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Composition
At. wt. P

Pure copper
99% copper
98% copper
97'Fo copper
Pure silver

'y

(mJ mole '
«g ')

0.698
0.699
0.696
0.696
0.645

(mJ mole '
deg ')

0.498
0.499
0.501
0.504
0.639

TABLE II. Values of the ratio y/yg.

1.40
1.40
1.39
1.38
1.01

electron concentration. Values of the ratio y/yr for
the pure metals and alloys are given in Table II. The
values of u at O'K were estimated by assuming that the
n-phase alloys have the same coeKcient of expansion as
that of pure copper. It can be seen that the ratio of
q/y~ for pure silver is very close to unity, the value
characteristic of free electrons. The general trend of
this ratio y/ys shows a decrease from copper to silver
suggesting that the Fermi surface is becoming more
spherical.

the thermal effective mass which provides an indication
of the amount of distortion of the Fermi surface from a
sphere. For face-centered cubic structures

p~ ——3.848&(10ua'rr'" (mJ mole ' deg ') (3)

where u is the lattice parameter at O'K and e is the
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A fairly extensive survey of the phonon dispersion relation in copper at room temperature has been made
by means of neutron scattering. The cold-neutron time-of-Right technique was used, and the results are con-
Gned to the (001) and (110) symmetry planes of the reciprocal lattice. An interpolation formula for the
dispersion relation has been obtained by making a least-squares Gt of an interatomic-force-constant model
to the results. However, because of the nonconvergent behavior of the parameters with the introduction of
further neighbors, the values obtained for these cannot be ascribed any physical signihcance beyond showing
that {a)nearest-neighbor interactions dominate, and (b) the forces extend up to at least third and probably
up to sixth neighbors. The frequency distribution function g(~) has been calculated, and the values ob-
tained from it for the lattice specific heat and the Debye-Wailer factor are in excellent agreement with ex-
periment, except at very low temperatures. The results have been compared with calculations based on
Toya s treatment (with a few minor modi6cations) of the electron-phonon interaction in monovalent metals.
The values of the three most uncertain parameters in the theory, representing the depth of the pseudo-
potential well due to the ions and the two core-overlap interaction parameters, have been obtained by
6tting to the measured elastic constants. Phonon-dispersion curves calculated from these parameters show
reasonably good agreement with the experimental results, especially for the transverse modes. The validity
of these parameters and of the "free-electron-like" approximation for the electron wave functions, used in
Toya's theory, is critically discussed.

INTRODUCTION

HERE has been considerable interest in the lattice
dynamics of copper over the past several years,

and several attempts have been made to calculate the
frequency —wave-vector dispersion relation v, (q) fj=po-
larization branchj, and from it the frequency distribu-
tion function g(v), using various theoretical models. ' s
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This is partly due to the simple lattice structure of
copper (face-centered cubic) and partly due to the fact
that it is a monovalent metal, so that recent theories
of the electron-phonon interaction' may be expected
to 'apply to it, without the additional complications
arising from several conduction electrons per atom. The
frequency distribution functions obtained from many
of the above models have also been used to calculate
quantities like the temperature variation of the lattice
specific heat and the Debye-Wailer factor for copper.
Comparison with the experimental values of these
quantities, however, is a very insensitive test as to the
validity of the models. Direct and reasonably accurate
experimental observations of the dispersion relations
in many crystals are now possible using the technique
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of coherent inelastic scattering of neutrons. ' Copper is a
suitable substance for such experiments, as it has a
reasonably high coherent neutron cross section, and a
much smaller incoherent cross section.

This paper describes a fairly extensive survey of the
phonon-dispersion relation in copper at room tempera-
ture using the neutron-scattering method. Some pre-
liminary results have been reported elsewhere. ' The
dispersion relation has also previously been studied
using the method of diAuse scattering of x-rays' and
also using the neutron-scattering method. " Certain
discrepancies with these measurements are reported. A
detailed comparison of the present results with those
reported by Birgeneau et al." for nickel con6rms their
observation of the essential similarity of the dispersion
relations in the two cases. This paper also presents a
calculation of the frequency distribution function g(v)
using a suitable interpolation formula for the dispersion
relations, obtained by Qtting an interatomic-force-
constant model to the observed results. This is found to
be in marked disagreement with that calculated similarly
by Jacobsens from his experimental results, but provides
values for the lattice speciic heat and Debye-%aller fac-
tor of copper in very good. agreement with experiment.

The measured dispersion curves are examined in the
light of recent theoretical treatments of the electron-
phonon interaction in metals, ' "which start from more
basic principles than the Born—Von Karman model. In
particular, they are compared with the theoretical calcu-
lations of Toya, which have been shown to be fairly
good for the case of sodium. "The agreement is not very
good for the longitudinal modes. Recently Toya has
recalculated the dispersion curves with modi6ed param-
eters and obtained much better agreement. Toya's
theory is strictly valid only for metals in which the
conduction-electron wave functions are "free-electron-
like, " i.e., when they can be described by single orthog-
onalized plane waves (OPW). The band structure of
copper, however, shows considerable deviation from
the free-electron behavior. Further, the overlap or
exchange repulsions between neighboring ion cores are
large but not at all well known for copper. An attempt
has been made to modify certain parameters in Toya's
theory to obtain a better Gt to the results, with a fair
amount of success, but it is likely that the simple free-
electron model used is not really valid for copper, as
discussed below.
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MEASUREMENTS AND RESULTS

In the inelastically scattered energy spectrum re-
sulting from a beam of monochromatic and well-colli-
mated neutrons incident on a single crystal, there will
in general appear sharp peaks corresponding to the
"coherent one-phonon processes" and these obey the
basic conservation laws'

(ks/2tn) (kP —kps) =~km„. (q)

Q=—kg —ks ——q+8,
(1)

(2)

where ko and h& are, respectively, the incident and scat-
tered neutron wave vectors; q and v, (q) are, respectively,
the phonon wave vector and the corresponding fre-
quency of the polarization branch j; and H is a recipro-
cal lattice vector. The + (—) sign refers to one-phonon
annihilation (creation). Using (1) and (2), each peak in
the energy spectrum of neutrons inelastically scattered
in a given direction yields a point on the dispersion
curve. Since copper possesses a monatomic lattice, there
are only three "acoustic" branches to the dispersion
relation.

The "cold neutron apparatus" on the DIDO reactor
at Harwell was used for the experiments, and measure-
ments were made using the time-of-Right technique to
energy analyze the scattered neutrons. The apparatus has
been described in detail elsewhere. "A collimated beam
of neutrons from the liquid-hydrogen source from the
reactor passes through filters of bismuth and beryllium
maintained at liquid-nitrogen temperature. The emerg-
ent beam consists of neutrons with X)3.96 A and con-
tains very little fast-neutron contamination. It is then
transmitted through a rotor, which serves to pulse and
monochromate the beam. Under the conditions of the
experiment, the mean wavelength of neutrons incident
on the sample was 4.18 A, and the mean wavelength
resolution was given by AX/X=2. 8%.

The neutrons scattered from the sample were detected
in an array of 12 counters arranged in the same vertical
plane at angles of 30' to 90' to the incident beam
direction. The counters were all approximately equi-
distant from the sample, the mean Right path being 2.34
m. The counters used were (LiF-ZnS) scintillators,
6tted with pulse-shape discriminating circuits to mini-
mize the counting of gamma-ray background. The time-
of-Right spectra in all the counters were simultaneously
recorded on magnetic tape. Two monitor counters at a
distance of 1.5 m apart in the incident beam recorded
the time-of-Bight spectrum of the incident beam, and
from these the mean wavelength of the incident spec-
trum, and the "start time" of the neutron pulse at the
rotor center were determined.

The two samples used were cylindrical single crystals
of copper of length 5 cm and diameter 3.8 cm with the

'D. H. C. Harris, S. J. Cocking, P. A. EgelstaB, and F. J.
Webb, Inelastic Scatterin of Neutrons in Solids und Liquids
(International Atomic Energy Agency, Vienna, 1963), Vol. 1,
p. 107.
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FIG. l. Some typical time-of-Qight spectra. The smooth curves

represent the Gaussians 6ttcd on a uniform background. Thc upper
arrows represent the positions of the weighted mean times of
arrival (AM) and the centers of the Gaussians (GM), respectively.
The lower arrows indicate the extents within which the weighted
time averages of each of thc peaks were taken.

cylinder axes approximately coincident with the f001j
and f110j crystallographic axes, respectively. They
were purchased from Messrs. Metal Research Ltd. ,
Cambridge, England. The experiments were done with
the appropriate crystallographic axis aligned normal to
the plane of scattering, whi1st the crystal was rotated
about this axis into diA'erent positions for successive
runs, within the angular limits prescribed by crystal
symmetry. Thus all the phonons measured had their
wave vectors lying in either the (001) or (110) planes
of the reciprocal lattice. Owing to the fQ e;(q)$' factor
in the one-phonon coherent cross section, r fwhere
e;(q) is the phonon polarization vectorj, points were
only obtained on the two branches of the dispersion
relation which were polarized in these planes.

Some typical time-of-flight spectra observed in the
counters are shown in Fig. 1. These show the distinct
one-phonon peaks superimposed on a background com-
posed of a uniform part due to stray-neutron background
and an energy-dependent part due to incoherent and
multiphonon scattering from the sample. The one-
phonon peaks are broadened due to instrumental reso-
lution and crystal anharmonicity. In order to define a
time of arrival at the counter of the neutron group
scattered in the one-phonon process, the following pro-
cedure was used. A least-squares fit was made to each
spectrum of a number of Gaussian peaks superimposed
on a uniform background, the amplitudes, widths, and
centers of the Gaussians and the magnitude of the back-
ground being left as adjustable parameters. Such a 6t

1s shown 1n Fig. 1. Broad, low-RIDplltude GRusslRIls

were used to 6t the incoherent and multiphonon back-
ground, whilst the sharp large-amplitude Gaussians
corresponded to the one-phonon peaks. In this way, the
e6ects of the background were approximately sub-
tracted from the one-phonon peaks. In order to allow
for the possible asymmetries in the one-phonon peaks,
as were sometimes observed, the centers of the Gaus-
sians were not used to de6ne the mean time of arrival
of the neutron group. Instead, the weighted time aver-
age of all the counts in the peak (after substracting the
background as described above) was taken, the averag-
ing being done over an extent of 4 standard deviations
on either side of the center of the Gaussian fitted to the
peak. When two peaks were close enough together to be
relatively unresolved, it was found to be more accurate
to use the centers of the 6tted Gaussians.

Because of the appreciable absorption cross section of
the copper nuclei (8.12 b at 4 A) the flight paths for
both the incident and scattered beams were not taken
to the geometrical center of the sample, but to the
"center of scattering" in the sample, This correction was
calculated separately for each measured phonon, as it
depends on kr. In this way, the mean incident and scat-
tered wavelengths corresponding to a one-phonon peak
were obtained. It can be shown that with ko and k~

as defined by the mean direction and wavelengths of the
incident and scattered beams, respectively, u, (q) is
obtained already correct to 6rst order in the instru-
mental resolution, i.e., correct to quantities of the order
of (AX/X), 68 etc. (where 68 is an angular resolution
width). To further correct for 6nite instrumental reso-
lution) second-order corrcctlons wclc made to thc mean
scattered wavelength, to obtain the "mean one-phonon
process" which corresponds to scattering of the mean
incident wavelength at the mean scattering angle deter-
mined by the geometry of the apparatus. It can be
shown" that the second-order correction can be ex-
pressed as a linear combination of the second moments
of the different resolutions of the apparatus, in both
wavelength and angular collimation. The appropriate
coef6cients depend in a rather complicated way on the
first and second derivatives of v;(q) with respect to q and
involve also the variation of the scattering cross section
and counter cftlciency over the peak. The corrections are
appreciable only when

~
1&()'r/2E') V, v; (q) kr

~
becomes

small fwhere E'=energy of scattered neutron, and the

+(—) sign refers to phonon creation (annihilation)
processesj. In order to make these corrections, a force-
constant model of the dispersion relations was used as
an interpolation formula for the frequencies. This model
was obtained by a preliminary 6tting to the uncorrected
results. The corrected results were then re6tted by
another force-constant model. The corrections were
small and not sensitive to the model of v;(q) so that the
method was rapidly convergent.
"S. K. Sinha, Ph.D. thesis, Cambridge University, 1964

(unpublished).
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The errors in frequency and wave vector were com-
bined to give an effective error in frequency above,
according to the formula,

ai.ll
——al —V,V;(q) aQ, (3)

where BI and hQ are, respectively, the errors in fre-
quency and wave vector alone. The contribution to the
above expression from the different estimated errors in
measuring Right paths, angles, and from the statistical
error in determining the mean time of arrival of the
neutron group at the counters, were squared and added
separately as these errors are independent. The 6nal
result gives a single weight to any determined point on
the dispersion curve. The average effective error in
frequency calculated in this way for all the phonons was
&4.3%, but the average scatter of the points about the
fitted force-constant model was only +2.6%. The dis-
crepancy might be due to some systematic error, but is
most probably due to overestimation of some of the
errors in the measured parameters.

Except for the two degeneracies along the $110jaxis,
the different observed branches of the dispersion rela-
tion in the (001) and (110) planes of copper are fairly
well separated in frequency so that assignation of an
observed point to a particular branch was not a great
problem. Occasionally, it was necessary to use the
L(} e;(q)$' factor in the cross section to determine the
appropriate branch from the observed intensities.

Altogether 476 points were measured on the dis-
persion curves in both the (001) and (110) planes of
the reciprocal lattice of the crystal. Table I lists all the
measured phonons along the symmetry directions of
the reciprocal lattice. Phonons with wave vectors lying
within a 5' sector centered about one such direction
were assigned to this direction, the frequency being in-
terpolated by means of the fitted force-constant model
to give the frequency of the phonon along the chosen
direction with the same

~ ll~ as the original phonon. If
AJ &h is the change in the frequency of the 6tted model
from the actual q to the q along the chosen direction, the
interpolated frequency in the symmetry direction is
given by adding d v&h to the actual observed frequency.
hv&h is usually small anyway. For brevity the off-
symmetry phonons are not listed here, although they
have been used in the 6tting procedure outlined below.

Figure 2 shows the symmetry direction results,
together with the x-ray results of Jacobsen' and the
neutron-scattering results of Cribier et al."Also shown
are the dispersion curves calculated from the 6tted
force-constant model. The slopes of these fitted curves
at the origin are constrained to follow those given by
the room-temperature elastic constants measured by
Overton and Gaffney. "It can be seen that the present
results are in good agreement with these elastic constants
in giving the slopes of the dispersion curves at the
origin,

Large discrepancies with the x-ray results are evident,
ll W. C. Qverton, Jr. and J. Gaffney, Phys. Rev. 98, 969 (1955).
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DISPERSION CURVES FOR COPPER (300'&)
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Fro. 2. The smooth curves represent the sixth-neighbor force model Gtted to the present experimental data,
and to the measured elastic constants. g is in units of y p (2'/a).

particularly near the zone boundaries on the L100)
axis. The agreement is best for results along the $111)
axis. On the whole, the x-ray results give frequencies
which seem to be too low for the longitudinal modes.
The agreement between the present results and those
of Cribier ei a/. is better. However, along the [110)
axis, the present results seem to indicate that the I.and
T& modes cross over before the zone boundary, whereas
the results of Cribier et a/. indicate the opposite. It is
to be noted that symmetry arguments indicate that
these two branches must cross somewhere along the

0.2
04
0.6
0.8
1.0

0.1
0.2
0.3
0.4
0.5

0.2
0.4
0.6
0.75

(q,o,o)r
1.57
3.03
4.18
4.86
5.05

(tee)r
1.05
1.99
2.73
3.20
3.35

(Lq,o)TP Cu/Ni
1.32 1.48
2.77 1.31
3.99 1.25
4 61 ~ ~ ~

Cu/Ni'

1.29
1.26
1.22
1.24
1.24

Cu/Ãi
1.27
1.24
1.24
1.26
1.27

(q, q, O)T b

2.25
4.35
5.90
6.67

(q,o,o)L Cu/Ni'

2.31 1.35
4.40 1.27
5.95 1.23
6.90 1.21
7.20 1.19

(y,q,q) L Cu/Ni
2.38 1.28
4.55 1.23
6.13 1.21
7.05 1.21
7.29 1.22

Cu/Ni (g,g,olL Cu/Ni
1.23 3.62 1.23
1.26 5.98 1.21
1.16 6.38 1.20
1.13 5.78 1.26

& The ratio for corresponding frequencies in copper and nickel has been
obtained using the values for nickel given in Ref. 11.

b The polarization vectors for the Ti and Tg modes propagating along the
f110j axis are parallel to f110j and f001j, respectively.

TABLE II. Interpolated normal-mode frequencies in copper
at 300'K for points along symmetry directions. (u in 10"cps, and
g in units of 2x/a. )

L110) axis, as at the point (2~/a)(1, 1,0) (@=lattice
constant) the L $110) branch has to be degenerate
with the T [100) branch at a frequency of 5.05&&10~2

cps whereas the T~ L110) branch has to be degenerate
with the L L100) branch at a frequency of 7.2X 10"cps.
If the results of Cribier ef al. for this axis were correct,
the last (unmeasured) bit of their longitudinal branch
would have to dip very steeply just before the zone
boundary. The T L111) branch as measured by these
authors seems also to be slightly lower than in the pres-
ent measurements.

The lattice frequencies at some special values of g
as deduced by interpolation from the present results,
using the htted force-constant model, are given in
Table II. For comparison, the table also shows the ratio
of the frequencies in copper to the corresponding fre-
quencies in nickel as determined by Birgeneau et al."
It may be seen that this ratio is fairly constant at about
1.25 for all frequencies. At low frequencies, the ratio is
in general larger than at higher frequencies.

ANALYSIS OF RESUI TS

As is well known" the frequencies of a monatomic
lattice are obtained from the solutions of the secular
equation

~D,s(q) —kr'3fvg(q)
~
=0, [HE=Mass of ion), (4)

where the dynamical matrix D p(q) may be expressed
as a Fourier series,

D s(q) = —g P s(l) exp(iq 1), (5)
'7 M. Born and K. Huang, The Dynamical Theory of Crystal

Lattices (Clarendon Press, Qxford, England, 1954).
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where I denotes a vector from the origin to another ion
of the lattice and p p(1) may be regarded as the force
constant matrix between the ion at 1 and the origin ion.
Strictly speaking, it is not possible to determine the
p s(1) from the measured lattice frequencies, without a
knowledge of the polarization vectors as well. "However,
in the absence of such data, the usual procedure has
been to try to fit a small number of such parameters
to the v;(q) alone by postulating the p s(1) to be zero
after a stipulated number of neighbors. The number of
such parameters that can then be determined from a
knowledge of the lattice frequencies in the the (001)
and (110) symmetry planes of a cubic lattice has been
discussed by Squires. ' He has shown that from a
knowledge of the frequencies in the planes, all the force
constants for a model extending up to at least 15th
neighbors can be determined. It should be noted, how-
ever, that if one does not restrict oneself to a 6nite
neighbor model, can obtain different sets of such "force
constants" which will reproduce the same lattice fre-
quencies, but with different polarization vectors. "The
extent to which we can believe the fitted parameters
for the 6nite-neighbor model chosen will therefore be
somewhat influenced by the extent to which we believe
in the 6nite range of forces between the atoms in the
lattice, even if a "good 6t" is obtained to the experi-
mental results. As discussed below, the behavior of the
parameters under the fitting process in the present case
was more consistent with the existence of long-range
forces.

The method of least-squares fitting of force constants
to the dispersion relations for cubic crystals has been
discussed in detail by Squires. " 'The process is carried
out for increasing numbers of neighbors in turn, using
the values of the preceding fit as initial estimates for
the force constants at each stage. The force constants
are at all stages subjected to three linear constraints
imposed by the three measured elastic constants as
mentioned above.

It was found that as higher terms in the series for
D s(q) were included, the fit improved rapidly up to a
third-neighbor model and thereafter much more slowly.
The process was continued up to sixth neighbors. Un-
fortunately, the individual values of the smaller force
constants (involving second and further neighbors) did
not show convergent behavior as the higher terms were
included, but instead showed fluctuations of their own
order of magnitude or greater. This is similar to the
behavior reported by Squires ' in an analysis of the dis-
persion relations in aluminum. This may be partly due
to the fact that, except along symmetry direction of the
reciprocal lattice, the functions v,'(q) are not expressible
as a series of orthogonal functions, with the parameters
as coef6cients of successive terms. "However, the result
does show that a force-constant model involving a small

' A. J. E. Foreman and W. M. Lomer, Proc. Phys. Soc.
(London) B70, 1143 (1957)."G. L. Squires, Arkiv. Fysik 25, 21 (1963).

~ G. L. Squires, Arkiv. Fysik 26, 223 (1964).

TABLE III. Force constants for best fitted 6th-neighbor model. '
(al ps ps)

P=——
~

ps ns p~
~

Units are in dynes/cm.
Eps pr s)

Neighbor location

First (1,1,0)

Second (2,0,0)

Third (2,1,1)

Fourth (2,2,0)

Fifth (3,1,0)

Sixth (2,2,2)

Force constants

ay= 13478
egg= —1215
p, = 14982
ay=18
n2= —48
cej =507
ay=239
Pg ——159
P,=378
~g= 267
Ag = —32
p, =—36
ng= —110
ng = —203
cx11=37
p3=18
ay = —157
pg

———58

& The force constants not listed may be obtained from the above using
symmetry arguments.

number of neighbors is probably not valid. The values
of the nearest-neighbor force constants, on the other
hand, were always found to be very much larger than
those involving further neighbors, at all stages of the
6tting process. Qualitatively, one can at least say that
this reQects the dominance of the exchange or overlap
repulsion between neighboring ion cores, which is
known to be large in copper. "

For the above reasons, the actual numerical values of
the final sixth-neighbor model cannot be ascribed any
physical signi6cance, but can be considered rather as
providing a useful interpolation formula for the dis-
persion relations, from which calculations of quantities
such as the frequency distribution function or the
second-order resolution corrections could be made.
Figure 2 shows that the interpolation formula is very
good and is within the limits of experimental accuracy.
The force constants are listed in Table III.

Using the above sixth-neighbor force model, a fre-
quency distribution function g(p) was constructed by
sampling the eigenvalues of the dynamical matrix at a
grid of 6281 points equally spaced inside the elementary
1/48 volume of the first Brillouin zone. The q values at
which the frequencies were calculated were then multi-
plied by the appropriate factor to give all such equiva-
lent points in the Brillouin zone. The frequency interval
chosen to collect a sampling of the number of frequencies
in the interval was 0.035X10" cps and the histogram
thus obtained was smoothed out to form a continuous
curve. This is shown in Fig. 3 which also indicates the
positions of some of the critical points" as obtained from
the appropriate points on the dispersion curves. It may

N. F. Mott and H. Jones, The Theory of the Properties of
Metals arId Alloys (Oxford University Press, New York, 1936), p.
144.

"L.Van Hove, Phys. Rev. 89, 1189 (1953).
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tion is satis6ed to within 3%%u~ and is in fact always well
satisfied for all stages of the fitting process beyond third
neighbors. Because of the indeterminacy of the smaller
force constants as discussed earlier, it is possible that a
good 6t may also be obtained by constraining the force
constants from the start to be completely axially sym-
metric. This has not been done for the present results.
Again, such a model would certainly have to go out to
at least third neighbors to give a good Qt.

COMmMSom wry THEORY

FIG. 3. Frequency distribution functions for copper at 300'K. The
arrows indicate the positions of some of the critical points.

be seen that the g(o) obtained is appreciably different
from that obtained by Jacobsen' by fitting a third-
neighbor model to his measured dispersion curves,
especially on the high-frequency side. It is very similar
on the other hand to that obtained from a simple two-
constant model postulated by Leighton. ' Figure 4 shows
that the temperature variation of the Debye tempera-
tures obtained from the above g(o) is in very good agree-
ment with experiment" '4 except at very low tempera-
tures. The discrepancy at low temperatures is due to
the model having been Gtted to the dispersion relation
at room temperature. At very low temperatures, the
elastic moduli determine the Debye temperature, and
are about 5% different from those at room tempera-
ture. ' Table IV shows that the calculation of the
Debye-Wailer factor for copper at diQerent tempera-
tures using the above g(o) is also in good agreement
with experiment. The experimental and other theoretical
values in that table are listed by De Wames et al.'5 and
include calculations based on their axially symmetric
(A.S.) force model. ' It is to be noted that the sixth-
neighbor "best Gt" force constants used in our calcu-
lations do not all satisfy the A.S. condition. However,
for the nearest-neighbor force constants, the A.S. condi-

TmLz IV. Temperature variation of the Debye-Wailer factor
for copper. All values except those from the present calculations
taken from Ref. (25). C(T), de6ned by e ~=e @'~'&& )t', is in
units of 10~ eV '.

Recently, there have been several theoretical treat-
ments of the lattice dynamics of metals, which start
from more basic principles than the force-constant ap-
proach discussed above. 5"' See, for example, the re-
cent review article by Cochran. "

In particular, Toya" has applied his theory to a calcu-
lation of the dispersion relations in copper. The dynami-
cal matrix is conventionally expressed as a sum of terms
due to three diferent types of interactions,

D-t (II) =C-s(tl)+~-t (e)+~-t (tl), (6)

where C p(ti) is the contribution from electrostatic
forces between ions regarded as point charges, such as
has been evaluated by Kellermanss; R tt (tl) is the contri-
bution from direct overlap or exchange repulsions be-
tween ion cores; and E„tt(ti) is the contribution of the
conduction electrons, representing the eGective ion-
electron-ion interaction.

We shall 6rst discuss the second term above. As
stated in the Introduction, the core-overlap interaction
parameters are known to be large for the noble metals, "
(as is also evident from the results of the force-constant
fitting procedure described above), but are not very well
known. Fuchs" '2 attempted a quantum-mechanical
calculation of the overlap interaction between two

I I I I I I I I

350- —-- 2 constant model
~-.--Delaunay modet

3I 0 ~g &i&«Mean expt (borak et aL 1955)'"' Giauquefgeads0941)

f 330

320

20
80

300
400

0.544+0.02
0.588&0.02
0.755+0.04
2.17 +0.14
3.14 +0.25

0.555 0.552
0.565 0.566
0.754 0.762
2.10 2.10
2.76 2.77

Exptl. (Flinn Present Model
T('K) et ul. ) calculation (a)'

Model
(b)b

0.579
0.593
0.808
2.29
3.02

Model
(c)'

0.570
0.582
0.779
2.18
2.87

Debye
model

0.520
0.532
0.697
1.93
2.50

310

300 I I I I I I I I

0 20 60 100 140 110
T'K ~

FIG. 4. Temperature variation of the Debye temperature for
copper. The experimental points, and the calculations, other than
the present one, are taken from Ref. 23. The full line denotes the
present calculation.

a Model (a)—"2 parameter" model due to Leighton (Ref. 1).
b Model (b)—Model due to Jacobsen (Ref, 5).

Model (c)—Axially Symmetric model due to De Wames et aL (Ref. 25).
~ W. C. Overton, Jr., VIIth International Conference on Lou

Toot Peratttre Physics (University of Toronto Press, Toronto,
1960), p. 677 and references therein.

~ W. F. Giauque and P. F. Meads, J. Am. Chem. Soc. 63, 1897
(1941)."R. E. De Wames, T. Wolfram, and G. W. Lehman, Phys.
Rev. D1, 528 (1963).

"L.I. Sham, Proc. Roy. Soc. (London) A283, 33 (1965).
"W. A. Harrison, Phys. Rev. 129, 2503 (1963); 129, 2512

(1963).» W. Cochran, Imetastic Scatterswg of Nesttrorts (International
Atomic Energy Agency, Vienna, 1965), Vol. I, p. 3."T. Toya, J.Res. Inst. Catalys. Hokkaido Univ. 9, 178 (1961.).

3'E. W. Kellerman, Phil. Trans. Roy. Soc. London 238, 513
(1940)."K.Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935).

ss K. Fuchs, Proc. Roy. Soc. (London) A153, 622 (1935).
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TABLE V. Values of the core-overlap interaction parameters
in copper as obtained by diGerent methods.

Fuchs'
Huntingtonb (a)

(b)
Mann & Seeger (a)

(b)
(c)
(d)
(e)
(f)

Toya
White
Present calculation
Thompson

A {eV)

0.042
0.053
0.038
0.011
0.041
0.077
0.075
0.0910
0.1081
0.120
0.185
0.017
0.045

16.47
13.9
17.2
26.9
16.6
13.6
12 55
12.10
11.75
11.50
11.47
24:.11
13.0

' Fuchs did not assume the Born-Mayer form for p&(r). His results have
been converted into equivalent Born-Mayer parameters.

b The values given are quoted in Ref. 35. Values (a), (b), and (c) of
Mann and Seeger were obtained by fitting to the room-temperature shear
moduli by making different assumptions about the electronic contributions.
Values (d), (e), and (f) were similarly obtained by Gtting to the pressure
variation of the shear moduli with similar assumptions.

Various attempts" " have been made to estimate A
and p from the values of the measured elastic moduli,
or from other data, such as the variation of the compres-
sibility with pressure. Mann and Seeger'4 have given a
critical review of the values of these parameters. In each
case, various assumptions have been made about the
value of the electronic contribution to the elastic moduli.
These assumptions cannot be justihed theoretically
to better than an order of magnitude. It is not surprising
therefore that there is not very good agreement between
the values obtained by the different methods. Table V

TABLE VI. Relevant constants for copper.

fs
D/Do
m+
lV

ky
C
Eg

3.615 A
1.413 A
0.875
1.0 in units of free-electron mass
8.468X 10» cm-3
1.358 i-'
1.37
7.04 eV

~ H. B.Huntington, Phys. Rev. 91, 1092 (1953).
'4 K. Kambe, Phys. Rev. 99, 419 (1955)."E. Mann and A. Seeger, J. Phys. Chem. Solids 12, 314 (1960).

copper ions, and showed that good agreement was ob-
tained with the measured elastic moduli, if one assumed
that the conduction electrons did not contribute at all
to the shear moduli. However, it will be shown that for
a metal with appreciable band gaps, such as copper, this
assumption is not valid.

The core-overlap interaction is usually represented
in the Born-Mayer form, as a pair-potential function
between neighboring ion-cores, by

$ (r) =A exp(p(rr —r)/rr)
(rr ——nearest-neighbor distance j. (7)

5
N~asg 4

Cl 3
ii

2

0 2 4 6 8 10 12 14 . 6 4 2 0 2 4 6 8
~9&~ f110] F0 0] t1113

FIG. 5. Comparison of the theoretical calculations of the disper-
sion curves in copper along the symmetry directions with the pres-
ent data (solid circles) and those of Cribier et al. (squares). The full
line represents the present calculation assuming central core-
overlap forces. The dotted line represents a similar calculation as-
suming general 6rst-neighbor core-overlap forces. The dashed line
represents calculations based on White's model, and the line
- a-a- a- represents Toys's model. For the T&t 110$branch, Toys's
curve is indistinguishable from the full line, while for the T$111j
branch, the dotted linc coincides with the full line. For the Tr 100j
branch, Toya's curve coincides with the full line near the zone
boundary.

lists the different values for A and p as given in the
literature. Also shown are values obtained from recent
experiments by Thompson" on the tunnelling of high-
energy copper ions through a copper lattice. These pro-
vide in principle a direct observation of the interaction
between two copper ions. It is to be noted that, whether
the core-overlap interaction is really given by an expres-
sion of the form (7) or not, A and p merely provide
another way of expressing the two basic core-overlap
parameters that enter into the lattice dynamics,
namely,

and y"(r)
~
„„,.

Table VI lists some of the relevant constants for copper.
The procedure adopted by Toya was to use his theory

to calculate E s(q) and leave A and p as two adjustable
parameters to be obtained by Qtting the lattice fre-
quencies for the L L111]and T $111]modes at the zone
boundary, as measured by Jacobsen. ' Figure 5 shows
the dispersion curves calculated by Toya along the
symmetry directi. ons of the lattice. It may be seen that
whilst agreement with the experimentally observed
transverse modes is good, the calculated frequencies for
the longitudinal modes and the Tr L110) mode tend to
be too low. This is possibly due to the fact that the core-
overlap parameters A and p were litted to Jacobsen's
results which are too low in comparison with the neu-
tron-scattering data, especially for the longitudinal
mode. Recently Toya" has re6tted A and p for copper

"M. W. Thompson, Atomic Energy Research Establishment
(Great Britain) Harwell Report, 1964 (unpublished). See also
R. S. Nelson and M. W. Thompson, Phil. Mag. 8, 1677 (1963).

'7 T. Toya, Inelastic Scattering of Seutrons in Solids and Iiglids
(International Atomic Energy Agency, Vienna, 1965), Vol. I,
p. 25.
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to the present neutron results and obtained much better
agreement for the longitudinal modes as well. However,
it should be noted, that, using Toya's calculated values
for E e(q) it is intrinsically impossible to find A and p
to Qt all three measured elastic constants, without
modifying any parameter in Toya s theory. Since, in
principle, Toya's theory provides a more accurate
method of calculating the electronic contribution to the
elastic constants than previous methods, it was decided
to attempt to modify a single parameter in Toya's
expression for E„e(q) so as to obtain an A and p to fit
all three elastic moduli.

In order to facilitate the discussion afterwards, we
shall erst consider the general expression for E e(q)
which is valid even for metals which are not "free-
electron-like. "Such an expression has been derived by
Sham, " and, within the "local pseudopotential ap-

proximation, "it is

E-e(q)=(4 N'/3)4p+ 2 4 p(q, H, H')
H,H'

&-e(o H»') (g)
H, HIgp

(N=number of conduction electrons per unit volume;
H, H' denote reciprocal lattice vectors), where the first
term is the effect of the uniform part of the conduction-
electron charge density, and

P e(q, H, H') = L(4rrNe'/~ q+H~') {1—f(q+H) }j—'

XL.-'(q+H, q+H') —&EH l[(q+H). (q+H') e3

XU*(q+H) U(q+H'), (9)

where U(K) is the Fourier Transform of the "bare"
ionic pseudo-potential, and the dielectric matrix is
deined by

4xSe' e(k) —pr (k+q+H")
e(q+H, q+H )= 8HH' — L1—f(q+H)]

/q+H/' j,H" E(k)—E(k+q+H")

X(1 ~~'«+ &'(I+q+H")(1+q+H"(e'«+ '&'(k). (10)

E(k) refers to the single-electron energy and n(k) to
the occupation number of state

~
k). The states

~
k) are

taken to be the "smooth" parts of the electron wave
function, or a linear combination of OPW's. In Eqs. (9)
and (10), f(q+H) is a function that approximately
takes into account exchange and correlation effects.
Sham" takes it to be

]q+H[s
f(q+H) =-

2 (q+H~s+kr+k. s
'

(k~ ——Fermi wave vector and k, =the Fermi-Thomas
screening vector) which tends to one-half for large

~
q+H ~. The last term in (8) arises from the "intrinsic

two-phonon process'"' and can be shown to be of the
right magnitude to make the frequencies tend to zero
as q~0.

Unfortunately, if the "smooth" parts
~
k) of the elec-

tron wave function gz have to be represented by more
than a single plane wave, and the E(k) are not free-
electron-like energies, then the calculation of e(q+H,
q+H') becomes extremely complicated. Toya's theory
is equivalent to invoking the single orthogonalized-
plane-wave approximation. In this approximation, only
terms with 8=8' survive in Eqs. (9) and (10). Toya
further takes exchange and correlation into account by
choosing

C[q+H)'
f(q+H) = LC I

q+HI'~&4k''j, (12a)
4k p'

where C is a constant. And for C ~q+H ~') 4k&', Toya
puts

Thus the large wave-vector limits of (11) and (12) are
different.

To further allow for the effect of exchange and
correlation on the E(k), Toya multiplies LE (k)—E(k+q+H")j ' in Eq. (10) by a factor D/Dp
representing the ratio of the density of states at the
Fermi surface with and without such effects. Finally,
as an analytic expression for the Fourier transform of
the pseudopotential. Toya adopts the expression origin-
ally derived by Bardeen" using a different method.

U(K) =
I (4prNe'—/K')+ Up7g(Er, ), (13)

where r, =atomic cell radius, and

g(x) =3 (sine —x cosx)/xs

and Up is a constant denoting the depth of the square-
well potential in the atomic cell, which approximates the
sum of the Wigner-Seitz potential and the potential due
to a uniform density of conduction electrons in the
Wigner-Seitz cell. By analogy with Bardeen's original
result, it may be represented by

Up ——V (r,) Ep, —
where V(r,) is the Hartree-Fock (H.F.) potential at
the surface of the atomic sphere and Ep is the H.F.
energy of the state k=0. Toya takes as the value of this
parameter 4.05 ev on the basis of earlier band-structure
calculations for copper. For our calculation, we have
regarded this as the most uncertain parameter in the
theory.

It should be noted that the last term in Eq. (8)

f(q+H) =1. (12b) PP J. Bardeen, Phys. Rev. 52, 683 (193'/).
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X{G(t)}'{I(t)}-'f(t)+4~Pe' P
I+p

where

and

X{G(t )}'{I"(t)}-'f(t ), (16)

t=(q+H)/2k, ; tH=H/2k, ,

3Ã
G(t)= 1+U, t' g(2k, r.t),

e'ky

1—t2 1+t
f(t) =-', + ln

4t 1—t

Dp xk'kg
I'(t) =— t2 I Ctm) 1].

D m*e'
(17)

By expanding in the long-wavelength limit we may
evaluate from Eq. (16) the expressions for the electronic
contributions to the elastic moduli, which we write in
the form,

4mÃ'e' 1
(cyy+2c44)

3 Skf'

Dp vriPkt 24r 2kf' 36+Up)
X i6C—6— — +

D m*e' 5 e'kt /

+P {S"(ta)+2S'(t~)/t~}, (18a)

vanishes in the single OPW or "free-electron-like"
approximation. This is consistent with the fact that
such an approximation implies vanishing band gaps and
hence requires U(K) to vanish at all reciprocal lattice
points except the origin. Hence Toya adds a correction
term to g(Kr, ) in Eq. (13),so that U(K) approximately
vanishes for K= (2m/a) (1,1,1) and K= (2m/a) (2,0,0),
although this makes U(K) for larger values of K un-
reliable. However, he then cuts off the sum in (8) for

~ q+8
~
)(2'/a) &3. In our present calculation, however,

the correction terms to g (Kr,) have not been added, and
the sum in (8) has been taken up to

~
K

~

= (2~/a) (11)'t',
to approximately allow for the fact that cooper has
finite band gaps. The last terms in (8) are now non-
vanishing and have also been added to give the correct
limit at g =0. Nevertheless, when calculating the expres-
sion (9), single plane-wave states were assumed, and
Toya's expression adopted.

We obtain from Eqs. (8)—(10) and (12)—(14),

4mXe' (q+H) (q+H) p
5 p

—4mSe' Q
)q+H~'

AS'e'
(cu —c~2) = — P D4H»' 2H—p') Y(tII)

Sk&' H~p

+ (a.4 II.—2IIp2)Z(t~) J, (18b)

4s E'e' 2S(t~)
C44

8kp~ H~p tII2

where

+2 (II '+IIp') Y (t~)+2II 'H p'Z(t~)

(18c)

S(t) = {G(t)}'{I'(t)}'f(t)

1 S' t) 2S(t)
Y(t) =

4k p' t'

1 S" t) SS'(t) 8S(t)
Z(t) =

16%&4 t4

n, P denote any two different Cartesian components,
and the primes denote differentiation with respect to t.
From Eqs. (18b) and (18c) it maybe seen that only the
umklapp processes from H/0 contribute to the shear
moduli. This contribution will only vanish in a genuinely
free-electron-like approximation, as then U(H) =0
implies S(ter) =0 for 8WO. For a metal with appreciable
band gaps, however, the conduction electrons will

certainly contribute to the shear moduli.
The Coulomb or electrostatic contribution to these

moduli has been given by Fuchs" as

(Cn —C~~) c=0.2115$e'/2a,

(C44) c=0.9479Ne'/2u,

while (Cu+2c44)c=0 because the electrostatic interac-
tion does not contribute to the trace of the dynamical
matrix. "Using the above values, the contributions of
the core-overlap interactions to the three elastic moduli
were obtained by subtracting the electronic and Cou-
lomb parts from the measured elastic moduli (see Table
VII). These three quantities cannot in general be solved
in terms of the two parameters A and p. By regarding
Up as a variable parameter, it was found possible to ht
all three elastic moduli with central core-overlap forces
if Up=0. 5 eV. We may compare this with estimates of
the quantity L V(r,)—Eof Lsee Eq. (15)] obtained from
recent band-structure calculations on copper"" as
listed in Table VIII. The value of A and p obtained from
the above 6t to the elastic constants are listed in
Table V.

Dispersion curves along the symmetry axes calcu-
lated from Eqs. (6) and (8) using the above parameters
are shown in Fig. 5.The fit along the transverse branches
is very good. The longitudinal branches tend to be a

3' G. A. Burdick, Phys. Rev. 129, 138 (1963).
4' B.Segall, Phys. Rev. 125, 109 (1962).
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TABLE VII. Elastic constants of copper and theoretical esti-
mates of various contributions to shear moduli. Units are in
10"dyn/cm'.

20'K.&~6~

C1& 17.618
C12 12.492
C44 8.173

Room temperature&'6)

16.839
12.142
7.539

Cii-Cxs
Core overlap
Electronic
Coulomb
Total
Exptl. (Room temp. )
Exptl. (20'K}

C44

Core overlap
Electronic
Coulomb
Total
Exptl. (Room temp. )
Exptl. (20'K)

Fuchs
4.498
0.0
0.573
5.071
4.7
5.13

Fuchs
6.266
0.0
2,57
8.836
7.54
8.17

Present
calculation'

4.017
0.113
0.573
4.703

Present
calculation'

5.345—0.375
2.57
7.54

White'
6.418—2.373
0.573
4.618

White'
12.17—7.32
2.57
7.42

a Note: Both White's model and the present calculations have been Gtted
to the elastic moduli at room temperature.

TABLE VIII. Various estimates of Uo= V(r,) —Eo for copper.

Present calculation
Burdick (39)
Seawall (40)
Chodorow (quoted by Burdick)

v(~,)—E,
0.5 eV
1.361 eV—0.871 eV
1.414 eV

little too high near the zone boundaries, the maximum
discrepancy being about 4%. Dispersion curves calcu-
lated for oA-symmetry directions also show very similar
agreement with the experimental results.

It is interesting to compare the value for P'(r)
~ „„,

Lwhere p(r) is the core-overlap optential defined in P),
and rt is the distance between neighboring ions7 ob-
tained above with that obtained by applying the condi-
tion for lattice equilibrium. In the "free-electron" ap-
proximation, the expression for dE,/dr, (where E, is
the cohesive energy) has been evaluated by Toya."
Equating this to zero, we get for g'(r~) the value of
—0.2646X10' dyn/cm. The value calculated above is
—0.1034)&104 dyn/cm.

An attempt was also made to use a general (i.e., non-
central) core-overlap interaction model keeping Us fixed
at the value chosen by Toya. We then have three Grst-
neighbor force parameters to describe this interaction
and these can be solved in terms of the measured elastic
moduli and the calculated electronic and Coulomb con-
tributions. The dispersion curves calculated using this
model are shown as the dotted curve in Fig. 5. It is seen
that agreement with experiment is generally worse than
in the case of central core-overlap forces. This is borne
out by the fact that the least-squares-Gtted first-
neighbor force constants always nearly satisfied the
axially symmetric condition.

White" has also attempted to calculate directly the
interactomic force constants in copper, using an ap-
proach rather different from that of Toya. He has calcu-
lated the force constants out to third nearest neighbors
and fitted the core-overlap interactions to the elastic
constants. His values for A and p (given in Table V)
seem however considerably larger than all other values
obtained for these parameters by other methods.
Dispersion curves calculated from his theory are also
shown in Fig. 5.

SUMMARY AND DISCUSSION

An interpolation formula for the dispersion relations
in copper at room temperature has been obtained by
making a least-squares 6t of a sixth-neighbor inter-
atomic-force-constant model to the neutron-scattering
results. However, because of the large variation of the
parameters with the introduction of increasing neigh-
bors, the values obtained for these cannot in themselves
be ascribed any physical signihcance, beyond showing
that (a) nearest-neighbor interactions dominate and
that (b) the forces extend out to at least third neighbors
and probably up to sixth neighbors.

The results have been compared with calculations
based on Toya's treatment (with a few minor modiiica-
tions) of the electron-phonon interaction in monovalent
metals, which is equivalent to invoking the "free-elec-
tron-like" approximation for the electron wave func-
tions, as discussed above. The values of the three most
uncertain parameters in the theory, representing the
depth of the pseudopotential-well due to the ions, and
the two core-overlap interaction parameters have been
obtained by fitting the theoretical expressions for the
frequencies in the long-wavelength limit to those ob-
tained from the measured elastic constants. The value
of Uo thus obtained is not inconsistent with estimates
obtained from recent band-structure calculations on
copper, "4s although the values of U(K) derived from it
using Bardeen's expression are not consistent with
the band structure, as discussed below. The values
obtained for the core-interaction parameters are not
very different from other estimates of these parameters.
Phonon-dispersion curves calculated from these param-
eters show fairly good quantitative agreement with the
experimental results, especially for the transverse modes.
It is possible that better agreement with the longitudinal
modes might be obtained by a more accurate estimation
of the exchange and correlation eGects, for instance by
replacing f(tI+H) as given in (12) by the expression
(11), or by replacing the electron mass by an effective
mass m* and the electronic and ionic charges by e* to
allow for the fact that the "core part" of the conduction-
electron wave function behaves like the core charge
distributions.

However, the most serious drawback of the above
treatment as applied to copper is due to the fact that it

"H. C. White, Phys. Rev. 112, 1092 i1958l.
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is unlikely that single plane waves (or OPW's) can
adequately represent even the "smooth" part of the
electron wave functions. This is indicated by the band-
structure calculations for this metal referred to above" "
and measurements of the Fermi surface~ (see for in-
stance, Ziman"). This is related to the fact that the
Fourier transform of the (screened) ionic pseudopo-
tential U, (H) is large for at least the reciprocal lattice
points (2m./a) (1,1,0) and (2m/a) (2,0,0) resulting in
fairly large band gaps ( 2 eV) at these point. On the
other hand, U, (H) as calculated from Eq. (13), with
Uo as chosen above, and using the dielectric function of
a free-electron gas, gives values which are much too
small in comparison ( 0.1 eV). (This is also true for
U0=4.05 eV as taken by Toya. ) Thus there is a basic
inconsistency between the form of the pseudopotential
used to calculate the electron-phonon interaction, and
that used to calculate the band structure. This dif-
ficulty has been previously pointed out by Sham and
Ziman. "

If one considers the electron-phonon interaction as a
scattering process, in the manner suggested by Sham
and Ziman, one can argue that a partial effect of the
"multiphonon" terms would be to multiply the effective
electron-phonon matrix element by a Debye-%aller
factor. However, for the reciprocal lattice points con-
sidered, multiplication of the U, (H) consistent with
the band structure by such a factor does not reduce it
to anything like the value calculated above. It may be
argued that fitting parameters to the elastic constants
as described above is not very reliable. As in the long-
wavelength limit, the electronic contributions to the
frequencies will depend strongly on the electronic states
near the Fermi surface t see Eq. (10)]which are particu-
larly non-free-electron like. However, it is still true that
any accurate theory of the dispersion relation in copper
must give results that are valid in this region too. Thus
it seems necessary to evaluate the expressions (9) and
(10) more accurately using states

~ k) and energies E(k)
and a pseudopotential U(K) which are more consistent
with the band structure of the metal. It is to be noted
that, as pointed out by Cochran, " according to Eqs.
(6)-(10) the above theory gives rise to an "axially
symmetric" model of the effective force constants be-
tween ions, of the type proposed by Lehman et cl.,'
provided one neglects the off-diagonal elements of the

~A. B. Pippard, Phil. Trans. Roy. Soc. London A250, 325
(1957)."J.M. Ziman, Advan. Phys. 10, 1 (1961).

dielectric matrix e(g+I, q+H ), as is the case in the
"free-electron" approximation. In fact, if one casts Eqs.
(6) and (16) into the "force-constant" form, one ob-
tains from the above calculations axially-symmetric
force-constants which become negligible beyond 6fth
neighbors, owing to cancellation of the Coulomb and
electronic contribution at large distances. Thus a test
for axial symmetry in the experimental force constants
could in principle indicate whether the off-diagonal
elements are important or not. Unfortunately, as dis-
cussed above, the lack of convergence for the Qtted
force constants precludes any such test in this case,
except for the nearest-neighbor interactions.

Because of the similarity in band structures, any
successful theory of the lattice dynamics of copper could
probably be applied to certain of the transition metals,
such as nickel, as pointed out by Birgeneau et al."
However, for all these metals including copper, the in-
Quence of the high-lying d states on the lattice dynamics
is uncertain. It is possible that the large 3d cores might
be polarized by the ionic displacements, as in the "shell-
model" theory, 44 with additional complications arising
from the interaction of the conduction electrons with the
core polarizations.

Note added in proof. Recently Srivastava and Dayal
LPhys. Rev. 140, A1014 (1965)]have also calculated the
depression relation in copper, using essentially Taya's
theory and parameters, but with a different way of
taking the exchange and correlation effects into ac-
count, and have obtained good agreement with the
present neutron-scattering results.
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