {[(m~+M)/mM K }2=1@D 1D 4,(s), (61)

where A4 (s) is a numerical constant of order unity which
has been evaluated for many force laws. The collision
frequency for momentum transfer, as defined by Allis,?is

v=2rNop®,
so that we can write
d® = (v/2xNo)[Aw(s)/A1(s)]. (62)
Then Eq. (52) can be written in the form
3f o 1 1 AN
—_—= —Cr-(v—-) (v%f), (63)
ot n=1m! 93\ v
where
(=1 = (=D 4, 7d\F
Co= ~—ke"<—> [In(1—e)T. (64)
2" k=1 k! A; \de

So far no assumption has been made that e is small.
For small ¢, it is easily seen that C, is of order " and
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the operator of Eq. (63) may be approximated by the
first few terms.

By referring to Egs. (A10) and (A12) which define g
and u?4-¢? for the random-walk analysis, it can be
seen that

Cl= - %—” ’ (65)

Co=1(u’+0?), (66)

and thus, if we truncate Eq. (63) at n=2, the differential
operator will be identical with Eq. (47) which was
obtained from the random-walk analysis. Neglecting
terms of order €%, we obtain
Ci=3[¢/(1—e{1—3(42/4)[e/(1—€)T}  (67)
and
C2=%62(1—‘%A2/A1). (68)

For some purposes it may be preferable to write
Eq. (63) in the equivalent form

—=1(0) 2 —v"—, (69)
t n=0 #! OJov*
where
o (“DH1 4y gd\F([(1=9 11T
pomg O AV Oty
k=1 kRl A; \de (1—e)?
For the Coulomb force law, it can be shown that!
b (=2) R .
Ay=2knA+3 Y (A2=D—1), (71)

i (j—1) j1Gk— j)!

where A= (sin 46,)~! and 6, is the minimum angle of
scattering which is related to the Debye length. Terms
of order 1/InA are neglected in all calculations of the
Fokker-Planck equation for Coulomb scattering?; if we
discard these terms, then A4;=kA;. Substituting this
result into Eq. (64), it can be shown that all C,=0
except Ci=%e [This result is most easily obtained by
returning to Eq. (58) and carrying out the summation
over k.] Thus, for Coulomb forces, the usual Fokker-
Planck equation is obtained if we neglect either terms of
order €? or terms of order 1/InA. However, the value of
InA is not extremely large (between 10 and 20 in most
cases of interest), and the discarded terms will control
the dispersion of an initial delta function when T is
small. For example, the coefficient Cs, which introduces
the dispersion, is equal to €?/4 InA when terms of order
€3 and €%/A? are neglected.

VII. FINITE BACKGROUND TEMPERATURE
EFFECTS

A. Differential Operator

In the approximation to first order in the mass ratio,
the usual Fokker-Planck equation for finite background
gas temperature can be obtained? from the zero-tem-
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perature Fokker-Planck equation simply by replacing
f(v,£) on the right-hand side of Eq. (2) by Df(v,t) where

D=14 (kT o/mv)(d/dv)

and D acts as a destruction operator which annihilates
the equilibrium Maxwellian distribution. Applying the
same procedure to Eq. (63), we obtain

of = 1 1/ 9\
—_—=3 —Cn—-—<1'——> (¥ Df),

dt n=1m! 23\ v

(72)

where, unless the collision frequency is independent of
velocity, »(v) no longer has the simple zero-temperature
form given by Eq. (61) but depends upon 7, For
example, the collision frequency for Coulomb forces
should be taken as

8met lnANol‘ Mo2\1/2
y= erf( >
emMv? L 2kT,

2Mv2\ /2 Mo?
Ga) =)
iy kTo 2kT0
which gives agreement with the results of Rosenbluth
et al.'* For M>m and 2 on the order of the equilibrium
thermal speed, the quantities in parentheses are ap-
proximately unity and we recover the zero-temperature
collision frequency. On the other hand, for M<<m and
v? on the order of the equilibrum thermal speed, the
parenthesisis approximately (4v3/3¢/w) (M /2kT )32 and
v becomes a constant in agreement with the Rayleigh
gas results,® which have been used to treat the thermali-
zation of a fast ion in a plasma by Ree and Kidder.!s
The correct finite temperature equation is actually
more complicated than Eq. (72) since it would also in-
volve higher powers of the operator ®. Nevertheless,
Eq. (72) is certainly a good approximation to the
correct equation since: (1) its solution relaxes to the
equilibrium Maxwellian distribution as t—o; (2) it
reduces to the correct equation when 7'y —0; and (3) it
reduces to the correct equation when terms of order €2
are neglected.

For constant collision frequency, Eq. (72) has the
form

a9 3 i
/ a,(—a«) f(o)
ot 7=0 (o)

— =&

(73)

when terms of order € are neglected. For simplicity we
will assume A,=A4, although, for constant collision
frequency (Maxwell molecules), the exact relationship?
iS A2= 1.03314 1e Then

ao=3[1+(5/4)€],
ar=3[1+(9/DeJo+(1+€)(kTo/mv)
ay=3[1+(7/4)e](kTo/m)+5e?,

14 M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys.

Rev. 107, 1 (1957).
15 F. H. Ree and R. E. Kidder, Phys. Fluids 6, 857 (1963).
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and
a3=%e(kTo/m)v. (74)

The dispersion which occurs when the initial distribu-
tion is a delta function is due to the coefficient of the
second derivative as. The correction term to e, which
has been derived in this paper is $ev? and is larger than
the term due to the nonzero background-gas tempera-
ture whenever v2>4k7"y/em; that is, whenever the test-
particle energy exceeds % of the average background
molecule energy divided by e.

B. Exact Moment Solutions

Multiplying Eq. (72) by 47p2G*D and integrating the
resulting equation yields

oM; = 1
o n=1m!
where the moment 3/ is defined by Eq. (18) and
000 ) a n
Q,,,-=41r/ v"’"‘(v—) (¥ Df).
0 I 1)
The result of integrating Q,; by parts » times is
oM; -
= —41raj[/ 22Dy fdy
ot 0
ET > 9
—_ f—-(wﬂ”‘)d'v:l , (76)
m Jo 0v
where
© (=D
== ——(2j)"C,. (77)
n=1 n!
From the definition of C, in Eq. (64),
S (2) £ Simar
;= —€fl — —jIn(1—e)]"
T k! Ay \de¢/ n=11! 7
(=1)%A4r sdN\* .
R i) XS A D
k=1 k! A; \de
The first two «; are exactly
ar=e (79)
and
a2=2€-2€2(1—%A2/A1). (80)

For the case of constant collision frequency, Eq. (76)
becomes

OM ;) 0t=—va;{ M;()— 2+ 1) (kT o/m)M ;2(1)] (81)

which can be solved for successive values of ;. Thus, the
zeroth equation yields Mo(¢)=M,(0) showing the con-
servation of number density. The first moment, normal-
ized to give the average energy, is

(u)=3kTo+((u)o—3RTo)e ", (82)
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where (u), is the initial value of (#). From the equation
for the second moment, the mean square energy is

()= (15/4) (kT o)*+ Bae~o¥*4 B, (83)

where
By=[5kT oaz/ 2(cra— €) J(()o—3%T )
and
Bz= <M2>o— Ba— (15/4) (kTo)2 .

As we have mentioned, a correct finite temperature
equation would contain higher powers of the destruc-
tion operator © than appear in Eq. (72). However,
for constant collision frequency with the background
gas molecules in a Maxwellian distribution at tem-
perature T, it can be shown directly from the Boltz-
mann equation that Eq. (82) is an exact result for
the energy relaxation, while Eq. (83) is modified
only by multiplying the constant B; by a correction
factor (1—e2(2—Ay/A1)/az), where the fractional in-
crease is of order e.

Recently Osipovi®!7 has shown that, if the initial
distribution function is Maxwellian, the solution of the
Fokker-Planck equation [either Eq. (1) or Eq. (2)]
for constant collision frequency, will retain the Max-
wellian form during the relaxation process. A necessary
condition for Osipov’s result is that the relationship
(u2y=(5/3)(u)* be satisfied throughout the slowing-
down process whenever it is satisfied initially. From
Eqgs. (82) and (83), it can be shown that this condi-
tion will be satisfied only if second-order powers of e
are discarded, and e, is taken to be 2e. Thus, Osipov’s
result is an approximation which is valid only to first
order in the mass ratio.

Returning to the limit 79— 0 and considering the
case where the initial distribution is a delta function,
Eq. (82) yields the exaqt solution for the average energy:

(84)
and Eq. (83) yields the exact solution for the dispersion:
() — (u)?=(u)X(exp[ 2¢*(1— 342/ A1)pt]—1) . (85)

These results agree exactly with the results of the
random-walk analysis in Egs. (30) and (31) provided we
make the same rigid-sphere approximation, 4.=3%4,
as was done in Eq. (31). Using the correct value,
A2=1.0334;, for Maxwell molecules changes the argu-
ment of the exponential in Eq. (85) to 0.966¢%1.

(u)=uoe="

VIII. DISCUSSION

For a cold background gas, the results of Sec. V show
that the random-walk analysis and Chandrasekhar’s
techniques for passing to a differential equation® can
be extended to give results which are correct through
second order in the mass ratio. Moreover, in the limit
of zero background-gas temperature, a delta-function

1. I. Osipov, ATAA J. 1, 261 (1963).
u C. F. Eaton, ATAA J. 2, 2033 (1964).
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distribution remains a delta function throughout the
slowing-down process if the second-order terms are
neglected. For constant collision frequency, the dis-
persion due to the second-order terms is greater than the
dispersion due to finite temperature terms whenever the
test-particle velocity is greater than 2(k7'o/em)'/2

In order to compare the random-walk analysis with
the Boltzmann-equation approach, the distribution
function inside the collision integral was expanded in a
Taylor series without assuming that the mass ratio is
necessarily small. An infinite-series differential operator
was thereby obtained in which the coefficient of the nth
derivative was proportional to e”. Here e proves to be a
convenient parameter rather than m/M, since e ap-
proaches zero when m/M approaches either zero or
infinity and has a maximum value of 3 when m=M.
This differential form of the Boltzmann equation is
shown to be identical with the random-walk results if
terms of order € are neglected. For a constant collision
frequency, we have shown from the infinite-series differ-
ential operator that the exact values for the relaxation
of both the average energy and its dispersion are ob-
tained when terms of order e are neglected. It is also
shown that Osipov’s!® result indicating that a distribu-
tion function which is originally Maxwellian will remain
Maxwellian during the slowing-down process is an
approximation which is not valid when terms of order
€2 are included.

For Coulomb forces, it is shown that every term of
order €? or higher is divided by InA. Thus if either terms
of order 2 or terms of order 1/InA are neglected, Eq. (72)
reduces to the usual Fokker-Planck equation, in agree-
ment with the results of Rosenbluth et al.1* However,
the dispersion due to the € terms will exceed the dis-
persion due to a nonzero background-gas temperature
whenever the test-particle velocity is greater than
2(kT o InA/me) 2.

For constant collision frequency and zero background-
gas temperature, the distribution function f(v,) given
in Eq. (40), which was obtained by a saddlepoint ap-
proximation of the random-walk integral equation, is
also an exact solution of the second-order operator
obtained by neglecting terms of order €? in the infinite-
series operator obtained from the Boltzmann equation.
In the limit t —, f(2,f) can be shown to approach the
equilibrium distribution (4wv*)~18(v), where the delta
function is to be interpreted according to Lighthill’s
theory of generalized functions.'® Here, it is important
to recall that the definition of a generalized delta func-
tion requires that /’¢® 8(v)F(v)dv="F(0) only if F is a
“good” function,!® that is, a function which decreases
sufficiently rapidly as » —c. The very high order
moments M, (), for n>%e!, do not approach zero
as t— o, as shown by Eq. (32), but this involves no
contradiction since ™ is not a “good” function. How-

18 M. J. Lighthill, Fourier Analysis and Generalized Functions
(Cambridge University Press, London, 1960).
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ever, the moments M, (¢) are accurately given for n<<e™?
and the average energy and its dispersion are, in fact,
given exactly.

For the zero-temperature gas, it is physically
apparent that, when the initial distribution function is
(47v%) 728 (v—1o), f(v,t) should always be identically zero
for v>v,. However, the second-order solution is not
identically zero for v> v, although it is always very small
in magnitude. The same defect is incurred either by
truncating the infinite-series Boltzmann differential
operator after the second derivative term or by the
random-walk analysis; in the latter case it is clear that
the problem arises from the application of the central
limit theorem which gives a finite though small proba-
bility for test particles to lie in the tail of the Gaussian
distribution corresponding to energies greater than the
initial energy. An analogous defect occurs when the
telegrapher’s equation which has a finite speed of propa-
gation is replaced by the diffusion equation which has
an infinite speed of propagation.

APPENDIX: COLLISION FREQUENCIES FOR
THE RANDOM-WALK ANALYSIS

If the random-walk analysis is to be considered as an
independent method, the collision frequencies must be
obtained without reference to the Boltzmann collision
integral. In fact, for a central-force law, the force field
extends to infinity and the collision frequency is not
uniquely defined. However, only the products vu and
v(u2+0?) appear in the final results of the random-walk
analysis.

Consider a series of cutoff angles Xoy X1, =+ +y Xy =
where X, 11 <X,. Each of the X,, is to be considered small
and each formally defines a random-walk problem in
which we ignore deflections in the center-of-mass system
less than X,

Corresponding to each X, is a maximum impact
parameter b, and a collision frequency v,= Ngrb,%. We
shall show that as #— 0, v,u, approaches a limit yu.

From Sec. 10.3 of Ref. 1 it can be shown that

/2 o &1 -1
0 siné.

where a=b{mMv%/K(m~+M) "D when the force law
is F= K /r% (The relative velocity is equal to the particle
velocity for stationary background molecules.) The
quantity 8 is implicitly defined by 2=1—[2/(s—1)]
X (B sinb/a)*"1. For small deflection angles x, o>>1 and
B=21, so that

(A1)

x=av"2'"2, (A2)
where
2(m+M)K
o= (sind)*—1d0.
mM 0

Given a small cutoff parameter X,, the probability of
an impact parameter occurring in the range db about b
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is pa(b)db where p.(b) equals 25/,2 for b< b, and equals
zero for b>b,, where b, is given in terms of X, by Eq.
(A2). The probability P,(x)dx that x lies in the interval
dx about x is

Py(X)=pn(b)| 0b/0x| = (2/b4%)b]| 90/ x| , (x>Xa) (A3)

and P, equals zero for x less than X,. It follows that,
if m<n,

Pr(x)=(n*/02)Pu(x) for x>Xm.  (A4)

By choosing X,, small enough, Eq. (A2) will hold for
x<X,, and Eq. (A3) becomes

2 a\ 2/ (=D
=___..___(-—-> x‘(8+1)l(8—1) s
ba2(s—1) \o2

X (xm> x> xn) .

P.(x)
(AS5)

We desire the mean logarithmic energy decrement in a
single collision for a cutoff angle X,,i.e., un= S Pn(x)ydx,
where y=In[1—e(1—cosx)] from Eq. (24). For angles
less than X, y can be expanded in a Taylor series with
leading term ex?/2. From Egs. (A3) to (AS), it follows
that

Vulin—Vmfim=[ Nomwe/2(s— 2) Ja?! (e=Dye=8)/ (s=1)

X (Xp2(=D1=D X, 260 Us=1))  (AG)

Thus, in the limit, as »—, p,u, approaches a
limiting value »u, if s>2. For the Coulomb law, a
particular value of the cutoff angle must be chosen by
appealing to the usual arguments involving the Debye
length.

The limiting value u» can be found in terms of num-
bers tabulated in Ref. 1. From Eq. (A3) we have

bn bn
pon = / ypnu(b)db=2b,"* / ybdb. (A7)
0 0

By methods similar to those in Sec. VI, y can be ex-
panded in the form

o (=Dm
y=2 (1 cos™), (A8)
m=1 m 1—
and, in the limit b, —, Eq. (A7) yields
« (=1 e \"
vu=2Nor X (-——) o™ (A9)
m=1 m \l—

where ¢ is defined by Eq. (57). Only the product »u
affects the final results of the random-walk analysis, and
it is convenient to arbitrarily choose y=27Np®. Then,
from Egs. (62) and (A9), we have

E ()

By similar arguments, it can be shown that v, (u,240,2)

(A10)
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approaches a limit »(u?+0?) as n — . Here

bn
va(un?+o,2) = 21V01r/ y20bdb , (A11)
0
and using the expansion
» (1—-cos’y) AN
yi= =% 1yl =) Tn1- 07,
7=1 7! de:

we obtain

pore g O CVE NG 9 (an
SR P (d)tn( —oF. @12

Although the choice of » we have made is somewhat
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arbitrary, since only the products »u and »(u2+0?) are
determined, it has the advantage of making u rather
insensitive to the particular force law so that the values
of u determined in Sec. IV by assuming isotropic scatter-
ing are reasonable approximations for “hard” molecules
(s>35). For example, A;(«) (rigid spheres) is greater
than A4,(5) (Maxwell molecules) by about 16%,. For
rigid spheres,

]

4
and it can be verified that Egs. (A10) and (A12) sum
to give the results obtained in Eqs. (26) and (27), as
should be expected since rigid-sphere scattering is
isotropic in the center-of-mass system.
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Path-Integral Calculation of the Two-Particle Slater Sum for He*}

Lioyp D. Fospick AND HarrY F. JORDAN
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The Wiener integral formulation combined with Monte Carlo sampling has been used to compute the two-
particle Slater sum for He? for temperatures ranging from 273°K down to 2°K, the lower practical limit for
this computational method. This is equivalent to a calculation of the density-independent part of the pair
distribution function. A Lennard-Jones 6-12 potential has been used to describe the interaction. Contribu-
tions from exchange were found negligible at 5°K and above. Comparisons with the Wigner-Kirkwood ex-
pansion are made. The second virial coefficients derived from these results are within two or three percent

of the results obtained from the usual phase-shift calculation.

1. INTRODUCTION

OR a system of NV identical particles of mass 7 en-
closed in a volume Q, with Hamiltonian Hy, the
Slater sum! is

Wy=NINN 3, 0#(1,2,- - - N)epuw
x¥;12,---N), (L.1)

where ¥;(1,---,N) is the wave function of the system
in the state 4; 1 is the position coordinate of particle 1, 2
is the position coordinate of particle 2, etc.; A is the
thermal wavelength

A= 2a 1?3/ m)/%; (1.2)

and
B=1/kT. (1.3)

The wave functions are normalized to 1 in the volume Q,
/ v*(1,2,---,N)¥v;(1,2,---,N)dld2- - -dN=1, (1.4)
2

1 This work was supported in part by the U. S. Office of Naval
Research under Contract Nonr-1834 (2?).

1 Contrary to custom we include the multiplying factor NIV
in this definition.

and the summation in Eq. (1.1) extends over all states
appropriate to the statistics of the system. A super-
script is used on Wy to explicitly denote Bose-Einstein
(WxB) or Fermi-Dirac (WyF) statistics.

We present here the results of computing W,8 for
ten temperatures extending from 273°K down to 2°K.
The potential describing the interaction is the Lennard-
Jones 6-12 potential

V=4a((c/r)?—(a/7)%), (L5)

where a and o are the deBoer, Michels? values appro-
priate to He*:
a=14.04X10"% erg,

(1.6)
o= 2.56X10~8cm.

A central feature of this calculation is the use of the
Wiener integral formulation of the Slater sum,?® de-
scribed in the following section. The Wiener integrals
have been evaluated by a Monte Carlo sampling
scheme on the ILLIAC II computer.

2 J. deBoer and A. Michels, Physica 6, 409 (1939).

3 M. Kac, Lectures in Applied Mathematics, Volume 1, Proceed-
ings of the Summer Seminar, Boulder, Colorado, 1957 (Interscience
Publishers, Inc., New York, 1958).



