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various angles of incidence, all taken in the vicinity of
a Kiessig minimum. Each profile represents a change of
incident angle of 4 sec of arc over its predecessor. The
dip, as expected, is seen to move across the profile. The
low-angle side of the profile is distorted because of the
sharp rise in the reflection coefficient at the lower angles.

Since the experimental reflection curve is distorted
and smoothed out by surface imperfections and a wide
counter window, it is difficult to show experimentally
that the curves in Fig. 5 are actual mathematical folds
of the incident beams’ angular profile with the reflection
curve. A semiquantitative demonstration could be made
by folding an experimentally determined incident profile
with a theoretically calculated reflection curve. The
main difficulty encountered in such a procedure is that
the incident beam reflected at an angle less than the
critical angle intersects so much of the surface of the
film, that the surface ripples widen the profile of the
reflection considerably. The assumption may be made
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that the beam which is totally reflected from the film
has the proper shape but should be narrowed so that its
half-width is in agreement with the average half-width
of the experimental profiles of Fig. 5. This resulting
curve may be assumed to be a good approximation to
the profile of the incident beam to be used.

Figure 6 shows the calculated reflection curve near
the 8th Kiessig maximum. The curve was calculated
using Parratt’s general equation for a three-media
model.! The absorption coefficient used was assumed to
be the same as the linear absorption coefficient. The
same figure shows the assumed incident beam profile
and a sample fold of the assumed incident beam profile
with the calculated reflection curve. Figure 7 shows a
series of such folds made at 5-sec intervals. The general
trend of the dip is clearly evident and the peak shapes
are seen to resemble those of Fig. 5 which shows the
observed reflected profiles for several angles of
incidence.
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Krebs’s model for the lattice dynamics of cubic metals has been extended by including the third-nearest-
neighbor ionic interactions. The cases of three transition metals, viz., a-iron, molybdenum and tungsten,
are discussed in this paper. The force constants appearing in the secular equations for the lattice frequencies
are estimated from experimental elastic constants and one observed vibration frequency. The phonon
dispersion curves for the three major symmetry directions show a good agreement with the results for
neutron scattering. The frequency distributions are computed. The theoretical specific heats and Debye
parameters also exhibit a good agreement with the experimental data.

I. INTRODUCTION

HILE considerable work has been done on the
lattice dynamics of monovalent cubic metals,
very little attention has been paid so far to those be-
longing to the transition class. The transition elements
present several features of great theoretical interest.
In these elements, the un-ionized free atom contains
an incomplete d shell of lower principal quantum
number than the outer s shell. The methods of soft-x-
ray spectroscopy have established that in the crystals
of these elements, the #s, np, and (r—1)d electron
states of the free atom have broadened into overlapping
bands so that the electrons concerned are in the hybrid
(spd) states. This gives rise to allotropy and multiple
chemical valencies and introduces complexities in the
theoretical studies of these metals. Recent work!? on
. =;'On leave from Dayanand Anglo Vedic College, Muzaffarnagar,
n‘ ISa.. H. Chen and B. N. Brockhouse, Solid State Commun. 2,
3 (1964); 2, 73 (1964).
2 A. D. B. Woods and S. H. Chen, Solid State Commun. 2, 8
(1964) ; 2, 233 (1964).

the phonon dispersion relations from the momentum
and energy changes in the inelastic scattering of slow
neutrons has, however, stimulated fresh interest in the
study of lattice dynamics of these complicated atoms.
The phonon frequency distribution function of a
solid can be computed from the Born-von Karman?
theory of lattice vibrations if the interatomic force
constants are known. The lattice dynamics of a bcc
crystal assuming central forces between the nearest and
next nearest neighbors has been discussed by various
workers.4=? All these models have, however, one common
drawback: The frequencies computed from them are
not periodic in reciprocal space. This has been empha-

3 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1956), Chap. II.

4 P. C. Fine, Phys. Rev. 56, 355 (1939).

5 B. Dayal, Proc. Indian Acad. Sci. A20, 24 (1944).

6 J. de Launay, J. Chem. Phys. 21, 1975 (1953); Solid State
Physics (Academic Press Inc., New York, 1956), Vol. 2, p. 220.

7 E. Bauer, Phys. Rev. 92, 58 (1953).

8 A. B. Bhatia, Phys. Rev. 97, 363 (1955).

9 P. K. Sharma and S. K. Joshi, J. Chem. Phys. 39, 2633 (1963).
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sized by Lax,'® who has discussed the general principles
of a model in which these requirements are satisfied by
the inclusion of umklapp processes. Krebs! gave a
practical shape to Lax’s ideas. In this model, the con-
tribution of the ions to the elements of the dynamical
matrix is exactly the same as in the de Launay model.
The electronic contribution, however, is different. The
frequencies computed by Krebs for the three major
symmetry directions in the case of sodium agree well
with the experimental neutron scattering data. In an
earlier paper,'? hereinafter referred to as I, the present
authors tried Krebs’s model on the other alkali metals
and a good agreement was found between the theory and
experimental data on heat capacities. A similar good
agreement has been reported from this laboratory by
.Shukla and Dayal®® in case of noble metals.

In Krebs’s theory, when calculating the electronic
term, one requires the value of effective ionic charge Z.
For alkali metals Z was taken to be unity throughout—
an assumption which is justified by the fact that in
these metals there is a solitary electron outside a very
stable electron configuration surrounding each nucleus.
In transition metals, the problem of finding the effective
number of free electrons per atom is not so simple. The
three metals discussed in this paper, viz., -Fe, Mo, and
W, have the electron configurations 3d%4s?, 4d°Ss, and
5d6s?, respectively, outside the core of closed shells.
There have been some energy-band calculations for
these metals, the most extensive being for iron.*2 It
is difficult to correlate the results of these workers be-
cause of the nature of, and the many differences in,
the approximations and assumptions made by them.
Callaway? has shown, however, that in the case of this
metal there must be less than two “s electrons” per
atom. The value of 1.8 has been found to be most
appropriate in our study. The position regarding Mo and
W is not so clear. However, Morin and Maita? and
Manning and Chodorow? have discussed the density of
states and electronic specific heats in the cases of Mo
and W, respectively. From the low values of N (E) for

10 M. Lax, Proceedings of the International Conference on Laitice
Dynamics, Copenhagen, 1963 (Pergamon Press, Inc., New York,
1964), p. 179.

1 K. Krebs, Phys. Letters 10, 12 (1964); Phys. Rev. 138,
A143 (1965).

12 P S. Mahesh and B. Dayal, Phys. Status Solidi 9, 351 (1965).

18 M. M. Shukla and B. Dayal, Phys. Status Solidi 8, 475 (1965) ;
J. Phys. Chem. Solids 26, 1343 (1965).

“ M. F. Manning, Phys. Rev. 63, 190 (1943).

15 J, C. Slater, Rev. Mod. Phys. 25, 199 (1953).

16 J. Callaway, Phys. Rev. 99, 500 (1955).

17 F. Stern, Phys. Rev. 116, 1399 (1959).

18 E. F. Belding, Phil. Mag. 8, 4 (1959); 8, 1145 (1959).

1 J. H. Wood, Phys. Rev. 117, 714 (1960).

2 L. F. Mattheiss, Phys. Rev. 134, A970 (1964).
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2 J, Callaway, Energy Band Theory (Academic Press Inc., New
York, 1964), Chap. II1.
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the d bands of these two metals®® one can only infer
that there are roughly two “s electrons” per atom—a
conclusion which is supported by the values quoted by
Jorgenson?® and Semenchenko? from other studies.
The earlier computations of Fine* and Dayal® for W,
of Sharan?® for Mo and W, of Clark® for a-Fe, Mo, and
W, and of Sharan and Tiwari*® for a-Fe do not show a
good agreement with the experimental data for lattice
specific heats at low temperatures. This is not surprising
because in these metals, the magnitude of the second-
neighbor force constant comes out to be of the same
order as that for first neighbors. This suggests that the
third-neighbor force constant is not negligible. This is
found by Curien® also, who has taken into consideration
both central and noncentral forces up to the third
neighbors and has estimated the force constants for
a-Fe from the diffuse x-ray scattering measurements.
In view of the success of Krebs’s model in other
metals'®»!® we felt that it was desirable to apply this
model to these three transition metals, namely o-Fe,
Mo, and W, after including the third-neighbor central-
force interaction between the ions. This has led to a
good agreement between the theoretical and experi-
mental data obtained from neutron scattering and
specific heats. The results are presented in this paper.

II. SECULAR DETERMINANT

Proceeding in the usual way, the secular determinant
for the determination of circular frequencies w may be
written as

| M ij—me*I| =0, 1)

where 7, j=1,2,3. I is the unit matrix of the order
three and m is the mass of the atom. The element of the
dynamical matrix, M;;, can be expressed as the sum of
two coupling coefficients: A4;;, due to ion-ion inter-
actions, and I;;, due to electron-ion interactions.

As mentioned earlier, Krebs' has considered the ionic
interactions between the first and second neighbors
alone on lines similar to de Launay.® In a bce crystal
there are 12 third neighbors having position coordinates
Ro(£1, £1,0), Ro(£1,0,£1), and Ro(0, %=1, +1),
where Ry is half the lattice constant. Suppose ai, a2,
and a3 represent the atomic force constants correspond-
ing to the first, second, and third neighbors, respec-
tively, when we assume the interatomic forces to be
central. The coupling coefficients 4;; can be easily

% J. G. Daunt, in Progress in Low Temperature Physics (North-
Holland Publishing Company, Amsterdam, 1957), Vol. I,
Chap. XT.

26 C. K. Jorgenson, Orbitals in Atoms and Molecules (Academic
Press Inc., New York, 1962), Chap. VII.

27V. K. Semenchenko, Surface Phenomenon in Metals and
Alloys (Pergamon Press, Inc., New York, 1962), Appendices.

28 B. Sharan, Phys. Status Solidi 1, 243 (1961).

» C. B. Clark, Phys. Rev. 125, 6 (1962); 125, 1898 (1962).

(1;" 6]33) Sharan and L. M. Tiwari, Phys. Status Solidi 3, 1408

# H. Curien, Bull. Soc. Franc. Mineral, Crist. 75, 197 (1952);
Acta Cryst. 5, 393 (1952).
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derived in terms of these force constants. The typical
diagonal and nondiagonal coupling coefficients are

A 1= (8/3)0[1 (1 - 616263)+40£2812
+40£3 (2812+322+S32—' 28125’22—' 2812832) )
A 12= (8/3)011(815203)"‘8013 (51826162) )

where ¢;= cos2mkiRo and s;=sin2wk;Ro. Here 2rk; are the
components of the phonon wave vector 2k (k=1/)).
In the limits of very long waves (small %), Eq. (1)
must be identical with the Christoffel equation of
elasticity. The required relations between the inter-
atomic force constants and the elastic constants have
been obtained by expanding the elements A4,; for the
three directions [100], [1107], and [111] in powers of
ks, retaining only quadratic terms, and comparing the
results with the elastic secular equation. As in Krebs’s
model, we have assumed that Ci3—Cjys represents the
bulk modulus of the electron gas and have calculated
the ionic force constants from the elastic constants
(C11—C12) and Cys. As the number of parameters to be
determined is three, an additional relation is obtained
with the help of the experimentally observed frequency
at the Brillouin zone boundary in the [1117] direction.
The numerical value of this frequency has been quoted
in Table I.

Krebs has considered a screened Coulomb inter-
action between metal ions surrounded by electrons with
Bloch-type functions. The electronic coupling coeffi-
cients I;; for a monovalent metal have been given in
paper I. In polyvalent metals, the number of electrons
is not equal to the number of atoms and, therefore, the
interelectronic distance 7, is not equal to 7, but is
given by the relation (Raimes??)

re=2Z"3%,.

All the expressions for 7;; in Paper I which involve 7,
consequently get modified on account of the effective
ionic charge Z.

In Paper I, it was found that the value of the screen-
ing parameter shows a gradual transition from the
Bohm-Pines value to the Thomas-Fermi one as the
ionic size increases. For the three metals under con-
sideration in this work, the ionic sizes are very small
and, therefore, the Bohm-Pines value of the screening
parameter? has been used in the computations.

III. NUMERICAL COMPUTATIONS

The calculation of the frequency spectrum has been
performed by a numerical sampling of the frequencies
for a discrete subdivision of the wave-vector space. The
first Brillouin zone is divided in an evenly spaced sample
of 1000 wave vectors. From the symmetry requirements

3 S. Raimes, The Wave Mechanics of the Electrons in Metals
(North-Holland Publishing Company, Amsterdam, 1961), Chap.
VII

33.]. M. Ziman, Electrons and Phonons (Oxford University
Press, New York, 1963), Chap. IV.
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TasLE I. Constants for the three metals.
Elastic constants
(10% dyn/con’) v(3,3,3)
Element Cu Ciz Cu (102 sec™?)

(a) 2.3310 1.3544 1.1783
aFe (1) 29800 1.3200 1.1650 7.65
Mo 4.4077 1.7243 1.2165 6.60
\" 5.2327 2.0453 1.6072 5.60

s Rayne and Chandrashekhar (Ref. 35).
b Lord and Beshers (Ref. 36).

these 1000 points are reduced to only 46 nonequivalent
points* besides the origin, lying within 1/48 part of
the Brillouin zone which is irreducible under the sym-
metry operations that leave the roots of the secular
determinant unchanged. The calculation of the fre-
quencies has been made for these nonequivalent points
by means of Eq. (1).

The numerical values of the elastic constants and the
frequency » at the zone boundary appearing in the text
are given in Table I.

The c;; for the three metals correspond to 300°K. In
the case of a-Fe, (a) and (b) refer to the experimental
data from Rayne and Chandrashekhar®® and Lord and
Beshers,* respectively. For Mo and W, the ¢;; are from
Featherston and Neighbours.?” The values for mass and
lattice constant have been taken from Infernational
Tables for X-ray Crystallography, Vol. III (1962). The
values of frequency » are from the work of Low,38
Woods and Chen,? and Chen and Brockhouse! in the
cases of a-Fe, Mo, and W, respectively.

The values of the force constants for the first, second,
and third neighbors, obtained with the help of above
input data, are given in Table II.

The dispersion curves for the lattice vibrations in the
three major symmetry directions in a-Fe,* Mo, and W
at room temperature are shown in Figs. 1, 2, and 3,

TasLE II Force constants in 10¢ dyn cm™.

Force
Neigh- con- a-Fe
bor  stants (a) (b) Mo w
1st a1 5.535 5.649 4.269 6.619
2nd o 1.556 1.589 3.731 4.707
3rd asg —0.234 —0.320 0.737 0.505

#B. Dayal and B. Sharan, Proc. Roy. Soc. (London) A259,
361 (1960).

% J. A. Rayne and B. S. Chandrashekhar, Phys. Rev. 122, 6
(1961); 122, 1715 (1961). .

8 A. E. Lord, Jr., and D. N. Beshers, J. Appl. Phys. 36, 5
(1965) ; 36, 1620 (1965).

8 F. H. Featherston and J. R. Neighbours, Phys. Rev. 130, 4
(1963); 130, 1324 (1963).

8 G. G. E. Low, Proc. Phys. Soc. (London) 79, 479 (1962).

% As the difference between the computed frequencies from (a)
and (b) data for elastic constants are not appreciable, the dis-
persion curves in Fig. 1 and the frequency-distribution curve in
Fig. 4 refer to data é) only.
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respectively. In these figures the frequencies v (=w/2)
have been plotted against the reduced wave-vector co-
ordinate in units of 7/R,. The experimental points are
also shown for comparison.

As the values of the frequencies corresponding to all
the chosen wave vectors are too numerous to be tabu-
lated in this paper, we have constructed frequency dis-

tribution functions G(») for the three metals. By defini-
tion, the number of normal modes with frequencies
lying between » and v+ Ay is given by G(v)Av. The
entire frequency range is divided into a number of
intervals (marked in the figures) and each frequency
has been weighted properly. Smooth curves fitted into
the histograms for the three metals have been shown in
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F1c. 3. Dispersion curves for tung-
sten. Experimental data of Chen and
Brockhouse (Ref. 1) are marked as X,
A, and e for the longitudinal and the
first and second transverse branches,
respectively.

Fi1c. 4. The vibrational-frequency dis-
tribution function versus frequency curves

for alpha iron.

Fic. 5. The vibrational-fre-
quency distribution function ver-
sus frequency curves for molyb-
denum.
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Figs. 4, 5, and 6. The curves have not been normalized
and the units of G(») are arbitrary.

The specific heats at constant volume have been
calculated by adopting Blackman’s sampling tech-
nique. For this purpose, the frequencies have been
divided into intervals of 0.2)X 10 sec~. The specific
heats have been evaluated from Einstein’s functions
corresponding to the midpoint of each interval and the
values of C, (lattice) computed as well as observed are
listed in Table III for the three metals. The theoretical
©-T curves for these metals are shown in Figs. 7, 8,
and 9 where they have been compared with experi-
mental data. At very low temperatures, this mesh of
points becomes too coarse for accurate evaluation of
specific heats on account of the dominant effect of the
low-frequency end of the spectrum. The sampling pro-
cedure gives too few frequencies in this region. The

computed values of C, and © are, therefore, not reported
for temperatures below 20°K.

IV. COMPARISON WITH EXPERIMENT
A. Alpha Iron

The neutron data obtained by Iyengar ef al® for
this metal is confined to the [100] direction and is less
certain than the later work of Low.% Neither can much
reliance be placed on Curien’s® diffuse x-ray scattering
measurements on account of the experimental uncer-
tainties inherent in the technique. We have, therefore,
compared the results of our computations with the

“ P. K. Iyengar, N. S. Satyamurthy, and B. A. Dassanacharya,
in Symposium on Inelastic Scattering of Neutrons in Solids and
Liguids, Vienna, October, 1960 (International Atomic Energy
Agency, Vienna, to be published).
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Fie. 9. O-T curve for tungsten. Experimental data are ® Clusius and Franzosini (Ref. 50),
A Lange (Ref. 55) and Zwikker (Ref. 56), 4+ Walcott (Ref. 53).

measurements of Low. For the [1107] direction, how-
ever, Low has plotted one transverse branch only, and
the data available for other branches are also scanty.
Though there is fair agreement between the theoretical
curves and the experimental frequencies (Fig. 1), still
it is difficult to draw any definite conclusions, in view
of insufficient data.

The experimental values of C, have been taken from
Duyckaerts® and Kelley®? for temperatures below and
above 50°K. In the absence of any recent data, the
observations of Kelley have been preferred, as these
are in broad agreement with those of Eucken and

4 G. Duyckaerts, Physica 6, 401 (1939).
2 K. K. Kelley, J. Chem. Phys. 11, 16°(1943).
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TasLE III. Lattice specific heats in cal/mole-deg?

Element a-Fe Mo w
Temp. Theoretical Ob-  Theo- Ob- Theo- Ob-
°K  (a) (b) served retical served retical served
20 0.0442 0.0477 0.0140 0.0443 0.0398 0.0873 0.0724
30 0.1714 0.1800 0.1444 0.186 0.166 0.369 0.319
40 0.423 0439 0327 0501 0448 0.879 0.776
50 0.777 0.800 0.660 0.962 0.872 1498 1.381
60 1.192 1219 1078 14838 1371 2.116 1.989
80 2.055 2.083 1.961 2.498 2.350 3.152 3.035
100 2.821 2.847 2.756 3.303 3.177 3.886 3.800
120 3.438 3.460 3.409 3.898 3.777 4.391 4.313
140 3.917 3.936 3.932 4.331 4.245 4.742 4.700
160 4.286 4.301 4316 4.649 4.582 4992 4.965
180 4.570 4.583 4.628 4.889 4.821 5.174  5.147
200 4.792 4.803 4.871 5.068 5.009 5311 5.296

Werth# and Simon and Swain,* being on the average
about 0.02 cal/mole higher than those of the former
and less by the same amount than those of the latter
except at about 150°K. Manning,!* from band-structure
studies, has computed the value of the coefficient of the
electronic specific heat to be 4.6)X10~* cal/mole deg?
The experimental values of v, 12.06 (Duyckaerts®),
12.0640.12 (Keesom and Kurrelmeyer#), and 11.91
+0.22 (Cheng et al.4%) all of them in units of 10~ cal/
mole deg?, are definitely much larger than the theoretical
one. The reasons for this discrepancy are presently not
understood. Rayne and Chandrashekhar® have re-ana-
lyzed the data of Cheng et al. assuming the presence of
a spin-wave contribution (a7??) to the heat capacity at
low temperatures. They have used their low-temperature
elastic data extrapolated to 0°K to evaluate the lattice
contribution to the heat capacity, which is subtracted
from the experimental value. The analysis of residual
heat capacity yields the values (11.740.1)X10~* cal/
mole deg? and (22£1)X107% cal/mole deg®? for the
coefficients of electronic and spin-wave contributions,
respectively. The presence of the spin-wave contribu-
tion to the heat capacity for this metal has recently
been confirmed experimentally by Tennenwald*’ (spin-
wave resonance work) and Heatherly ef al®® (small-
angle neutron scattering). Dixon et al.* have calculated
this contribution from the exchange-interaction term
derived from neutron scattering data and have sub-
tracted it from their calorimetric value. The residual
part has been analyzed for the values of v and «a. Their
values are y= (11.3440.03)X10~* cal/mole deg? and
143 A. Eucken and H. Werth, Z. Anorg. Allgem. Chem. 188, 152
0o Simon and ®. C. Swain, Z. Physik. Chem. (Leipzig) B28,
189 (1935).

45 W. H. Keesom and B. Kurrelmeyer, Physica 6, 663 (1939).

4 C., H. Cheng, C. T. Wei, and P. A. Beck, Phys. Rev. 120, 2
(1960) ; 120, 426 (1960).

47 P, E. Tennenwald, Proceedings of the International Conference
on Magnetism and Crystallography (The Physical Society of Japan,
Bunkyo-Ku-Tokyo, 1962), p. 592.

48 H. Heatherly, K. Hirikawa, R. D. Lowde, J. F. Mallett,
1\/{96% Stringfellow, and B. H. Torrie, J. Appl. Phys. 35, 802
% M. Dixon, F. E. Hoare, T. M. Holden, and D. E. Moody,
Proc. Roy. Soc. (London) A285, 561 (1965).

MAHESH AND B.

DAYAL 143
a=(1.1540.09)X10~% cal/mole deg®2. We have used
the same values to evaluate the electronic and lattice-
wave contributions, which have been subtracted from
the experimental data to give the lattice specific heats
(observed) in Table IIT.

The @-T curves (Fig. 7) exhibit a good agreement
with experimental data in the middle region only.
Towards the low-temperature end, the experimental
values are consistently higher than the theoretical ones,
while for temperatures above 120°K, there is a marked
decrease in the value of the Debye parameter and the
rate of decrease increases with the temperature.

B. Molybdenum

Woods and Chen? have given the dispersion curves
for the symmetry directions for this metal and have
also tabulated values for a few selected modes. There is
general agreement between the theoretical curves and
experimental data (Fig. 2), except near the zone
boundaries in the [100] direction for the longitudinal
branch and in the [110] direction for the transverse
branches.

The experimental determination of C, in the case of
Mo has been made recently by Clusius and Franzosini.5
Unlike the case of a-Fe, there is a good agreement be-
tween the theoretical and experimental values of elec-
tronic specific heat for this metal. Morin and Maita®
have found a value of 4.8X10~* cal/mole deg? for the
superconducting phase, and have shown it to be con-
sistent with the band structure of this metal. The other
experimental values are 5.1404 (Horowitz and
Daunt®), 5.25+0.26 (Rayne®?) and 5.05X10~* cal/
mole deg? (Walcott®). Clusius and Franzosini recom-
mend a value of 5.040.5 and 6.5 for temperatures up to
and above 25°K. No valid theoretical reasons have been
put forward for the latter value. We have, therefore,
calculated the experimental values of lattice specific
heats for Mo (Table III) from Clusius-Franzosini data
with y=>5.0X10~* cal/mole deg? for the entire range of
temperature, though a slightly lower value of ¥ would
have improved the fit appreciably.

The general trend of the theoretical and experimental
values (Fig. 8) is the same and the difference between
them remains steady at about 3%,. The © values for
the earlier work of Simon and Zeidler® have also been
shown in Fig. 8.

C. Tungsten

A careful study of the lattice dynamics of this metal,
which has high thermal absorption and low coherent

® K. Clusius and P. Franzosini, Z. Naturforsch. 14a, 99 (1959).

% M. Horowitz and J. G. Daunt, Phys. Rev. 91, 1099 (1953).

% F. Rayne, Phys. Rev. 95, 1428 (1954).

8 N. M. Walcott, in Conference de Physique des Basses Tem-
peratures, Paris, 1955 (Centre Nationale de la Recherche Scien-
tifique and UNESCO, Paris, 1956), p. 206.

5 F. Simon and W. Zeidler, Z. Physik. Chem. (Frankfurt) 123,
387 (1962).
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scattering cross section for neutrons, has been made by
Chen and Brockhouse.! They have also reported the
value of frequencies for a few modes. Figure 3 shows a
very good agreement between theoretical curves and
experimental data except that the two branches in
[110] direction, though almost degenerate up to zone
boundary, fail to cross each other as expected from
experimental data.

Chen and Brockhouse have also calculated the fre-
quency distribution function G(») using 23 force con-
stants obtained from the 8th-neighbor best-fit curves
for the experimental data. They report two pronounced
peaks in the frequency distribution at 4.6 and 6.3X10%
sec™’. The frequency distribution obtained by us (Fig.
6) also exhibits the two peaks at 4.6 and 6.4X10"
sec™t

Clusius and Franzosini®® have also determined the
specific heats in the case of tungsten. The earlier
measurements for this metal were of Lange®® and
Zwikker5® for the temperature ranges up to and above
91°K, respectively. The position regarding the elec-
tronic specific heat is not clear enough for W and there
is considerable divergence in the values reported by
different workers. Manning and Chodorow?* have theo-
retically computed the v value to be 4.8%X10~* cal/mole
deg?. The experimental values, however, are 1.820.7
(Horowitz and Daunt!), 3.540.2 (Rayne®), 2.89
(Walcott®) and 2.654-0.24X 104 cal/mole deg? (Waite
et al.5%). Clusius and Franzosini have recommended the
values 2.7 and 4.9 10~ cal/mole deg? for temperatures
below and above 20°K. As in the case of Mo, we have
evaluated lattice specific heats (Table IIT) from the
data of Clusius and Franzosini with y=2.7X10~*
cal/mole deg?. In the ®-T plot for this metal (Fig. 9),
the values of © for other workers, referred to above,
have also been shown. The agreement between the
theoretical and experimental values of © is reasonably
good.

% F. Lange, Z. Physik. Chem. (Leipzig) 110, 343 (1924).

% C. Zwikker, Z. Physik 52, 668 (1928).

5T, R. Waite, R. S. Craig, and W. E. Wallace, Phys. Rev.
104, 5 (1956) ; 104, 1240 (1956).
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V. DISCUSSION AND CONCLUSION

In the present computations 300°K elastic-constant
data were taken in order to have a check on our results
with the room-temperature neutron-scattering data.
The agreement between theoretical and experimental
©® values would have been within experimental errors
(£=19%) in the cases of Mo and W and appreciably im-
proved for a-Fe if the low-temperature elastic constants
were used. In the case of a-Fe, however, the difference
between the experimental and theoretical values of C,
will persist even if the temperature dependence of the
elastic constants is taken into consideration. This may
be for several reasons: In the first place, the values of
v and «, which represent the contribution of the elec-
trons and spin waves to the specific heats, are very
uncertain. Secondly, it is also possible that the spin-wave
contribution may not be exactly given by the term
aT%? and « itself may be a function of temperature. In
view of these uncertainties and the nonavailability of
any reliable heat-capacity data, no clear picture emerges
about this metal.

The special feature of Krebs’s model in the present
form is that, while using only three force constants, it
provides agreement between the theoretical dispersion
curves and the experimental data which is as good as
that furnished by the curves computed by Low,
Woods and Chen,? and Chen and Brockhouse! with the
help of seven force constants in the cases of a-Fe, Mo,
and W, respectively.
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