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The field gradient at the nuclei due to the conduction electrons in antimony metal is calculated
using an approximation for their wave functions in keeping with available information concerning the
Fermi surface of antimony metal. It is shown that the Wannier functions for antimony can be closely
approximated by a set of orthogonalized atomic orbitals (OAQO) which are mixed by the noncentral
terms in the one-electron Hamiltonian. The mixing of the s-like and p-like OAO is seen to be anal-
ogous to the concept of s-p hybridization in the simple chemical picture of the solid. Combined with
earlier calculations of the field gradient due to the ion cores, the total field gradient comes out as
eg=1998X 10 esu/cm? as compared to 1889X 102 esu/cm?, the experimental value of the gradient based
on Hewitt and Williams’s quadrupole-resonance data and Murakawa’s values of the quadrupole moments
of the Sb1?:12 nyclei. In addition, we have calculated the direct contributions to the isotropic and anisotropic
Knight shifts from the spins of the conduction electrons near the Fermi surface. These are found to be
Siso="0.07% and 8ax=—0.05%. It is hoped that when experimental values of these quantities become
available in the future a comparison with the theoretical values of the direct contributions will permit an
assessment of the importance of other contributors to the Knight shift such as core polarization and orbital
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effects.

I. INTRODUCTION

NFORMATION on the band structure and Fermi
surface of metals can be derived by a variety of
techniques=® such as cyclotron resonance, anomalous
skin effect and de Haas-van Alphen effect, to name
only three of a number that are in extensive use cur-
rently. These measurements require for their interpreta-
tion a knowledge of the energy bands, that is, the varia-
tion of energy with momentum of the electrons. On the
other hand, there are also a great variety of data ob-
tainable from nuclear- and electron-spin-resonance
measurements®? and Mdssbauer-effect studies.® These
data yield such properties as the quadrupole coupling
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1 Based on a thesis submitted by E. H. Hygh in partial ful-
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at the University of California, Riverside, California, 19851‘ ‘
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1For an extensive review of cyclotron-resonance method see
A. B. Pippard, Advances in Electronics and Electron Physics
(Academic Press Inc., New York, 1954), Vol. 6, p. 1.

2 The anomalous skin effect is treated in Ref. 1.

3 For a complete review of the de Haas-van Alphen technique
see D. Shoenberg, Phil. Trans. Roy. Soc. (London) A245, 1
(1952), and by A. B. Pippard, Rept. Progr. Phys. 23, 176 (1960).

4The Shubnikov-de Haas effect is also presented in Ref. 2.

5 For a treatment of the method of ultrasonic attenuation or
magnetoacoustic absorption see A. B. Pippard, Proc. Roy. Soc.
(London) A257, 165 (1960), and Rept. Progr. Phys. 23, 176 (1960).

6 A. Abragam, Nuclear Magnetism (Oxford University Press,
London, 1961); W. D. Knight, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1956),
Vol. 2, p. 933; A. K. Saha and T. P. Das, Nuclear Induction (Saha
Institute of Nuclear Physics, Calcutta, India, 1957); T. P. Das
and E. L. Hahn, Nuclear Quadrupole Resonance Spectroscopy
(Academic Press Inc., New York, 1958).

"W. Low, Electron Paramagnetic Resonance (Academic Press
Inc., New York, 1958); C. P. Slichter, Principles of Magnetic
Resonance (Harper and Row, Publishers, Inc., New York, 1963).

8 G. Wertheim, Mossbauer Effect: Principles and Applications
(Academic Press Inc., New York, 1964).
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constant for the nucleus, the magnetic field produced
by the electrons at the nucleus, termed the Knight
shift in the literature, and the g factor for the conduc-
tion electrons. Knight-shift and quadrupole-coupling
data cannot be explained from a study of the energy
bands alone; they require a knowledge of the wave
functions as we]l.?:10 ‘

Various analyses!!—1% of the contributions to the field
gradients at the nuclei from the positive ions have
clearly indicated that in most metals, the major part of
the field gradient arises from the conduction electrons.
The analysis'® of the contribution to the field gradient
in metallic beryllium was somewhat inconclusive be-
cause no account was taken of the departure of the
Fermi-surface from a sphere and also because the quad-
rupole moment of Be® was not accurately known. The
interpretation of the quadrupole-interaction data differs
in nature from that of data such as de Haas—van Alphen
effect, cyclotron resonance and other such measure-
ments in two important aspects. First, it does not give
directly a feature of the energy band at any part of the
Fermi surface but instead serves as a detailed check of
calculated band structure and wave functions. Secondly,
since it involves a contribution from the charge density
in real space, it requires information about the electronic
wave functions over all of £ space and not only near the
Fermi surface. The Knight shift, at least in the lighter
metals, on the other hand, requires a knowledge of the
wave functions near the Fermi surface. In the light
metals, the Knight shift is considered as arising from
the contact interaction between the nucleus and the

9 W. D. Knight, see Ref. 6.
1 M. Pomerantz and T. P. Das, Phys. Rev. 119, 70 (1960).
1T, P. Das and M. Pomerantz, Phys. Rev. 123, 2070 (1961).
2W. W. Simmons and C. P. Slichter, Phys. Rev. 121, 1580
(1961); R. R. Hewitt and T. T. Taylor, bid. 126, 524 (1962); see
also Ref. 10.
(119362). R. Torgeson and R. G. Barnes, Phys. Rev. 136, A738
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conduction electrons.!* In addition, of course, one has to
consider the contribution from the polarization of the
core electrons by the conduction electrons.!® The core
polarization, however, still requires only a knowledge of
the conduction-electron wave functions near the Fermi
surface besides a knowledge of core-electron wave func-
tions as perturbed by the nuclear magnetic moment. For
the heavier metals, there seems to be convincing evi-
dence’® that an important role is played by the orbital
motion of the conduction electrons. Such contributions
to the Knight shift are evidently more difficult to cal-
culate because, for a quantitative evaluation, they re-
quire a knowledge of not just the zero-order conduction-
electron wave functions, but also their perturbed forms
in the presence of a magnetic field.’” The interpretation
of the shift in the g factor of the conduction electrons
also requires a knowledge of perturbed wave functions
for the conduction electrons, taking into account the
spin-orbit interaction.

Not much attention has been devoted in earlier cal-
culations on metals to the study of wave functions, per-
haps because of preponderance of available data from
cyclotron resonance, de Haas—van Alphen, anomalous
skin effect and other such measurements. But in the past
few years there has been a continued development of
methods for calculating band structure and wave func-
tions in metals and alloys and an increasing availability
of accurate data from resonance data. It is, therefore,
worthwhile to examine whether the results of a single
calculation on a metal based on one of the several dif-
ferent available methods can give reasonable agreement
with both properties which depend on features of the
energy bands and those that require a knowledge of the
wave functions. Such a program has been started in our
laboratory. In the present paper we shall report our cal-
culations on the antimony metal. In subsequent papers,
results of calculations currently in progress on beryllium
and indium metals will be reported.

In Sec. II, we shall consider the wave functions for
the conduction electrons in antimony metal. The pro-
cedure and results of calculation for the field gradient at
the Sb12112 nuclei will be presented in Sec. ITI and com-
pared with experiment.!® In Sec. IV, the direct contri-

14 7. Callaway, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1958), Vol. 7, p. 99;
W. Kohn, Phys. Rev. 96, 590 (1954); T. Kjeldaas and W. Kohn,
ibid. 101, 66 (1956).

18 M. H. Cohen, D. A. Goodings, and V. Heine, Proc. Phys. Soc.
(London) 73, 811 (1959) ; G. D. Gaspari, Wei-Mei Shyu, and T. P.
Das, Phys. Rev. 134, A852 (1964).

16 A. M. Clogston, A. C. Gossard, V. Jaccarino, and Y. Yafet,
Rev. Mod. Phys. 36, 170 (1964); T. J. Rowland and F. Borsa,
Phys. Rev. 134, A743 (1964); D. O. Van Ostenburg, D. J. Lani,
H. D. Trapp, D. W. Procht, and T. J. Rowland, zbid. 135, A455
(1964) ; R. Kubo and Y. Obata, J. Phys. Soc. Japan 11, 547 (1956).

17 G. Wannier and U. N. Upadhaya, Phys. Rev. 136, A803
(1964) ; W. Kohn, dbid. 115, 809 (1959); T. P. Das and E. H.
Sondheimer, Phil. Mag. 5, 529 (1960); J. E. Hebborn and E. H.
Sondheimer, J. Phys. Chem. Solids 13, 105 (1960); M. J. Stephen,
Proc. Phys. Soc. (London) 79, 787 (1962); J. E. Hebborn, ibid.
80, 1237 (1962).

18 R. R. Hewitt and B. F. Williams, Phys. Rev. 129, 1188 (1963).
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F16. 1. Rhombohedral unit cell
for antimony.
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butions to the isotropic and anisotropic Knight shifts
will be considered. In Sec. IV, the various sources of
error and the importance of other contributions to the
Knight shifts and the quadrupole coupling constant will
be discussed.

II. WAVE FUNCTIONS FOR
ANTIMONY METAL

Assuming a model of nonoverlapping ions, the field
gradient at a point O inside the metal is given by®

3 cos?0—1
/p<r> —adr, (1)

4

3 cos,—1

g=e2 {:
% £
where (e is the charge on an ion core at a point de-
scribed by the radius vector r; with respect to 0 and
—p(r) is the charge density at a point located at r, due
to the conduction electrons. In terms of the wave func-
tions for the conduction electrons, p(r) is given by

o) =2¢ [ ) s, @

where Y« (r) is the wave function for a conduction elec-
tron with wave vector & and the integration extends over
the entire volume within the Fermi surface. Equation
(1) gives the only parameter ¢ necessary to describe the
field gradient in an axially symmetric environment. In
the general case, one deals with the second-rank tensor
g:;» This tensor has five independent components since
it is symmetric, ¢;;=g¢j;, and has vanishing trace,
2_: ¢s=0 (the potential satisfies the Laplace equation
at the nuclear site). If we transform to the principal
axis system, the tensor becomes diagonal and only g,
quw, and ¢, do not vanish. Of these three components,
only two are independent since Y_; ¢;;=0. Except for
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F16. 2. First Brillouin zone
of antimony.

the case of axial symmetry where ¢..=g,,, we require,
in addition to ¢..=g¢, an asymmetry parameter 5, where

1= (gas— qu)/q- 3)

Evidently, the calculation of geiec, the €electronic con-
tribution to ¢, and for that matter of p(r), requires a
knowledge of y«(r) for the entire momentum space
within the Fermi surface. Before considering the cal-
culation of Y« (r), it is well to review the crystal struc-
ture and the available information concerning the
Fermi surface of antimony. As shown in Fig. 1, anti-
mony has'® a rhombohedral unit cell with two ions per
unit cell with ap=4.4928 A and ¢=57°12" at liquid-
nitrogen temperature, and with two ions per unit cell
at sites », #, w and 1—u, 1—u, 1—u, where u=0.23364
in units of a,. If the origin is taken at one of the ions,
then the other ion lies on the body diagonal, a little off
the body center. Thus, there is axial symmetry about
each ion site but no inversion symmetry. Because of the
axial symmetry, the field-gradient tensor at the ionic
sites does not have any asymmetry parameter and is
described entirely by the single quantity ¢. The ionic
contribution to ¢ has a ready been estimated by Taylor
and Hygh?® and found to be too small by about a fac-
tor of five compared to experiment. It will be considered
further in Sec. III.

The reciprocal lattice is also rhombohedral and is de-
scribed by the reciprocal basis set (by, by, and b;) where

bi=(a; x a;)/a;-a, x a3,
b2= (as xa]_)/a1'az Xas, (4)
bs=(a, x a;)/a;-a; X a3,

and where a;, a5, and a; are along the edges of the
rhombohedron shown in Fig. 1 and are of magnitude a,.

The first Brillouin zone is indicated in Fig. 2. Since
antimony has five electrons per atom and there are two
atoms per unit cell in the extended zone picture, the
volume within the Fermi surface would be equal to
that within the fifth Brillouin zone. In the reduced-
zone picture one would expect to have five occupied
bands each filling up a volume equal to that of the first

1¥W. B. Pearson, Laitice Spacings and Structure of Melals
(Pergamon Press, Inc., New York, 1958), p. 24; C. S. Barrett, Aus-
tralian J. Phys. 13, 209 (1963); C. S. Barrett, P. Cucka, and K.
Haefner, Acta Cryst. 16, 651 (1963).

2T, T. Taylor and E. H. Hygh, Phys. Rev. 129, 1193 (1963).
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zone. In the free-electron limit, the Fermi surface would
be expected to be spherical, while in the extreme tight-
binding limit one would expect the Fermi surface to
approximate closely the boundary of the first Brillouin
zone,

Following the most recent work?! on antimony, the
Fermi surface appears to consist of six partial electron
ellipsoids and two partial hole ellipsoids located on the
fifth-Brillouin-zone boundaries as shown in the reduced
zone scheme in Fig. 3 or in the extended zone scheme in
Fig. 4. These half-ellipsoids become three complete
electron ellipsoids and one complete hole ellipsoid when
a particular set of halves are translated by a vector of the
reciprocal lattice to their counterparts on an opposite
face. In most of the work?! on the Fermi surface, use
has been made of the set of coordinates shown in Fig. 2
to define the equations of these ellipsoids which is dif-
ferent from the choice of axis we have made use of in
the field-gradient calculation.

The equation of the principal electron ellipsoid (the
one shown in Fig. 3, the others not being shown) having
the correct symmetry is

Ep=(1*/2mq)(qurke®+asky 2+ assk 2 2005k ka) . (5)

However, if we describe the ellipsoid using its own
principal axes as co-ordinates, we have

Ep=(#*/2mo)(anks?+ sk, *+ask.?) . (6)

The equations for the other two nonprincipal ellipsoids
are obtained by a rotation of the coordinates by -120°
and — 120° about the z axis used to define Eq. (5). The
hole ellipsoid is given in its principal axis system by an
equation similar to (6) but with semi-axes defined by
B1, B2 and B; instead of a1, a2 and as. The volumes of the
ellipsoids are very small, compared to the rest of the
occupied regions of the Brillouin zone, of the order of
about 10~° electrons per atom.

In summary, it appears then that for a property such
as the charge density that involves the entire occupied
momentum space, one could approximate the Fermi

F1e. 3. Electron and hole ellipsoids in reduced zone picture.

2 J, Ketterson and Y. Eckstein, Phys. Rev. 132, 1885 (1963)
and earlier references quoted there.
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surface by the Brillouin-zone boundary and subse-
quently correct for the small pockets of holes and elec-
trons.?? This is the assumption we shall make in the
field-gradient calculation as it leads to a very important
simplification which will now be discussed.

In terms of the Wannier functions a,(r—M), the
Bloch functions for the conduction electrons may be
written as

lpn(k,l')—_-N_lﬂ ZM e+ik'Man(r—' M) ) (7)

where the suffix » refers to a particular band. From Eq.
(2), the electron density p(r) is therefore given by

o) =eS / FATRCTIL

=%Z > | e Mg, ¥ (r—M)a,(r—M')d%
=X Lmlan(r—M)[?, ®)

where we have made use of the fact that the integration
in k extends over the first Brillouin zone and hence

/ ¢ =0 g% — Vs, . )

The integration over kjin Eq. (2) is therefore obviated
and instead we have the problem of determining the
Wannier function. Before describing the choice we made
for the Wannier functions, it will be helpful to consider
some properties of the Wannier function.

Using Eq. (5), one can obtain the one-electron equa-
tion satisfied by the Wannier-functions. Thus, if 3¢,
represents the one-electron Hamiltonian, then, using the
definition of Wannier functions,

an(r=M)=N"112 3y e My, (k1)

we get
Gcean(r— M) =N"1/2 Zk 3_ik'M€n(k)'//n(k:r) )

where €,(k) is the one-electron eigenvalue for the Bloch
function ¢, (k,r), that is

Hean(k,1)=en(k)¥u(kr) . (11)

Making a Fourier analysis of e,(k) in real space,
namely,

(10)

en(k)=N"123 m En(M)et*™, (12)
and
E.(M)=N"12%", ¢ Me,(k),
Eq. (10) reduces to
. (t—M)=>w E.M)a,(t—M—-M'). (13)

Hence a,(r—M) is not an exact eigenfunction of the

% An estimate of the contribution to the field gradient from
pockets of holes and electrons has been carried out [E. H. Hygh,
Ph.D. thesis, University of California, Riverside, 1964 (unpub-
lished)]. It was found to affect the result in only the fourth
significant figure.
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Fi1G. 4. Electron and
hole ellipsoids in ex-
tended zone picture.
The points B are the
positions of the elec-
tron ellipsoids and
points A4 are the posi-
tions of the hole ellip-
soids. The point C is
the center of the re-
duced zone shown in
Fig. 3.

one-electron Hamiltonian. From Eq. (13), we get

E0)= f 0¥ (1) an(x)dr (14)

and

En(M)=/an*(t——M)JC,an(r)dr. (15)

For a tight-binding approximation, it follows from (14)
and (15) that E,(M)<E,(0). This means that in Eq.
(12) for e, (k), only the first term on the right-hand side
is the most significant. Thus, minimizing the energy
€x(k) is almost equivalent to minimizing £,(0) as given
by (14). In addition, for the extreme tight-binding
limit, 3¢, reduces to the atomic one-electron Hamiltonian
and Eq. (13) reduces to the one-electron Schrédinger
equation for the free-atomic state.

These two considerations enable us to make a reasona-
ble choice for the Wannier functions for the five fully
occupied bands of antimony. First, we notice that the
orthogonalized atomic orbitals (OAQO) introduced by
Lowdin?® reduce to free-atomic orbitals for large dis-
tances of separation between atoms or for the extreme
tight-binding limit when the overlaps of atomic orbitals
on neighboring orbitals becomes negligible. Second, we
have considered OAO on different centers which are
orthogonal to each other where i=s, ps, p, and p,
acts as the band index #z. Both these properties are
shared by Wannier functions. This makes our OAO good
candidates to use for the Wannier functions a,(r—M).
In general, we have to combine a set of OAO of requisite
symmetry to get the symmetric Wannier function as
shown in Appendix A. As a first approximation, one can
use as the Wannier functions the OAQ corresponding to
the outermost valence states of the atoms. Thus,
using Eq. (8) we get

p(0)=—e X2 i(1+8:)[Zalys(r—A)|?
+2s[¢:(r—B)[2], (16)
where ¢;(r—A) and y(r—B) are orthogonalized atomic

orbitals centered on 4 and B, respectively. For a more
B P, 0. Lowdin, J. Chem. Phys. 19, 1396, 1570, 1678 (1951).
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comprehensive discussion concerning the derivation of
Egs. (16) and (22) for p(r) see Appendix A. Thus,
keeping terms only up to second order in the overlap
between orbitals on nearest neighbors, the y; are
given by

Yi(t—M)=¢i(r—M)—3 X; X~ Si;(M,N)¢;(r—N)
+3 25 21 2w 2o Sa(MN)S,;(N,L)e;(r—L), (17)

where

SsMN)= [646-Mese-Nir (19
and the ¢; are the atomic orbitals of the free atom. In
Eq. (17), if M refers to an 4 type ion, then the summa-
tion over N refers to only the nearest-neighbor B ions
and L refers to the original 4 ion, as well as the 4-type
nearest neighbors of the B ions. The neglect of direct
overlaps between 4-type ions can be justified from a
consideration of the amplitudes of the (4,B) and (4,4)
overlaps presented in Sec. III.

As a second approximation, one can consider the mix-
ing between the OAO y; produced by the noncentral
terms in the one-electron Hamiltonian J¢,. Thus, since
the antimony atoms in the lattice are not at centers of
symmetry, we shall have odd-order spherical harmonic
terms in the potential in addition to the even-order
terms of nonzero order. Of these terms only the ¥;°
term can cause any admixture between the OAO that
we have considered; and therefore, correct to first-
order terms we can write the crystal Hamiltonian in
atomic units (Rydbergs) as

o=+ m{—V*+Vo(|[r—M|)
+Coo([r =MD Y1 (bar,dar)} . (19)
Assuming that the OAO ¢; are obtained by minimizing
E.(0) as given by (14) without the Cy° term in (19), we
derive the following expressions for the perturbed

Wannier functions which minimize the value of E,(0)
in (14) arising from the entire 3¢, in (19):
as(r—A)=(1/V2){(2— )%, (r— A)—M.(r—A)},
a.(r—A)=(1/V2){(2— )12 (1—A) (20)
+)"//s(r'— A>} ’
@z, (t—A) =y, (r—A),

and corresponding expressions for a(r—B) with A
replaced by B and with the signs in the a, and @, func-
tions changed. This sign change is due to the fact that
the crystal Hamiltonian suffers a change in sign in the

E. H. HYGH AND T. P. DAS
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C(|r—M|)Y1°(Omspm) term when expanded about a
B lattice site. In Egs. (20),

A=(1—1/(14+202)112=0, for n=0,
n=ﬁ/(Wa'_ W:) )

b= / PHOCSITO P, (2D)

W= f VA (= VP V@)W dr.

These equations are correct to order A? and also to
second order in the overlap between 4 and B ions only.
In higher order there would be additional mixing be-
tween orbitals on 4 and B sites. The mixing of the s
and p OAO on each site is somewhat analogous to the
concept of s-p hybridization in the simple chemical
picture proposed recently by Cohen, Falicov, and
Golin.?* From Eq. (16), using equations (20) and cor-
responding equations for a;(r—B), we get the following
expression for p(r), namely;

p(0) =l [Yo(r) | 2+ ¥y (1) | >+ [Yo(1) [ 24-2]¢u(x) |2
+28{ Ww(r—B)lz"l' I‘/’v(?—B) |2+ [¢.(r—B) [2
+2hbs(r"'B)l M= [ X)) |
+2s|¢*(r—B).(r—B)[}] (22)

keeping only those terms up to first order in the per-
turbation. In Eq. (22), the summation over the B ions
extends over all the six nearest neighbors of the 4 ion
which is taken as the origin. It is assumed that to the
order of approximation considered [to second order in
overlap in S;(A,B)], the other 4 ions, besides the one
at the origin, contribute negligibly to the density in the
vicinity of the central ion.

III. CALCULATION OF THE FIELD GRADIENT
AND COMPARISON WITH EXPERIMENT

To calculate ¢ due to the electrons, we have to com-
pute the second term on the right-hand side of Eq. (1)
using the expression for p(r) given by (22). However,
since we have several different orientations of the lines
joining 4 and the several B neighbors, it is convenient
to simplify the expression for p(r) as given by (22), with
the help of the orthogonality conditions for the orbitals
and crystal symmetry considerations. The various
terms |¢;(r—M)|? may be rewritten in terms of the
atomic orbitals ®;(r— M) as follows:

[¥i(r)| 2= | pi(x) | 2—3 ZB Sii(A,B){¢;*(x—B)gi(r)+¢;(x—B)p*(r)}
+12 2 Si(A,B)S:(AB"){¢i*(r—B')pi(r—B)}
+£2 X Sin(AB)Sni(BA){6*(x—A")gi(r)+0;(x—A)p:*()}, (23)

7B j’,B’

J,B m,A’

#M. H. Cohen, L. M. Falicov, and S. Golin, IBM J. Res. Develop. 8, 215 (1964).
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[¥i(r—B)[*=|$:(r—B) | *—3 AZ Sii(B,A"){¢;*(t—A")pi(r—B)+¢;(r—A")p:*(r—B)}

+1 2 2 S5(BA")S;(BA" ) *(x—A")g; (r—A")

FAT? GIATIY

+i2 2 Sin(BA")Sni(AB"){¢*(x—B")¢i(r—B)+¢;(r—B")p*(r—B)}. (24)

A" mB!!

We can simplify Egs. (23) and (24) by noting that only the terms involving wave functions on 4 and its nearest-
neighbor B ions would effectively contribute to the field gradient at the 4 nucleus. The other terms will be too dis-
tant to contribute to ¢ through the short-ranged operator (3 cos?04—1)/74% in (1). Thus, in the summations in
(23) and (24), we have to take A’=A4"=4""=4 and B'=B""=B"={NN}4, where {NN} means “nearest neigh-
bor of.” Further, since the orbitals on the atoms are s and p orbitals, one can show from the orthonormal properties
of spherical harmonics that, as far as terms on atom A are concerned, only product terms in the density involving
two p orbitals of the same symmetry (x, y, or z) will contribute to the field-gradient integral. In addition, from sym-
metry considerations, of the various terms in p(r) involving products of two different orbitals on a B atom alone,
only those involving s and p, orbitals can contribute to the field gradient at the 4 nucleus. Combining all these
simplications, we can rewrite Egs. (23) and (24) for |¢.(r)|? and |¢(r—B)|?2 in somewhat simpler forms:

[i(n) [ ?=[14 Z})3 Sin?(A,B)]|¢s(r)|2—3 Zl; Sii(A,B){d*(r—B)¢i(r)+6,(r—B)g:*(r)}
+i ZB Sii*(A,B)| ¢;(r—B) >+ %ﬁ Sia(A,B)S::(A,B){¢:*(r—B)p.(r—B)+4.(r—B)¢.*(r—B)} , (25)

[Ys(r—B)|2=[14% > Swi®(A,B) ]| ¢s(xr—B) | 2
—3% 225 Sii(A,B){¢:*(r—B)o;(r)+ds(r—B)p;* (1) } 41 25 S::2(A,B) | ¢i(x) |2
+4 22 2m Sni(A,B)Sni(AB){¢:*(1—B)¢;(t—B)+,(r—B)g*(r—B) } (6::65.+0:2645) ,  (26)

where the Kronecker delta, §;, in (26), for example, is zero when 4 is not an s orbital and §;,=1 when 7 is an s
orbital. In a similar manner, the terms in p(r) which contribute to the field gradient through the A term may be
written as »

Kbs*(r)lbz(r) =% ZB Ss]'(A,B>SzJ'(A;B) l¢’z(r) [ 2+% g SSJ'(AiB)SZi(A)B) I¢J(r—B) | 2

+i ZB Sss(AyB)Szz(A;B)¢z*(r— B)¢'s (l"‘" B) +"_ji ZB Saz(A;B)st (A’B)¢z(r_ B)¢’s*<r—— B)
-3 Z}; Ssi(A,B)g;*(x—B)g.(r)— 3 Ei“; Szi(A,B);(r—B)g.*(x), (27)

¥ (r—B)y.(r—B)=[1+% X Sms(A,B)Sm:(A,B)J¢s* (r—B)¢.(r—B)
43 2 n Sms(A,B)Sn.(A,B){|¢.(r—B) |24 | po(r—B) [ 2} +1 304 Si:(A,B)S:(A,B) | ¢i(r) | 2
—% 2 Sis(A,B)p* (1), (r—B)—3 X: Si.(A,B)gs*(r)p,(r—B). (28)

On substituting Egs. (25), (26), (27), and (28) in Eq. (22) for the charge density p(r), the charge density p(r) can be
rearranged in three parts: one part p,44(r) involving products of orbitals on atom 4 above, a second part p,45(r)
involving products of orbitals, one of which is on 4 and the other on a neighboring B atom, and finally a part
p.,BE(r) containing products of orbitals on B atoms only:

pu“(r)-:egl [1+§ g S,-J(A,B)—l—%%S,-,,z(A,B)][¢.-(r)[2

3.2 X2

—NBe/8)[X X SSM(ArB)Ssm(A:B)jlqsz(r)l2+7}Z)\3 § [ZB: Sis(A;B)Siz(A:B)][d’i(r)]2; (29)

B m=s,
%32 ¥z
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poB()=—3e 2. (1+ 61-3)% 2 Sii(AB){¢;*(r—B)gi(1)+6;(r—B)g:* (1))

i=s

%)% L2

—3¢ 2 (140:)2 X Sii(AB){¢:*(r—B)g;(r)+¢:(r—B)g,;*(1)}

i=s, B j=s,
x,3,2 x,3,%

M2 2 Su(A, B)¢J*(r~B)¢z(r)+Z 2 S:(AB)g;(r—B)g.*(1)]

B j=s,
X,9,%

j=s,
2,93

—%ze[z Z Sis(A,B)p*(1)p.(t—B)+3 T Sis(A,B)di* (1) (r—B)], (30)

xyz

pPE()=e 2 (1+5tf3)§ [1+% 2 Swi*(A,B) ]| ¢:(r—B)[*

i=s,

29,5 2,9,%

B i=s,

ie Z (1+5u)2 [gj Si*(A,B)|¢;(r—B)|*]

+4e Z (1+8w)z Sts(A B)SW(A B)E¢s*(r_B)¢z(r'—B)+¢s(r—B)d’z*(r—B)]

i=s,
X2

+ie Z (14+6::)2 2 X Sni(A,B)Sni(A, B)[dn*(r—B)¢,(r-—B)+¢,(r—B)¢,*(r—B)](6,35],+6,,5,8)

B j=s,m=s,

xyz X,9,3 X,9,%

—Me2 X Su(A,B)S:i(AB)|bi(r—B) [*—Nie X S:s(A,B)S.2(A,B)gs(r—B)g,*(r—B)

B j=s,

—Me % Ses(A,B)S:s(A,B)g*(1—B)g.(r—B)+Ae X [14+% 3 Suna(A,B)Sns(A,B) J6.*(r—B)g.(r—B)

In calculating the field gradient using the expressions
for the charge-density terms p,44, p,4%, and p,?B, we
next have to consider the evaluation of a number of
two-center integrals. Typical of these two-center in-
tegrals are the following:

SA(AB)= f oD, (t—B)dr,

x,5,2
Ae Z); ; Sns(A,B)Smz(AB)[ |¢s(r—B) |2+ | $.(r—B)[|2]. (31)
x,_’y,z,
and
2L+1 (L— | M|)I\ 12
M= ( ) . (34)
dr  (L+|M]|)!
The o function, «,(NLM | B,r), is defined by
2K 12 1B
oa(NLM | B,r)= / fvi(R)
Br | B—r|
X P Ml(cos®) P! M (cosf)dR, (35)

16m\ 172 1
wr=() [or@rrioset—Byr, 32
7

16m\ 1/2 ¥50(6,
QijBBZ (_I) /I¢1(r_B)[2 2 ( ¢)dr
5 73

The procedure that we employed to evaluate such in-
tegrals is one formulated by Lowdin and often termed as
the a-function technique in the literature. Thus, if the
choice of coordinate axes and polar coordinates about
two centers B and 4 is taken as in Fig. 5, then a wave
function centered about center B can be expanded
around center 4 as follows:

(fyr(R)/R)Y LY(0,9)

= 3 (K e/ Kuae)oa NLM | By)V M (0,9),

=0

(33)

where B is the distance between the centers 4 and B

where cos® and cosf in (35) are expressed in terms of »
and R by the equations

cosf= (B*+r>—R?)/2BR,

(36)
cos®=(B2+ R?—r?)/2Br.

However, the X, ¥V, and Z axes are chosen for the field-
gradient operator and the p., p,, and p, orbitals on the
A and B type atoms are determined by the crystal
symmetry, as shown in Fig. 1. These axes are different
from the axes in Fig. 5 which are convenient to use for
two-center integrals. One therefore has to make use of
the rules for transformation of spherical harmonics from
one coordinate to another. The pertinent coefficients
D;y*, for the transformations involved in the present
context, are discussed in Appendix B. Thus we can ex-
press some of the quantities involved in the integrals
(32) in the following convenient forms more suitable
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for performing the two-center integrals:
1
¢i(r)=(far(r)/7) 2 Din'V1™(0,6),
M=—1

1=S, Pz, Py, and p,. The quantities D;! are derived in
the Appendix and represent functions of the Eulerian
angles 0g, ®r and Y which relate the crystal coordinate
system with a local system for which the line 4 B joining
a B neighbor to an 4 atom is taken as the z axis. For the
s orbital, which is isotropic, we do not need any trans-
formation relation. Putting it in a different way,
D" =0610010 and so one can write in general

D=V T DuetTu 68, (1)

for i=s, pa, py, and p,. Similarly one can express the
operator ¢°°= (3 cos?0—1)/7%in (1) defined in the crystal
co-ordinate system in terms of the local system as
follows:

+2

qP=(16x/5)Y%3 3 Do’V M(0,¢), (38)
M2

——

where the quantities Doy, ? are also derived in Appendix
B. In the integrals (32) we used both orbitals centered
on 4 and B sites. For expressing the latter in terms of
the local polar co-ordinates 8, ¢ at 4, one has first to
apply a transformation as in (37) and then use the Eq.

LI
Sii(AB)= X Dju"Din™"

M=L’
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FiG. 5. Choice of coordinates for
two-center integrals.

(33) for the a-function expansion. Combining the two
processes, we have

¢i(r—B)= MéL g)(K v/ Kunr)
XDjMLaz(SLMI B”) YzM(0,¢) . (39)

The overlap integral S;;(4B) in (32) can then be ex-
pressed in the following form by combining Egs. (37)
and (39):

(40)

In a similar manner the integral ¢;42 can also be expressed in terms of a number of radial integrals involving «

functions:
L +2 L L'42

:i*®=2 > X X X Diw¥Dum D"

M'=—L' m=—2 M=—L 1=|2—L’|

(2L'+ 1>1/2(2 L l)
X
2141 0O 0 O

(2 L
m M’

! Kiu [ fou(r)
>' 6M,m+M’ az(SLM'B,f)d?’. (41)
m~+M’ Ky r?

The Clebsch-Gordan coefficients appear in making use of products of spherical harmonics, namely in the relation

YL'MlYLNM”':
L=|L'—L"|

4r(2L+1)

vt ((2L'+1)(2L"+1))1/2(L' L L) r L

>YLM'+M". (42)

0O 0 O M M4-M"

For evaluating the integrals in ¢;;3, we have to expand integrals like ®;(r— B)®;(r— B) in terms of « functions
and spherical harmonics about the center 4. One then obtains, using Egs. (32), (38), and (39)

2L L

2:i%8= 2

/=0 M1=—L My=—L

L
Z DiMlLDj L*

X

Ko m1n1

241 <L L 1)< L L v )
" Gr@r+0ye\o 0 o/\—my My M.,

Kuv moay 16m\ /2 °°Ol2(5l/M2—M1|B,r)
S — 0.M2—-M1( > / dr.
0

(43)

r

When 7 is an s orbital and j a p, orbital about B, we obtain, by a similar procedure, the following expression for
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1 K1o<161r)1/2/’°° az(SIMIB,r)d
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In Egs. (43) and (44) above, the « functions are given by Eqs. (45) and (46), respectively:

Ol2(51’M2—'M1IB,1’)= 27"K2,M2—M12/ (
0

az(SlM]B,I’)=27rK2,M2/

0

In Table I are tabulated the integrals? involving «
functions, namely,

CNLMN'L'=/ aL:(NLM[B,r)fN:Lr(r)r dr ) (47)
0

that are required to obtain the necessary .S;;(4 B) be-
tween orbitals 4 and those on the nearest three and next-
nearest three neighbors of 4. It is seen that because of
the somewhat larger distance to the next-nearest
neighbors (0.74446az, where ar is the rhombohedral
lattice constant) as compared to the nearest-neighbor
distance (0.64532az), the integrals Cyrn®'% for the
next-nearest neighbors are smaller. By the same token,
the two center integrals involving orbitals on third-
nearest (0.95790az) and more distant neighbors would
be expected to be much smaller. This expectation is also
supported by Table IT where the values of f5(R) and
f50(R)/R are tabulated at the position of 4 when the 5s
orbital is at different neighboring sites. These considera-
tions justify our neglect of overlap and two center
integrals for ions beyond the nearest three and next-
nearest three neighbors of 4.

In Table IIT are tabulated the overlap integrals
S48 between orbitals on the atom 4 and those on the
three nearest and next-nearest neighbors. Again the
overlaps are in general smaller when j refers to next-
nearest neighbors of 4 instead of the nearest except in
special cases, when geometrical factors exemplified by
the quantities D;»2’ tend to reverse the order. In Table
IV we have tabulated the a-function integrals which

TasLE I. Table of two-center integrals required to
calculate overlap integrals.

Integral Nearest neighbors  Next-nearest neighbors
Cs00® 0.12675 0.06968
Ci10® 0.15712 0.10555
Cs00™ —0.47137 —0.31644
Cs1o™ —0.31394 —0.26153
Csu™ 0.16255 0.10248

for(R)

™ foof: sx(R)P
RZ

(44)

2
) Pyt M2=Mil(cos@) Pyl M2—Mil(cosh) sinf db, (45)
1111 (cos @) P2 M1 (cosh) sind df. (46)

occur in the evaluation of ¢;48 and ¢;%Z in Egs.
(41) and (43). The same remarks apply for the observed
variation of these integrals with distances to the neigh-
bors of 4, as were made for the overlap integrals.

In Table V are tabulated the values of the various
contributors to the field gradient ¢, namely gionic, the
field gradient produced by the point charges -+5e
on the Sb*%ion, ¢,44, ¢,4B, q.FZ, the electronic contribu-
tors to the field gradient of the local, nonlocal and dis-
tant types, respectively, g.t°t*! the total electronic
contribution, gtota! the total calculated field gradient in-
cluding the ionic and electronic contributions and
finally ¢g°Pt, the experimental value. The results in the
second column represent the contributions from the
various calculated terms without including antishield-
ing (or shielding) effects?® due to the polarization of core
electron states by the nuclear quadrupole moment. The
results in the third column include correction factors due
to antishielding effects. Since the charge distributions
that produce the various contributions to the field
gradient in Table V are disposed differently with respect
to the core electrons of the antimony atom 4 under
study, the different contributions gionic, g4, ¢.42, and
g8 will all in general be subject to different anti-
shielding correction factors. This can be understood by
an analysis of the expression for the antishielding
factor.

TaBLE II Values of f50(R) and f50(R)/R at 4 for 5s
orbitals at different sites.

f50 (R)
Re Soo(R) R
0.00000 0.000000 1.63904
0.64532 0.064390 0.01174
0.74446 0.030705 0.00484
0.95790 0.005846 0.00072
1.00000 0.003962 0.00046
1.16790 0.001089 0.00011

s Distance to the neighbors given in units of the rhombohedral lattice
parameter ar =4.5066 A.

% The Sb atomic wave functions used are those of F. Herman
and S. Skillman, A tomic Structure Calculations (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1963).

26 R. M. Sternheimer, Phys. Rev. 80, 102 (1950) ; 84, 244 (1951);
86, 316 (1952); 95, 736 (1954); R. M. Sternheimer and H. M.
g‘\%e)(/i 91% 102, 731 (1956); T. P. Das and R. Bersohn, ibid. 102,
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TasBLE III. Values of the overlap integrals S;;4B for orbitals on various B sites.

461

Neighbor 1 2 3 4 5 6
ss 0.06968 0.06958 0.06968 0.12675 0.12675 0.12675
% 0.14932 —0.07461 —0.07461 —0.23279 0.11639 0.11639
sy 0.00000 0.12922 —0.12922 0.00000 0.20158 —0.20158
5% —0.10562 —0.10562 —0.10562 0.14098 0.14098 0.14098
xs —0.14923 0.07461 0.07461 0.23279 —0.11639 —0.11639
X% —0.14003 0.04185 0.04185 —0.18605 0.07540 0.07540
xy 0.00000 0.10501 —0.10501 0.00000 —0.15095 0.15095
%z 0.17165 —0.08583 —0.08583 0.21115 —0.10558 —0.19558
¥z 0.00000 —0.12922 0.12922 0.00000 —0.20158 0.20158
v 0.00000 0.10501 0.10501 0.00000 —0.15095 0.15095
Yy 0.10248 —0.07940 —0.07940 0.16255 —0.09890 —0.09890
¥z 0.00000 0.14866 —0.14866 0.00000 —0.18286 0.18286
s 0.10562 0.10562 0.10562 —0.14098 —0.14098 —0.14098
2% 0.17165 —0.08583 —0.08583 0.21115 —0.10588 —0.10588
2y 0.00000 0.14866 —0.14866 0.00000 —0.18286 0.18286
23 —0.01902 —0.01902 —0.01902 0.03466 0.03466 0.03466

Thus, let us assume that the nuclear quadrupole mo-
ment induces a net quadrupole moment density Q(r")
at a point 7’ in the core-electron system. If we have a
point charge at a position 7 relative to the nucleus, the
field gradient at the nucleus (¢=9%V/32%) due to the
point charge will be altered to

¢'=q(1—x(r)),
where

7@):%[ / 0+ f ) 0y | )

Now, if instead of an external point charge, we have a
charge density p(r), then the effective antishielding
factor will be given by

0

f VIOLG costt—1)/rNdr
y={r())=—

(49)
p(r)[(3 cos20—1)/r3Jdr

0

For the local atomic term ¢44, the antishielding factor
will thus be given by

0

v(r)|6:(1) |*[(3 cos?6—1)/r* Jdr

Correspondingly, the pertinent antishielding factor for
the distant term ¢zp would be vz obtained by using the
charge density |®;(r—B)|?in Eq. (49)

ve={Y())sn
/ v(7)|:(x—B) | 2[(3 cos?60—1)/r*]dr
== . (52)
/ [:(x—B)|2[(3 cos?0—1)/r¥]dr

Since the charge distribution described by |®:(r— B)|?2
is almost totally external to the charge distribution on
the A atom, one would expect yg5 to be reasonably close
to the antishielding factor v,=+v(r —«) due to an ex-
ternal point charge, which is the pertinent factor to use
for the ionic term. To evaluate y44, YaB, YBB, and v,
would require a calculation of y(r). The quantity y44 is
of importance for the nuclear quadrupole interaction in
the atom while ., is of importance in considering nuclear

TaBLE IV. Values of two-center field-gradient integrals (a) 4B
terms: Svim® =/ 0ca (NLM |B,7) fui(r) (1/7%)dr, and (b) BB
terms: Ry =/ “aa (NLM | B,r) (1/r)dr.

Nearest neighbor Next-nearest neighbor

yaa={y(r))as= Integral (4,5,6) 1,2,3)
. S5002% 0.0127383 0.0049778
[6:(r) | 2[(3 cos?0—1)/r*]dr S 0.0166691 0.0067051
' 30) St o00i2s1s 00028520
. . S . —0.00
For the nonlocal field gradient g45, the relevant anti- (a) 5::2:: 88%3%(1]; 8%};322
ieldi would be i onsidering the cha, Sst . .
(Sihle gtlng term.*(OLE B obtained considering rge R 0.0299980, — 00008214
ensity ¢i(r)¢;*(r Spugt 0.0633093 0.0149961
_ Sp11%% 0.0040966 —0.0945720
yas={y(r))an
) Rm:“ 0.0%??‘;64 0.019;689
PP
/ ¥(N)$i(r)ps*(x—B)[(3 cos’0—1)/r*]dr et oIS PR
0 (b) Ren??? ~0.0063260 —0.0033789
= (51) Repso? 0.0017336 0.0008794
® Reig*® —0.0121790 —0.0071153
¢:(0)d;*(x—B)[(3 cos?0—1)/r3]dr Ryyer 0.0041872 0.0023956
0
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TasLE V. Table of contributions from various sources to the field gradient at antimony nucleus.
Principal contribution Perturbation contribution Total contribution
Electric-field Without With Without With with Sternheimer
gradient Sternheimer Sternheimer Sternheimer Sternheimer correction and

term correction correction correction correction with A=0.10
ionic 16.8 X102 252102 2521012
gei4 1617.510% 180410 —525.6X102 —586102 1745101
g.AB 8.4x102 23x 102 —24.3x 102 —661012 16X1012
q.58 —5.4X101 —81X10% —22.0x102 —330X102 —114X102
gototal 1620.5x 102 17461012 —571.9x1012 —982X10%2 16481012
gtotal 1637.3 X102 1998 1012 19003¢ 1012
g 1889 X102

a This is the mean value of data on Sb!? and Sbi# taken by Hewitt and Williams (Ref. 18) and by Murakawa (Ref. 43).

quadrupole interaction in ionic compounds of anti-
mony. Unfortunately, no results are currently available
for either y44 or v,. We have, therefore, to make esti-
mates of y44 and v, from the results of calculation in
neighboring atoms and ions. The calculated value? of
v for the isoelectronic ion Int3 is —15.33. The anti-
mony ion Sb*® would be expected to have a smaller
value for v, because of its larger effective charge
which causes the electronic orbitals to be more tightly
bound. Such a behavior is indeed found for other iso-
electronic ions where the values of v,, are available. We
estimate? a value of v,, equal to —14 for Sbt® ion. As
we shall see later in this section, the calculated total
field gradient does not depend critically on the choice
for v.. Since the charge density |¢,(r—B)|? is almost
completely external to the electron orbitals on the 4
atom. it is a good approximation to use vzp="..

Sternheimer?® has calculated values of v 44 for a num-
ber of elements. Of particular interest to our present
situation are his calculations on the shielding factors for
5p and 6p (excited) atomic states of cesium. This ele-
ment is a good reference to use for estimating y44 for
the 5p state of antimony because the 5p and 6p states
of cesium lie, respectively, below and above the 5p
state of antimony. This would indicate that the 5p
electron in cesium would be more internal than that in
antimony. In addition, the core states in cesium atom
would be more tightly bound then in antimony and,
therefore, lead to smaller Q,(r) in Eq. (48). Both these
considerations lead one to expect that the magnitude of
Y44 for the 5p state of cesium may be regarded as a
lower limit for o4 4 for the antimony 5p state. The mag-
nitude of 44 for the 6p state of cesium can similarly
be regarded as an upper limit for 44 for the antimony
atom, although this estimate is not as clear-cut because
the two considerations now lead to opposite conclusions.
Thus we expect that

0.212<—v,44<0.018.

2 E. G. Wikner and G. Burns, Phys. Rev. 121, 155 (1961).
% E. G. Wikner and T. P. Das, Phys. Rev. 109, (1958).

Adopting the arithmetic mean of the two limits, we
shall use (1—y44)=1.115. Finally, since ¢*(r—B)g.(r)
in Eq. (51) is not as internal as | ¢:(r) | 2nor as completely
external as |¢;(r—B)|?, we made the choice for y4z
as the geometric mean of y44 and ypp. This leads to a
value of 2.722 for (1—y43).

f From Table V, it appears that after applying the
relevant Sternheimer antishielding corrections, the
contribution g.44 still exceeds by far all the other
contributions. The contribution g2 becomes more
significant than g¢.4® after the antishielding correc-
tion has been applied, because of the much larger value
of (1—+vpp) as compared to (1—+y43). The total elec-
tronic contribution, in the absence of the A-dependent
crystal-field “perturbation” term then comes out as

¢ ofotel= (1804-+23—81) X 102

=1746X102 esu/cm?. (53)

This result is almost an order of magnitude larger than
the ionic contribution of ¢'ionic=252X10'2 esu/cm?
and of the same sign. Combining the ionic and elec-
tronic contributions, we have

gt =1998X 10% esu/cm? (54)

in good agreement with the experimental value.
The perturbation contribution comes out from Table
V as

g oPort= — 982 1012\ esu/cm?. (55)

If the crystal-field perturbation produced a potential
which leads to a perturbation energy approximately 59,
of the atomic p-orbital energy, then we have #=0.05
in Eq. (21) and A=0.10. This would then lead from

(55) to
¢’ Pert=—98X 102 esu/cms3. (56)

Combining ¢/#*t with ¢’cftal in Egs. (53) and g¢total
in Eq. (54) we get

getotal= 1648 1012 esu/cm? (87)
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for the electronic contribution alone, and

gotal=1900X 10 esu/cm?, (58)

in even better agreement with experiment than the re-
sult in (54) without the effect of the crystal-field per-
turbation. While the very close agreement with experi-
ment in both cases is certainly fortuitous in view of all
the approximations made, it is certainly fair to say that
the electronic contribution to the field gradient has
been reasonably well-estimated using the model we have
employed. Various sources of error and their total esti-
mated effect on the calculated field gradient will be dis-
cussed in Sec. 3.

IV. ISOTROPIC AND ANISOTROPIC
KNIGHT SHIFTS

An additional property of the conduction electrons in
a metal that one obtains out of nuclear magnetic reso-
nance measurements is the Knight shift® §, namely the
fractional shift in the resonance frequency as compared
to that for the nucleus in some reference sample. Often
the reference sample is an aqueous solution of the ion
containing the nucleus under study.

If the metal is cubic, there is only one param-
eter 6 which represents the Knight shift completely.
Bloembergen and Rowland?® have shown that for a non-
cubic metal, the tensor properties of the Knight shift
become more apparent and one has to use two param-
eters diso and 8, for metals in which the nuclei are at
sites of threefold and higher symmetry. For sites of
lower symmetry, three parameters, 8iso, 8ax, and Sasym
are required for a complete description of the Knight
shift tensor. The situation is very much similar to that
for the electric field-gradient tensor at a nuclear site.

The Knight shift originates from the magnetic hyper-
fine interaction between the conduction electrons and
the nuclei described by the dipolar and Fermi contact
Hamiltonians:

L-S; 3(Li-rs)(S;-1:5)

e » (59
ij 1’,‘;‘3 7ij5
8w
SCeNF=?e7Nfl2 2 LS80, (60)
i

where I; and S; are the spins of ith nucleus and jth elec-
tron, respectively, ri;=r;,—R; is the radius vector
joining the ith nucleus and jth electron and v, and vy
are the magnetogyric ratios of the electron and nucleus,
respectively. Alternatively one can describe the hyper-
fine interaction by means of the magnetic fields H ydi»
and H.y* that are produced by the electron 7 at the
position of the nucleus 7:

HoniP=3y.h 30 (S;/ri*—3t:;(S; 1:;)/ri%), (61)
Hon"=(8/3)y.h 225 Sid(rs;) . (62)
2 N. Bloembergen and T. J. Rowland, Acta Met. 1, 731 (1953).
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When there is no applied magnetic field there is no net
magnetic polarization of the electrons and so no net
field is produced by the electron at the nuclear sites.
However, when thereisamagnetic field present, the num-
ber of electrons that are parallel to the field is smaller
than that of those that are antiparallel. This spin
polarization leads to the important Pauli paramagnetic
contribution to the susceptibility of metals. Townes,
Herring, and Knight?® and Bloembergen and Rowland?®
have shown, using Egs. (61) and (62), that the addi-
tional field produced by the conduction electrons at the
nucleus is given by

H= Hext{ 1+5iso+ 53,)((3 COS20H— 1)
+ Basym Sin20y cos2¢y}, (63)

where 6n,0n represent the polar coordinates of the
direction of the applied field Hex with respect to the
principal axes of the Knight-shift tensor which is de-
termined by the local symmetry around the nucleus.
Expressions for 8is, 0ax, and 8asym are given by Egs.
(64), (65), and (66) in terms of the wave functions for
the conduction electrons:

6iso= (87['/3QF)Z<| bz(k) 0) l 2>EF§‘P7

a%(lé—s—”)/ [ = [0

1
X—;Ya"(ﬂ,¢)d3r]§p, (65)
Vs

1 /32m\1/2
6asym=_"<__> / Z [:<|bz(ky r) | 2>E’F
QF 15 [

1
X= V08 [ty (60)
r

(64)

In Egs. (64), (65), and (66), Qr represents the area of
the Fermi surface and {, is the spin susceptibility of the
conduction electrons. The sum over 7 in Egs. (64), (65),
and (66) extends over the entire surface, so that on
dividing by Qr and summing over 4, we get an average
over the entire Fermi surface. Since the antimony
nuclei are at sites of threefold symmetry, dasym=0, and
we have only to obtain i, and 8,x.
The Pauli paramagnetic susceptibility {, is given
formally by
dfo
b= =i [ gmar, (o)
)
where g(E) is the density of states per unit energy inter-
val per atom, f, is the Fermi function,?! and uo, the
Bohr magneton. For low temperatures, Eq. (67) simpli-

% C. H. Townes, C. Herring, and W. D. Knight, Phys. Rev.
77, 852 (1950).

8t C. Kittel, Solid State Physics (John Wiley & Sons, Inc.,
New York, 1959), 2nd edition, p. 251.
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fies to {,=uo%¢(Er). Since in some of the better metals
exchange and correlation effects among the conduction
electrons have been shown® to contribute significantly
to ¢, we would like to comment briefly on the role of
such mechanisms in antimony. An approximate form
for ¢, including correlation and exchange effects is
given by

Sop=mo’g(Er)
-1

ars
X 1—=—~+%(ar:)?[0.225—0.676 Inr, ]t , (68)
™

where
a=(4/9m)13,
and
7o=(9m/4) 13 (me/ 23 2 E 112,

This correction is necessary only if the electrons are
nearly free; thus, in the case of most metals, r.>>1 and
the correction is large. However, since the electrons in
antimony are not as free as in the case of most metals,
the mass, m is much smaller. For this case, 7,=1 and we
can essentially take the expression in the brackets to be
unity. Available information on the Fermi surface of
antimony indicates that it has three identical electron
ellipsoids and one hole ellipsoid. For an ellipsoidal sur-
face, the general expression for the density of states per
unit energy interval per atom in the crystal space,?®?

AN(E) Q dsi
gE)=——"=—" / 0
dE  (2n)*J) | viE(k)]
reduces to
g(E)=Q/4r*(onoecs)~112(2mo/ H2)*12EV2, (69)
where the energy surface is given by
E(k) = (h2/2m0) (a1k12+a2ky2+a3kz2) 5 (70)

and Q is the atomic volume. The parameters a;=m/m;
are related to the effective masses m; and, for antimony,
they are found to be quite large. Using Eq. (69) for
g(Er) together with Ketterson and Eckstein’s values?!
of the effective mass parameters and Shoenberg’s
value? for the Fermi energy (Er=18.6X10"14 ergs), the
spin-susceptibilities are obtained as

¢ p(electrons)=15.28 X 10782,
¢p(holes)=2.82X 1020,

where Q is the atomic volume. This evaluation of {, has
ignored the effects of the spin-orbit coupling. As dis-
cussed by Kubo and Obata,? the spin-orbit interaction
can be considered approximately to lead to an enhance-
ment of {, by a factor of (14-)\/A), where \ is the spin-

(71

#D. Pines, Elementary Excitations in Solids (W. A. Benjamin,
Inc., New York, 1963), p. 153.

8 J. Callaway, Energy Band Theory (Academic Press Inc.,
New York, 1964), p. 37.

# R. Kubo and Y. Obata, Ref. 16.
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orbit coupling parameter and A is the mean width of the
conduction band. In the absence of a reliable knowledge
of A and 4, it is difficult to estimate this factor quantita-
tively. However, if one considers the rough picture sug-
gested by Cohen et al.,?® for arsenic, the mean band-
width of antimony ought to be of the order of 1.2 eV.
The average spin-orbit coupling in the free atom is of
the order 0.6 eV so that it is reasonable to take one-half
as an upper limit for N/A. Thus a susceptibility en-
hancement factor of about § seems a reasonable, upper
limit.

The other quantities that we have to calculate in
order to obtain the isotropic and axial Knight shift are,
from Egs. (64) and (65), of the form

Biso
Gesangy 5O e ()
((87/328)5) 2([b:(k; 0)[)
68)(
= bik; 1) |2 ep
(1/Qr)(16m/5) 2% ) ;/(I (k;r)|2)
Y2 (f,¢)d3r_ (73)

Since only the s function has finite density at the nucleus
(r=0), we have only to calculate {|bs(k;0)|2?)z, for
the isotropic Knight shift 8;,. From Eq. (5), the aver-
age over the Fermi surface involves

< [ et (ko(i)+Ak) -M 1 >FF

dsS dS
=eik0(1').M/ pidk-M__ k // ok , (79)
F.S. | Wil F.S. IVk,E!

where M= (A—A’), (B—B’). The net k vector in the
extended zone picture can be separated into two parts;
ko(7), which is the vector joining the center of the
Brillouin zone to the center of a hole or electron ellip-
soid j=(k,e) and Ak which is a vector from the center
of the ellipsoid to a point on its surface. The ratio of the
two integrals in (74) may be shown to be close to unity?,
since the sizes of the ellipsoids are very small. The vec-
tors ko(7), for the three electron ellipsoids and one hole
ellipsoid model, are given by

ko(e)=%(bo—b3) (principal), (75)
ko(e)=2%(b1—by) (nonprincipal), (76)
ko(e)=3%(bs—b;) (nonprincipal), 77

and
ko(#) =%b;+3bs+3bs. (78)

The vectors b; are the primitive vectors of the reciprocal
lattice listed in Sec. II. Using Eqgs. (5) and (74), we
then get

([0:(k; 1) | 2>EF=ZA‘, AZ (¥ (r—A")y(r—A)

U (E— A= ARWu(r—A— AR)] ¢4 (79)
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TasLE VI. Contributions to the isotropic and anisotropic Knight shifts from electron and hole Fermi surfaces.

Anisotropic Knight shift 8,
(contribution due to

Anisotropic Knight shift 8.«
(contribution due to

Isotropic Knight shift 8.x bz, Py, and p, bands) Pz, py band)
Component parts Without With Without With Without With
of Fermi spin-orbit spin-orbit spin-orbit spin-orbit spin-orbit spin-orbit
surface interaction interaction interaction interaction interaction interaction
Electron ellipsoid
contribution 3.157X10~  4.736X10™ —0.101X10™* —0.152X 10 —2.334%X10¢ —3.501 10~
Hole ellipsoid
contribution 1.583X10~* 2.375X10* —0.03210* —0.048X10~* —1.061X10* —1.592X 104
Total theoretical
contribution 4.740X 10 7.111X10 —0.133X10~* —0.200%X 10 —3.395%X10¢ —5.093X10*

From Table IV and our experience with the field-
gradient terms in Sec. III, it appears that when we are
interested in the Knight shift of the nucleus at the point
A(r=A=0) we need to consider only the contributions
from orbitals ¢,(r—A) on the nucleus at 4. With this
observation in mind, we then get from the wave func-
tions in (17)

¥.(0)=[1+3 ZB S:*(A,B)1¢:(0); A=0,

¢s(A+AR)z _%SN(A:B)d’s(O); (80)
A+AR=B={NN}ao
for the s states, and
vi(r)=[1+% ZB Si*(A,B)J¢i(r); A=0,
Yir—A—AR)=—3 ¥ S;i(AB)¢i(r); (81)

7=x,Y,2
A+AR=B={NN}a_o
for the p states.

Now, in computing the isotropic Knight shift, we can
make use of Egs. (79) and (80) in Eq. (72) for 6, only
if we assume that the s band contributes to all parts of
the electron and hole Fermi surfaces. This is ad-
mittedly an extreme approximation. It leads to the con-
tributions from the electron and hole surfaces and from
the combined effect of both, the amounts shown in the
second column of Table VI. Results in the third column
of Table VI are obtained on applying an enhancement
factor of 4, due to spin-orbit effects mentioned earlier in
this section.

To get the axial Knight shift 8,;, we substitute the
wave functions (81) in Eq. (79) for (| b:(k,r)| )z, which
we then use in Eq. (73) for d,x. If we now assume that
the three bands p., p,, and p. contribute to the elec-
tron and hole Fermi surfaces, then we get the contribu-
tion to 6. shown in the fourth and, fifth column of
Table VI, respectively, with and without the spin-
orbit enhancement factor of 4. In the sixth and seventh
columns of Table VI, we have tabulated the values of
0ax One obtains assuming that only the p, and p, bands
contribute to the Fermi surface both with and without
the spin-orbit enhancement factor.

Unfortunately, there are no experimental values cur-
rently available for the isotropic and anisotropic Knight
shifts in antimony. When experimental values do be-
come available in the future, one can utilize our cal-
culated values of the direct contributions to the iso-
tropic and anisotropic shifts to assess the relative im-
portance of other sources that contribute to the Knight
shift. In Sec. V we shall speculate on the possible im-
portance of some of these other contributions to the
Knight shift.

V. DISCUSSION

We shall first consider the various sources of error in
the calculation of the field gradient and the implica-
tions of our results.

The Wannier functions that we have used were not
obtained from calculated Bloch functions for the crystal,
nor were they obtained by actually carrying out a varia-
tional procedure for the crystal.?> However, the result
that the calculated field gradient agrees so well with the
observed value, indicates that our use of OAO for the
Wannier functions does lead to a charge density that is
in over-all agreement with the actual density in the
crystal. To be completely rigorous, we should have used
a complete set, that is, a linear combination of atomic
orbitals for higher excited states of the atom including
the continuum as well as the atomic wave function for
the state that has been already employed. The neglect
of these excited and continuum states may lead us to
expect that our choice of Wannier functions yields a
more localized state than the actual one. However, when
we expand the atomic orbitals of the B center about
the 4 center, we do in fact get an admixture of other
states besides the atomic valence. (Ss, 5px, 5py, or 5p,)
states including the continuum as we desire.

Secondly, the atomic wave functions that were used
to obtain the Wannier functions are somewhat inaccu-
rate because they were calculated using the Slater free-
electron expression for the exchange potential in the
atom. The wave functions calculated in this manner

3 A variation procedure for localized functions in crystals has
been developed by G. F. Koster, Phys. Rev. 89, 67 (1953); see
also J. C. Slater, bid. 87, 802 (1952).
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tend to overemphasize the density in the external regions
of the atom and underemphasize the density in the
neighborhood of the nucleus. This trend has two con-
flicting effects on the calculated result. The first effect
is to enhance the expectation value used in calculating
¢e44. The second effect is a reduction in the values
of the overlap integrals. It is difficult therefore to con-
clude definitely whether the use of Herman and
Skillman’s wave functions? has enhanced or reduced
the calculated field gradient.

Also of importance is the neglect of relativistic effects.
These effects are very important in determining the
shape and size of the Fermi surface. For example, the
spin-orbit coupling in atomic bismuth is large and,
consequently, is more than likely of importance in re-
moving the large electron and hole surfaces which
‘might otherwise be predicted by a calculation of the
energy bands.?® In antimony and arsenic, the spin-
orbit coupling is not quite as strong. The values of the
spin-orbit coupling constants®’ are approximately 0.3,
0.6, and 1.8 €V, respectively, for arsenic, antimony, and
bismuth. This means that the spin-orbit interaction
energy is of the order of 109, of Herman and Skillman’s
energy eigenvalue for the 5p state of atomic antimony.
Although it is necessary to consider spin-orbit effects
for energy-band calculations, it is not as important in
the field-gradient calculations because we have made
use of the experimentally known Fermi surface, and do
not have to determine it by calculation. Spin-orbit
effects could still affect the calculated value of the field
gradient through their effect on the wave functions.
However, since the first-order correction in the wave
function due to spin-orbit effects involves the ratio of
the spin-orbit coupling parameter to the atomic orbital
energy, the maximum error in the calculated field gradi-
ent due to neglect of spin-orbit effect would not be ex-
pected to be more than 109,. A better estimate of the
error due to neglect of relativistic effects would require
explicit consideration of all relativistic effects on the
wave functions in the metal. These include the Darwin
term, the mass-velocity energy correction, as well as
the spin-orbit coupling. Preliminary attempts to analyze
these effects, at least on the energy, have been made by
Herman et al.,% Pratt,®® and Johnson, Conklin, and
Pratt.®

Another source of uncertainty is the choice made for
the antishielding factor pertinent to the local, nonlocal
and distant electronic terms in the expression for the
field gradient and also to the ionic contribution. The
most important choice is that for the antishielding
factor (y(r))a4 associated with the local term because

3 M. H. Cohen, L. M. Falicov, and S. Golin, Ref. 25.

37 E. U. Condon and G. H. Shortley, The Theory of Atomic
Specira (Cambridge University Press, London, 1959), p. 275.

3 F. Herman, C. D. Duglar, F. Cuff, and R. L. Kortum, Phys.
Rev. Letters 11, 541 (1963).

3 G. W. Pratt, Jr., Phys. Rev. 118, 462 (1960).

L. E. Johnson, J. B. Conklin, and G. W. Pratt, Jr., Phys. Rev.
Letters 11, 538 (1963).
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" this term is the major contributor to the field gradient.

The range of uncertainty in {y(r))ss, which is nearly
equal to v, is larger than in (y(r))44. However, since
the total contribution to the field gradient from the
distant electronic and ionic terms is an order of magni-
tude smaller than that from the local electronic terms,
the uncertainty in (y(z))ss has much less effect. In
addition, the ionic contribution to the field gradient is
actually less significant than Table V would seem to
indicate. This fact stems from our neglect of the elec-
tronic contribution to the field gradient at nucleus 4
from Wannier functions centered around atoms more
distant than the B neighbors. These functions shield
the ionic cores effectively whereas the uniform density
po considered in the calculation of the ionic term does
not. The choice of By’=->5e for the charge on the ion
cores is therefore an overestimate.

The over-all error in the field gradient due to all the
above causes can be estimated roughly as follows. There
is probably a =459%, error due to the neglect of orthogo-
nalization effects involving distant orbitals and the
truncation of the complete set used for expanding the
Wannier function beyond the four atomic orbitals
(5s, Spz, Spy, and 5p.) that we have considered in Sec.
III. The errors due to inaccuracies in the atomic orbitals
used probably cancel each other as we have discussed
earlier in this section. Neglect of relativistic effects
might introduce as much as £109%, error. There is per-
haps an error of about £=5%, in the combined effect of
the uncertainty due to the choice of the antishielding
factors and the shielding of the charges on the ions by
the undulatory charge distribution arising from the
conduction electrons. The net error in our calculated
field gradient is therefore about 4209,. The “experi-
mental” value of the field gradient in Table V is based
on a knowledge of the quadrupole moments of Sbi%
(and Sb2) nucleus which is obtained from optical
hyperfine data.*! Since there may easily be an error of
209%, in quadrupole moments determined from optical
data, the error of 4=209, in our calculated field gradient
is about the same as the uncertainty in the experimental
value of the field gradient. The agreement between the
theoretical and experimental values of the field gradient
is therefore satisfactory to within experimental error.

We have calculated only the direct contribution to
the isotropic and anisotropic Knight shifts in Sec. IV.
There are a number of other sources which could
contribute to both the isotropic and anisotropic
Knight shifts. Among these other sources are the core-
polarization effect,!® the Landau diamagnetic contribu-
tion4? and the Van Vleck-Ramsey orbital contribution'®
to the paramagnetic shielding of the nucleus. The in-
fluence of the core-polarization effect on the isotropic
Knight shift has been analyzed quantitatively in three
light metals.!® In all these metals, the core polarization

4 T, Murakawa, Phys. Rev. 93, 1232 (1954); 100, 1369 (1959).
2T. P. Das and E. H. Sondheimer, Ref. 17.
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has been shown to play a minor role, leading to con-
tributions less than 159, of the pertinent direct contact
contributions to the Knight shift. The results in lithium
indicate that the s and p parts of the conduction-elec-
tron wave functions lead to nearly equal and opposite
core-polarization contributions. On the other hand, the
results in aluminum metal suggest that one cannot
make any definitive conclusions as to the sign of the
core-polarization effects due to the s and non-s parts of
the conduction electron wave function, since the sign
depends also on the core state whose exchange polariza-
tion is being studied.

For thallium and thallium alloys, recent workers!®
have suggested that a semiquantitative estimate of the
Van Vleck-Ramsey-type contribution indicates that
one does not have to invoke direct and core-polarization
contributions to the nuclear magnetic shielding con-
stant to explain observed Knight-shift data. On the
other hand, the fact that the Knight shift for platinum
metal® is observed to be negative indicates that core-
polarization effects may be significant. It seems to us
that, while in some cases there may be a near cancella-
tion of contributions to the Knight shift from different
inner shells and different angular parts of the conduc-
tion electrons, it is difficult to make any surmises about
the importance of the core-polarization contribution
without actual quantitative calculations and that its
sign could be either positive or negative. Regarding the
Landau diamagnetic contribution,*? it arises from the
delocalized plane-wave nature of the conduction elec-
trons which leads to broad conduction bands. We do
not think that the Landau term is of any importance
in antimony since antimony is a semimetal with very
few conduction electrons and also because we can get
good agreement with the experimental field gradient
using localized OAO wave functions. Finally, we have
the Van Vleck-Ramsey-type orbital contribution to
consider. The importance of this orbital-type contribu-
tion for metals has been emphasized by a number of
recent investigators.1® This contribution requires a de-
parture of the charge density around the nucleus from
spherical symmetry and in contrast to the direct and
core-polarization contributions, it arises from all elec-
trons and not just those near the Fermi surface. De-
partures from spherical symmetry that lead to a re-
organization of the charge density in the alkali halides
due to charge transfer between alkali and halogen ions
(termed “covalent binding” in chemical language), has
been considered quantitatively by Yosida and Moriya.**
The effect or reorganization due to overlap of electron
orbitals on neighboring ions has been considered by
Kondo and Yamashita.* The latter authors used OAO

#T. J. Rowland, J. Phys. Chem. Solids 7, 95 (1965); R. E.
Walstedt, M. W. Dowley, E. L. Hahn, and C. Froidevaux, Phys.
Rev. Letters 8, 406 (1962).

# XK. Yosida and T. Moriya, J. Phys. Soc. Japan 11, 33 (1956).
(1;55 _;) Kondo and J. Yamashita, J. Phys. Chem. Solids 10, 245
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wave functions similar to the ones used in our calcula-
tion in Sec. III for the field gradient. Since the overlap
integrals in antimony metal are considerably larger
than in the alkali halides, it seems probable that the
orbital-type contributions in antimony metal may be of
the same order of magnitude as the experimentally ob-
served Knight shift. It should be remarked that to get a
contribution to the anisotropic shift from the orbital-
type term, one also requires a departure from cubic
symmetry. Anisotropic shielding effects are therefore
not seen in alkali halides, but in the case of antimony
metal where we have only axial symmetry, we should
obtain an orbital-type contribution to the anisotropic
Knight shift.

The question of the relative importance of various
contributors to the Knight shift, can be settled by care-
ful detailed calculations for both the direct and other
contributions. However, such calculations are laborious
and have been postponed until experimental data on the
isotropic and anisotropic Knight shifts become availa-
ble. We would like to remark however that one can also
obtain qualitative information concerning the relative
importance of various contributions to the Knight shift
from the study of temperature and pressure dependences
of the Knight shift. Thus, since the orbital contribution
depends directly on the overlap of the orbitals on
neighboring atoms, it would be expected to be sensi-
tively dependent on pressure and temperature.

VI. CONCLUSION

It has been demonstrated that one can take advantage
of the semimetallic nature of antimony metal to calcu-
late the electronic contribution to the field gradient in
antimony metal. We have shown from a first principle
calculation that the conduction electrons can in fact
explain the bulk of the observed field gradient, a con-
clusion that had been previously arrived at by default
from a consideration of the ionic contributions only.!
A parallel calculation in bismuth metal would be of
great interest and is currently under progress. For metals
which do not involve a volume in % space equal to an
integral number of Brillouin zones, the simplifications
employed in Secs. II and III cannot be used and an
actual calculation of the Bloch or Wannier functions
would be required.

The situation concerning the Knight shift is less
clear; both the lack of experimental data and a number
of other causes that could contribute besides the direct
one considered in Sec. IV are specific reasons for this.
The direct contribution itself can at best be obtained
rather approximately due to lack of detailed knowledge
of the wave functions near the Fermi surface. It is
hoped that the deliberations in this paper will stimulate
additional experimental and theoretical work on the
Knight shifts in antimony in particular, and in the semi-

“D. Ikenberry and T. P. Das, Phys. Rev. 138, A822 (1965),
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metals and their alloys in general. It would be particu-
larly interesting to find out if the anisotropic Knight
shift is in fact as small as the direct contribution
predicts.
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APPENDIX A

In deriving Eqgs. (16) or (22) for p(r), we start with
the OAO (17) or (20), respectively, and use the method
developed by Slater and Koster.?> The OAO given by
Eq. (20) are not the symmetric Wannier functions of
the antimony crystal structure. As they stand, they
give rise to nonsymmetric energy bands which do not
reflect the symmetry of reciprocal space. However, these
OAO have resulted from a variation procedure as sug-
gested by Koster,? and therefore, they are valid candi-
dates for constructing symmetric Wannier functions
for the crystal.

Our task is made simpler by using the fact that the
OAO, given by Eq. (17) in the text, transform under
point group operators in exactly the same way as do the
basic atomic orbitals from which they are formed.
Because of this property, there is no mixing of the a,(r)
or a,(r) hybridized OAO of (20) with the other members
when they are acted on by the symmetry operations of
the crystal. However, the a,(r) and a,(r) OAO of (20)
are transformed into various linear combinations of one
another under the crystal symmetry operations.

Following Slater and Koster, the symmetric Wannier
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functions of the crystal are
a/(0)=2a No(A)a,(r—A)+2"s V,(B)a,(r—B),
@, (1)=22a N:(A)a.(r—A)+ 25 NV.(B)a.(r—B),
as' () =2a [N/ (A)as(r—A)+ N,/ (A)a,(r—A)]
+28 [N/ (B)a,(r—B)+N,/(B)a,(r—B)],
a)/(1)=24 [N,*(A)a,(r—A)N.*(A)a.(r—A) ]
+> 8 [N,2(B)a,(xr—B)+N.2(B)a.(r—B)],
where the N;(M) are derived?® from the representations
of the D345 space group of the antimony crystal struc-
ture, using the OAO given by Eq. (20) as the basis
functions. What all this means is that the Wannier func-
tions (A1) transform according to the one-dimensional
irreducible representations of the Ds® space group;
and the energy bands acquired from these functions re-
flect all of the symmetry of reciprocal space. Another
way of putting the above is to state that the basic set of
OAO given by Eq. (20) of the text can be obtained from
the properly symmetrized Wannier functions (A1) by a
unitary transformation and vice versa.®®
Using the above facts, Eqs. (A1) can be thus ex-
pressed as

af (N)=2:[2a Usi(A)ai(r—A)
+2 8 Uji(B)as(r—B)], (A2)
where Ut(M)U(N)=06mnl. This latter property does

not hold true rigorously in the Kronecker delta when
M=A and N=B={NN}, (i.e., the nearest-neighbor B

(A1)

" ions). However, if we consider the antimony lattice to

be made up of two interpenetrating simple rhombohedral
lattices which are coupled only through the process of
symmetric orthonormalization [as typified by Eq. (17)
of the text], then the above condition on the unitary
matrices holds. This approximation is consistent with
the further approximations which are made later on in
the body of the text.

The charge density given by Eq. (6) in Sec. IT shows
that we can use the above properties to our advantage.
Thus

pr)=eXm 2 jla/(r—M)|?=e X m 2; 2 i(146:) 2[4 Ujit(A)a*(t—A—M)+3 5 Ujii(B)a*(r—B—M)]
X2 w(1+8:) 2 [ Uspar(t—A'—M)+ 2w Ujs(B")ar(r—B'—M)]

= m i 2 u(148:) 2(148:) 220 2a Sindanra*(r—A—M)ar(r—A'—M)

We have used the condition > ; U;;{(A)U;1(A") = 6,10aa
and the condition Y_; U;;{(A)U;(B)=0 for all A, B.
The factors (1+46;,)!/2 and (148:)!/? are necessary
assuming that both the bonding and antibonding s
states are doubly occupied. For indices :=x, y, and z,
we assume only the bonding state is doubly occupied.
Carrying out the summations implied above, we get

p(r)=e X m 2 i(1-+6:){2ala:(r—A—-M)|?

+2slai(r—B—M)[2}. (A3)
#]. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

+ZB ZB' 5ik5}3}3'a¢*<1‘°~B—M)ak(r——B'—M)} .

When we consider only the terms M=A=0 and
B={NN}4, Eq. (16) of the text follows.

APPENDIX B: ROTATION OPERATORS
FOR OVERLAP INTEGRALS

There is very little consistency in the literature in
choice of axes and rotation directions for which one de-
fines rotation matrices. Rather than use the general
machinery of group theory, we will employ only that
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simpler theory necessary for finding those particular ele-
ments of interest in this paper.

We first consider a counterclockwise rotation ¢z
about the z axis followed by a counterclockwise rota-
tion 0 about the new y axis. The first operation is

X’ cospr singr O] |x
y’|=|—singgr cospr O |¥|, (B1)
2 0 0 1| |z

and the second is

x cosfr 0 —sinfg| [a”
yi=| 0 1 0 ¥
2’ sinfr 0 cosfz 2’

Combining these two operations, we get

¥ singg cosfr —sinfg| |«
L -

y ==

Z/

oS¢ g 0 Y

singp sinfr  cosfr || 2
Our objective, however, is to expand the coordinates
(%,3,%) in terms of the rotated coordinates (x’,y’,5’) and
therefore, we need the inverse of the above operation.
cospr cosfr —singr Cospr sinok] { x

x
¥y || =singr cosbr cospr singgsinfg||y’| .
3z —sinfg 0 cosfp 7| (B4)

(B2)

Ccos¢r coslr
—singr
cosor sinfp

(B3)

These equations can now be applied to the orbitals and
operator of interest.

The orbitals are cast as px, py, and pz, so that equa-
tions (B4) as they are, give the desired transformation.

Hence
Pa cospr cosr —singr cosgr sinfr | | pa’
py|=|singg cosbr  cospr  singg sinbg| | p,
p- —sinfr 0 cosfg b
(B3)
We next make use of the forms

P = A/NV2)(fs1(r) /)Y 1 (691 )+ V171 (01/61))
2= A/N2)(fr(r) /r)(— iV 11 (6191 )iV ~1(6)' 1)),
p'=(fsa(r)/1)V1°(6:'¢1") . (B6)
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Substituting (B6) into (B5) gives, for example,

Pz= (fBI(r)/r)

X{[(1/V2)(cos¢r cosbr+1 singr) |V 11(61'¢1")

“+cospr sindr¥V,°(6,'¢1")

+[(1/v2)(cospr cosOr—i singr) ]V 1~1(0:)/¢:’). (BT)
We can define the coefficients preceding each spherical
harmonic using the usual symbol D;,“(0z,dr¥r),
where 6z and ¢r are our choices of Euler angles and
where Y =0. In this present example L=1, i=px, py,
pz (or x, y, 2) and M =0, +=1. Using the above symbol,
the px orbital can conveniently be expressed as

pe=(al)/) T Dy OngnOV2(00/) (B9

with similar expressions for py and pz.

The operator of interest is of the form (1/7%)Y 2(0,0).
The substitution of (B4) in this expression can be made
after expressing V0(6,¢) as a function of (x,y,2). Hence

r=3Y90(0,¢) = (5/16m)1/2(352—7r?) /75 (B9)
and, by substitution,

7'—31720(0)(,’)
=(5/16m)123(— 4’ sinfg+2" cosbr)2—7"2/r'5. (B10)

When the above expression is expanded and is re-
expressed as spherical harmonics, one gets

r3Y°(0,¢)=[(6/4) sin®0r](1/7*) Y 2*(¢',¢")
+[—(6/2) sinfr cosfr](1/7'3)V1(8',¢")
+[1—% sin20z](1/7'3) V(6 ,¢")
+[—(6/2) sinfr cosfr J(1/7'*) Y :~1(6’,¢")
+[(6/4) sin®0r](1/r*)Vs%(0',¢") . (B11)
The expressions in the brackets can be defined in terms
of the D;(0r,0r,¥r), and the expansion becomes

r_‘3Y20(0;¢)
=(1/7'3) i Dou®(0r,6r,0)Y2M(0,¢). (B12)

M=—2
This completes the process of re-expressing the orbitals
and the operator in terms of the harmonics defined rela-
tive to the rotated coordinate systems.



