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Magnetic Field, Dependence of the Size Effect in the Transport Coefilcients of a
Cadmium Single Crystal at Liquid-Helium Temperatures*f
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Department of Physics, Logisiunu State University, Baton Eolge, Lolisiunu

(Received 13 August 1965)

Magnetomorphic oscillations periodic in the magnetic Geld have been observed in transverse magnetic
Gelds in the transport coefjcients of a cadmium single crystal at liquid-helium temperatures. The experi-
mental coefficients in which magnetomorphic oscillations have been observed are: the transverse magneto-
resistivity pic, the Hall resistivity p21, the transverse thermal magnetoresistivity y11, the Righi-LedUc re-
sistivity y21, the adiabatic thermoelectric coeflicient e11, and the adiabatic Nernst-Ettinghausen coeHRcient
em~'. These oscillations have an average period of about 565 G for a sample thickness 1.02 mm and are be-
lieved to originate with the lens-shaped Fermi surface in the third Brillouin zone of cadmium. The theory
of magnetomorphic oscillation for the case of free electrons is found to agree for the most part with the ex-
perimental results, except in the case oi the oscillations in the quantity e»" (thermoelectric coei5cient),
which have been found to be of an order of magnitude 20 times larger than predicted by the free-electron
theory. The extension of the theory to the case of nonspberical Fermi surfaces, and to the case of lens-shaped
Fermi surfaces in particular, fails to account for the anomaly in this coe%cient. In addition to the oscillations
of period 565 6, another set of oscillations of period 132 G was detected in the Hall effect. It is suggested
that these short-period oscillations may be associated with the hole arms in the second Brillouin zone and
are probably due to the truncation of the arm when it splits into its three branches.

DTTRODUCTIOH

HEN the dlIQenslons of R metallic sRIQple Rre of
the order of the mean free path of the electrons,

scattering Rt the boundaries must be taken into account
when calculations of the transport effects are made.
Effects in which boundary scattering cannot be neglected
are known as morphic or size effects and the magnetic
dependence of these size effects are known as magneto-
morphic effects. This paper presents the results of
measurements of magnetomorphic effects occurring in
the transport coeKcients of a cadmium single crystal.
All measurements were made at liquid-helium tempera-
tures in a transverse magnetic field (see Fig. 1). It was
found that oscillations periodic in the magnetic 6eld H
exist in the transport coe%cients of the cadmluIQ clystRl.
These oscillations have been attributed to size eGects.

Much of the work that has already been done on size
effects corresponds either to the zero magnetic 6eld case
or the longitudinal magnetic 6eld case' and little has
been done in the case of transverse 6elds. Oscillations
in the Hall e6ect and the transverse magnetoresistance
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FIG. 1. Orientation of the
crystal with respect to the
magnetic Geld II, the electrical
current J, and the heat current
W. The hexagonal axis of the
crystal is along the magnetic
Geld.

were predicted by Sondheimer' and have been observed
by several experimenters. ' ' Oscillations are also ex-
pected in the transverse thermal magnetoresistance, the
Righi-Leduc effect, the transverse thermoelectric effect,
and the Nernst-Ettinghausen effect, as was shown by
Blatt' who extended Sondheirner's theory to the case
of thermal effects. To the authors' knowledge, magneto-
morphic oscillations in these eBects have not previously
been observed.

Since the theories of Blatt and Sondheimer deal only
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with spherical Fermi surfaces, an extension has been
made to more general cases. The theory has been de-
veloped to include asymptotic high-field effects for
Fermi surfaces which have rotational symmetry about
the s axis, the s axis being parallel to the magnetic-Geld
direction. The extended theory reduces to the asymp-
totic form of Blatt's theory for the case of free electrons.

Notation for the transport effects will be the same as
that used by Grenier, Reynolds and Zebouni" where the
kinetic transport equations are given by

J=o E*—e"6
W*= —~"E*+R"6,

where the fluxes J (current density) and W* (heat
current density) are given as linear combinations of the
amenities 6 (negative of the temperature gradient,

VT) and —E* Lelectrical aKnity; see Eq. (9c)g. These
equations can be expressed in two alternative forms
which are useful for expressing experimental results.

E'=PJ+ ~6 W*=—~J+iG, (2a)

E*=p'J+ "W* 6= 'J+~W*. (2b)

For the geometry used in this experiment (see Fig. 1),
i.e., the magnetic Geld in the direction of the sixfold axis
of symmetry and the effects measured in the basal plane,
all the tensors in Eqs. (1) and (2) reduce to 2X2. By
letting a be one of the tensors and by using Onsager's
reciprocal relations, it can be shown that the tensors are
all characterized by a»= a» and a»= —a». By defining
@=a»+iu», it can be shown that the tensors 8 are
homomorphic with the complex numbers a. (Note: The
complex notation used is chosen to give agreement with
that used by Blatt and Sondheimer. ) This allows the
tensors to be manipulated like complex numbers; for
example, from Eqs. (1) and (2a) with the temperature
gradient —6=0, one obtains o=p ' or (oq~+io~2)
= (p»+ip&2) '. The tensor elements of o are then easily
obtained from the complex notation, i.e., oJg —p»/
(p»'+pqm') and o»= —pq2/(p»'+p~m'). Manipulation of
Eqs. (1) and (2) yields, among other things, the following
set of results which are used in this paper:

quantities p, p, and e'. In measuring these quantities, it
was found that all the following effects contained
magnetomorphic oscillations periodic in II: p2q (Hall
resistivity), p» (transverse magnetoresistivity), p»
(transverse thermal magnetoresistivity), y» (Righi-
Leduc resistivity), e» (adiabatic thermoelectric coeK-
cient), e2q' (adiabatic Ettinghausen-Nernst coefficient).
The Onsager relation ~"=TC" makes unnecessary the
determination of g-', the experimental adiabatic Peltier
coefFicient, and if necessary allows the determination of
the corrective terms e7r" in Eq. (3d).

CRYSTAL

The monocrystal on which the measurements were
made was spark-cut and spark-planed from a bar of
zone-refined cadmium. "After a slight acid polishing the
crystal had the shape of a slab of diminsions 1.8&(0.556
X0.1035 cm at room temperature. The sample size at
the liquid-He4 temperature can readily be obtained. For
example, the thickness @=0.102 cm will be used in
further computation; it takes into account the c-axis
contraction ratio 5.531/5.6167, which is the same re-
duction factor used by Daniel and MacKinnon. "

In addition to the quoted purity" of 99.9999%, other
indications of purity are the facts that the resistance
ratio of the crystal is p3QQ/p4 2

——35 000 and that the
electron mean free path is of the order of millimeters
at liquid-helium temperatures.

The crystal was oriented (see Fig. 1) such that the
x or 1 direction was along the length of the sample, the

y or 2 direction was across the width of the sample and
the 2 or 3 direction was perpendicular to the face of the
slab and parallel to the hexagonal axis. The 1 and 2
directions are off by 12' from the binary and bisectrix
axis, respectively. The magnetic Geld was applied in the
s direction while the primary Quxes, i.e., the heat current
density W* and the current density J, were applied in
the x direction. Figure 1 shows the orientation of the
magnetic Geld and the primary cruxes.

FREE-ELECTRON THEORY

o.=p ',

A// ~C A/ AA= (TAG =06
7

(3a)

(3b)

(3c)

For the orientation of the crystal shown in Fig. 1, the
Gelds and temperature gradients are given by

H= (O,O,H), E= (E.,E„,O),
6=—VT= ( BT/Bx, BT/By—, 0) . —

// A ~// (3d)

"C. G. Grenier, J. M. Reynolds, and N. H. Zebouni, Phys.
Rev. 129, 1088 (1962).

From Eq. (3a) it is seen that the kinetic coeKcient o. can
be determined directly from the experimental quantity
p. Equations (3b) and (3d) show that, if Yr"«R (which is
usually the case at low temperatures), then R"=K=7 '.
Thus it is seen by Eqs. (3) that the kinetic coeKcients
o., R and e" can be determined from the experimental

Assuming a relaxation time v-. , Blatt' solves the steady-
state Boltzmann equation LE@. (4)] for the electronic
distribution function, for the case of free electrons
scattered diffusely at the surface of the sample,

v V,f efE+(1/c)v~—Hj V,f= —(Bflit),.„(4).
"The bar of cadmium was obtained from Cominco Products,

Incorporated and the spark cutter from Metal Research Limited,
Cambridge, England.

"M. R. Daniel and L. MacKinnon, Phil. Mag. 8, 537 (1963).
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A A
0'o = 0'xzp& &0'xtp = 0'bo (o)(h '—

h ')

X{1+(sh)
—'Lexp( —sh) —1]}dh, (Sa)

Ro=Xggo+oXgo, —$o =choo (-')(h '—
h ')

He then obtains expressions for the current density J
and the heat current density W. His results can then
be expressed in terms of the kinetic coefficients o, R",
and 4" which were deGned in the introduction. Under
the simplifying assumption that r is independent of the
energy 8, the equations are

4i,+oko.=L.&s'x x'(~»+o~»),

o»o"+oooo"=(—o»„"po o~ x")
X(cos(Po o—r/2)+o cosPp], Pc)

where 0&pyp Rnd 6&2yp have their asymptotic values
o»„=—(Woe o) /H, and o»„"=—(n'k'TcZo/3H). Differ-
ent E, E', and E"have been used to take account of
possible diferent mean free paths for electronic and
thermal effects. Equations (7) are valid also in the case
where v g is energy-dependent.

Equations (7a), (7b), and (7c) are the expressions
needed to compare free electron theory to experiment.

X{1+(sh)-'Lexp( —sh) —1])dh, (Sb)

oo —o»o +~oloo o oo
l'7 ' l/ ~ Il

X{1+(sh) 'Lexp( —sh) —1])Ch, (Sc)

where the bulk effects (index b) are given by

o oo= (e'r'/mo) IIho,

joo"——I.„T(e'r'/mo)Eo, (6b)

T11e ForxQQlation of the Aspnlptotic
Oscillatory Effect

ff sn expansion of Eqs. (Sa), (Sb), and (Sc) is made

using the method of integration by parts, then for high-
field behavior) i.e., I

s l)&1 and Pg&)E,"it is found that
a good approximation to the results can be obtained by
takjng only the Grst term of the expansion. Retaining
only thc osciOatory part, thc transport cocHRcicnts are
given by

~»o+o~», =(—3~»oA 'o )
X I cosPo+i cos(Po+s/2)], (7a)

» This asymptotic condition is incompatible vnth the condition
&g($ of rigorous applicability of the transport Eq. (5}, but it

~i&l be supposed this last condition of applicability is not too
stringent. ((y~ is the cyclotron frequency, )

ooo"——(7r'k'T/3o)(e'r'/ohho)Zo. (6c)

The notation used is essentially that of Blatt and
Sondheimer where applicable, i.e., s=ICo+iPo=(u/A)
+o(g/ro) where a is the thickness of the slab, A is the
bulk mean free path of the electrons and ro (snoose——/eH)
is the cyclotron radius; h=hq/v, is the parameter of
integration with mf the Fermi velocity and v, the velocity
component in the s direction; 1/r'= (1/so)+i(eH/woe)
where ls the bulk time of ela tion; Ã is thenumber
of electrons per unit volume, Zo is the electronic density
of states and I T ls thc flcc clcctron VViedcmann-Franz

ratio. The subscript (0) stands for the case of free elec-
trons. All other quantities are assumed to be expressed
ln standald notRtlon.

The Expected Oscillatory Behavior in the
Free-Electron Case

The free-electron sphere in cadmium has the following
characteristics": radius Ih 'Ihh= 1.41—A—', Fermi energy
7.73 eV, Fermi velocity 1.63X10o cm/sec. %hen Eqs.
(7) are used the asymptotic free electron theory predicts
the following results for periods, phases, and amplitudes
of the oscillations.

I'eriod

All the CGects should have the same period. Since
Po=g/ro=2~H/Po, it is found that Po (2orr/ae)Ih——r,
where R~= may is the radius of the Fermi sphere. Using
the value of hh

—'Eh=1.41 A ' for the radius of the free-
electron sphere, the free-electron period should be
I',=572G if the apparent thickness of the crystal cor-
rected for temperature contraction is used in the com-
putation (i.e., 1.02 mm).

coe@cients o» ~» and o1o are all in pha, se,
with Geld values for the maxima occurring at integral
ValuCS Of thC pCl'10d Eoq I.e.~ HI~=SEo Where S 18 Rn
integer.

(b) The coefficients o» and K~o are in phase with the
Positions of maxima given by H = (oh+1/4)Po where
the minus sign refers to electrons and the plus to holes.
Note that for electrons these two coeKcients should lag
in phase by —',or as compared with the o», K», and o»"
coeScicnts. Opposite results are expected for the i~1"
coefficient, with H = (m&1/4)Po.

(a) Equahty of amphtudes should hold between the
real and imaginary parts of each of the complex terms in
Eqs (7) ie l~»! =I~»l I~»l=l~»I Io»"l=lo»"I.

(b) For low temperatures o x=s x' so that the
Wiedemann-Franz law should hold, i.e., I

~ I
=I &I o I.

(c) l~» I, I ~»l, I
~» I

and
I ~»l »«ld f»l «with

the fourth power of H, i.e., lo»l H~, etc., while
Io„"I and Io„"I should fau off as H-.
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is obtained, which has the solution

g= —n.. '(s,/a)
—'P! 1+F(y)exp(—s,s/a)], (11)

where F(y) is determined by the boundary condition

f=fp for electrons scattered diffusely at the surface. It is
seen that

)&CON QT

If g ~ CONST

where

F(y) = —1 for n,)0

F(y) = —exps, for v, (0,

8 2eGH C
s,=K+iP= +

7Vg CXg 7 Sg

FIG. 2. Schematic representation of surfaces of constant energy
8, for axial symmetry, shown by the sections p(p„p') =constant.
The 6gure shows how the value of w, is determined from the
intercept of the normal to the surface of constant energy with the
pg axis. Surfaces of constant m, are also indicated in broken lines
by the sections ~,=constant. The igure shows how the value of
p, is determined from the intercept of the normal to the surface
of constant ~, with the p, axis.

(d) Calculation for E=O of the free electron ampli-
tudes gives H4!2p»I =6.86X10"G4 (0 cm) ' and
H'I2p»"

I
=1.22TX10'G'2 cm ' ('K) '. The first of

these values is represented by the letter F in Figs. 13,
14, and 18.

Some of the results required that a more general case
be considered. Therefore, the theory is herein extended
to include nonspherical Fermi surfaces which have
rotational symmetry about the s axis.

P,= eE,*+G,(Bt—/BT),

Pp= eE„*+G„(Bi/BT—),
—eE,*= eE,+G (Bf/BT)—,
—eE„~= eE„+G„(B$/BT),—

(9a)

(9b)

(9c)

(9d)

with | the chemical potential. Define P=P, iP„, —
g=ci icz, v'=v,——in„, and y'= p, ip„and —note that
v'/y'= v'*/y'*=

I
v'I/Iy'I = / vfovr s the direction of

axial symmetry (see Fig. 2 for the geometrical definition
of n..). The differential equation

THEORY FOR FERMI SURFACES
WITH AXIAL SYMMETRY

The magnetic field and the direction of the axial
symmetry are in the s direction. The Boltzmann equa-
tion, Eq. (4), is approached in the same manner as for
the case of free electrons. %ith a trial solution of the
form f= fp+fi where fi=(cip, +czp„)Bfp/B8, Eqs. (4)
become

v+,+v„P„+(eH/c)(n, cz n„ci)+p, [ci/—v+v, (Bci/Bs)]
+PMJIcz(v+n. (Bcpl»)]=0)1 (g)

where

Defining a complex current J'= j,—zj„and remembering
that fp does not contribute to the current integral, one
obtains

i= f f v'jdzdp

—28

h3u 0

Bfp
v' Re(y'*g) dsdy.

88
(12)

Let dy=
I
y'

I dp'dp, dip, integrate over z and g and retain
only the oscillatory term, the result is

J= (eii+zBiz) E*—(p„"+zp»")6)
where

4axe2 v e 'Bfp
&»+z&»= — —Ip I, dp dp* (13a)

g' gg&Omg Sg2 8~

and

// 1 ' //
11 V 2612

use Vg—
I
p'I'

y' yg)0 &g13

(8 pie ' Bf—p
X! ! dpdp. . (»b)

E T jsz BS

Consider now a simple lens-shaped Fermi surface for
which the transformation of Eqs. (13a) and (1,3b) by
p'= p'(h, n,), p, =p, (8p.,) is unique for p,)0. By
making this transformation, defining p, by

p BBg Bzl'g

pz BP BPz

p 11+z&12
IpI'e "t'B

&
'

h', &p zr, s,' EBp,)
4axe2

and integrating the new expression for Eq. (13a) over
the energy 8, one obtains

Bg ( 1 ieaH) P—+I + lg+—=o,
Bs (rv, c~ ) (10)

t
1 1i-'

xl ——
I

d~. , (15)
E~, pi
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The Asymptotic Oscillatory Behavior Formulation

Since Eq. (16) has the form

trll+ttr12= U(t)e tettdt,

it can be expanded under the asymptotic condition
Pt=eaH/cn&)1 by the .method of integration by parts
to obtain

where only the erst term of the expansion has been
retained. The radius of curvature of the surface m, = m ~

at the point it touches the apex of the lens (see Fig. 2)
is given by p&. The case of free electrons is obtained by
letting tr, =p„and n. t

——R~, where Rf is the radius of the
Fermi sphere. It can be shown that the surfaces of
constant x, are planes for the case of free electrons,
thus pt

——~. Substituting these quentities into Eq. (17)
yields:

all, +2ol2, = (c/eaH)'(8ne'a/h')Rt'e 'x+@".& (18)

which, since Rr = 31Vptt2/82r and Pt ——aeH/m*ttc =aeH/Rf c,
is identical with the asymptotic Eq. (7a) obtained from
Sondheimer's theory. Thus the amplitude of the oscilla-

tion associated with an apex, as compared to the free-

electron case, is

[e i/ i
o.o i

=r'(1—v)-2(cjlr./BP.)-'.,=.„(19)
where r=trt/R~, v=lrt/pt.

Similar treatment of Eq. (10b) for e" gives

(
e" t/~ ett '~ = (m~/mtt)r'(1 —v) '(Btr./&P. ) ', (20)

where m* is the cyclotron mass at the apex and mo is

where all quantities now refer to their values for h= f',

i.e., to their values on the Fermi surface. Note that
(see Fig. 2) p, is related to curves of constant tr, in the
same manner as m, is related to curves of constant b.
Although the derivation will be completed only for the
case of the simple lens, the same procedures are appli-
cable to other simple-shaped Fermi surfaces. An alter-
native form of Eq. (15) can be obtained by defining
t=trt/2r, and S.=trP", where t is now the parameter of
integration and S, is the cross sectional area of the
Fermi surface at some fixed value of p, . The quantity
x& is an arbitrary value of z, which in the case of the
simple lens, is chosen to be the value of m, at the apex
of the lens, i.e., the radius of curvature of the lens at the
apex. Equation (15) is now

4ae' " e" 1 1 ' Btr.) 'dt
trit+2&22 = (16)

t l~t =lrS pt ~p ~ 2rl

the mass of a free electron. Equations (19) and (20) are
generally true even with 7&, m., and m* being smooth
functions of h and p, . Extension of the theory to the
study of the heat flow and the determination of V' leads
to a result in X»"+6»"similar to those in tr in Eq. (19).

Thus it is seen that the case of nonspherical Fermi
surfaces can be solved if the surfaces of constant 8 and
surfaces of constant x, are known, and that an asymp-
totic solution is readily obtained for the case of the lens-
shaped surface. Extension to other simple Fermi sur-
faces with rotational symmetry about the s axis is only
a matter of mechanics. More specifically, morphic
oscillations should appear for any extremal values of x,
(or m*lt, or 85,/BP, ).This includes not only an apex but
also cases for which m, reaches a maximum or minimum,
such as inQection zones occurring between the neck and
belly of some Fermi surfaces. For those Fermi surfaces
with infiection zones,

~
trl2

~

would follow an H t' law
rather than the II 4 law found to hold in the case of the
apex. Discontinuous or truncated Fermi surfaces would
give

~
0 l2

~

following an H ' law, while "monochromatic"
Fermi surfaces, i.e., those for which 85,/Bp, becomes
independent of p, over a finite range of p„would exhibit
an H—' law.

Equations (19) and (20) are the results needed to
compare the theory of a lens to that of the free electron.

Expected Results in the Case of a
Lens-Shaped Fermi Surface

To be more speci6c, cadmium has an electron lens-
shaped Fermi surface in the third zone, the mapping of
which apparently follows well the theoretical formula-
tions given by Ziman. ' Using the experimentally deter-
mined'2 principal axis radial values of the lens h 'Pl
=tt 'p =0.725 A ' tt 'pl=0. 25 A ' and Ziman's lens
formula, the following parameters are obtained for this
lens: energy gap 6=0.91 eV; Fermi energy=7. 47 eV;
len's apex radius of curvature ttt ttt. t

——(tt t/22r) (BS,/BP, )
= 1.362 A ', i.e., r = lrt/Rr =0.96&,. cyclotron mass
m*=mtt, Fermi velocity at the apex 1.574 10' cm/sec;
the surfaces of constant tr. are planes (Btr,/88=0) i.e.,
p, = ~ and v=0, cItr,/cjP. =1.18 at the lens apex; the
amplitude factor for morphic conductivity oscillations
r (1—v) (Btr,/cjp, ) =0.58; the amplitude factor for
morphic thermoelectric oscillations

The period will depend on the radius of curvature of
the lens at the apex, i.e., I'= (22rc/ae)2rt where trt is the
radius of curvature at the apex. If the Ziman's lens
model is used, the expected period will be I'=553 G,
for a sample thickness of 1.02 mm.

'4 M. Ziman, Electrons and Phonons (Oxford University Press,
London, 1960), p. 100.
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Phase and Amp1itudes
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Fzo. 6. Hall resistivity p» showing magnetomorphic oscillations
periodic in the field. Note that the gross eBect becomes positive for

.T&4.0'K thus agreeing with the bulk positive Hall effect usually
found in cadmium.

period expected for the case of the Ziman lens described
above (553 G). There is, then, not much doubt that the
lens-shaped electron Fermi surface in the third band is
responsible for the long-period morphic oscillations.
Trusting the experimental period and the measured
sample thickness, one finds that the lens's apex has a
radius of curvature h 'trt ——1.39+0.007 A ' i.e. r=0.98,
+0.005 whereas Ziman's lens corresponds to a radius
defined by r=0.967. The discrepancy between the ex-
perimental and theoretical value of radius of the lens is
not serious and most probably caused from the error
which can be made on the correct evaluation of the
thickness of the sample. Since the crystal was spark
planed, a process which created a thin and irregular
polycrystaline layer on the surface, it is possible that the
e6'ective value of the thickness a is somewhat smaller
than the measured value. Manufacturers of the spark
cutter" have estimated the depth of damage to lead

0-
0-

occurring at the lower fields. In order to study the oscil-
lations and compare them to theory, the elements of
o, R, and e" were calculated from the elements of P, f
and 4', using Eq. (3). The corrective term V—R=e"tr
was found negligible. The elements of the tensors o, R

and c"were multiplied by H" (where rt, is an appropriate
integer) then Gtted with a polynomial by the method of
least squares, and the gross e6ect subtracted out to leave
only the oscillatory part of the effects. The chosen
integers are n= 4 in the case of 0 and X and e= 3 in the
case of e" since the theoretical asymptotic quantities
B4

( o (, P4~ X"
[ and EP I e"

~

are expected to be constant.
The results of such a procedure for o.q~, Kt2, and ett" at
2.0'K are shown in Figs. 9, 10, 11.

E
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Q 2I-
0-

)o -2-

4-
I

0
I I t I I I I t I t I I t I I

2 4 6 8 l0 l2 I4 l6
H(kG)

FzG. 7. Righi-Leduc thermal resistivity coeKcient y» showing
size-eBect oscillations similar to those found in the Hall eBect.
This eBect is multiplied by L T for comparison with the p» data
of Fig. 6.

Comparisol toith Theory

Period. The experimental period of 564&3 G is
slightly less than the period expected from the free-
electron sphere (572 G), and slightly larger than the

-8-

-l6-

g-24-

-32-

-48-

-56-

-64
0 2 4 6 8 l0 l2 I 4 l6 l8

H(kG)

Fzo. 8. Size-eBect oscillations in the transverse. adiabatic
thermo-electric coeScient e11'. A different zero position is used for
each temperature because of the lack of temperature dependence
of this eBect.

crystals to be of the order of 25 to 100@when cut under
the same conditions as the cadmium crystal. Thus a
slight acid treatment was performed to remove the
deteriorated layer. The clear appearance of the etch
pattern of an inclusion crystal on the corner of the
main crystal was sufficient indication that most of the
polycrystaline layer was removed and replaced by the
slight irregularities associated with etched surfaces. It
is estimated that a 10 microns damaged or irregular
layer of the crystal surfaces would be sufficient to bring
the r value to agree with the r=0.96' value expected
from the lens model.

Thus it is seen that if this type size-eII'ect oscillation
is to be used to make direct measurements of the curva-
ture of the Fermi surface, it is extremely important that
the thickness be well known and that the surface damage
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scillator art oi the Hall conductivity a&& (with the
db +4 dgross eBect removed) muitip ~e y

of the field B for 2.0'K.

11 ompared to the thickness of the
sample. Enlarging the crystal would help but it would
also decrease the amplitude of the oscillations expo-

'
ll b the factor e ( I~&, whereAis the mean free

the surfacepath. Surface damage is reduced by 6nishing
with acid-polishing techniques.

Ph It has been found that the relative phase ofuse.
most of the kinetic transport coefhcients is g

phases of the various effects is as follows:

(a) The oscillations in the quantities oit and ii are
found to be in phase. Oscillations in era" were too poor
f '

conclusion to be drawn about their p ase.or any c
and eii"(b) The oscillations in the quantities o»,

are found with a good approximation to be in phase. A
aginp ase0 gx' x1 h f -'m exists between these eBects and 0.~~ as

e pecte rom ed f theory in the case of electrons for 0» an
Rim, but the phase of e&i" is in disagreemen wi

expectation.

The absolute phase turns out to be ve yr difficult to
determine since ethe limit of experimental accuracy is

~ .~

h d
'

tr in to make such a determination. n
of tTy2 areFig. 12 the Geld values for the maxima B, o o-~2 are

plotted against the integers. The low-field points should
be discarded because a phase shift would appear in the
nonasymptotic region, The best straight line through
the high-6eld points in Fig. 12 is given by

H~= (e—-,')564 G.

It is felt that the fact that ar(i.e., a atrr phase) was

FIG. 11. Oscillatory part of the thermoelectric kinetic coefBcient
811" (2.0'K) multiplied by H'.

obtaine instea o ~ id' t d f —' ie. a-'s phase) is within experi-
mental error in view of its determination from t e ar
end extrapolation.

'AAm liildes. (a) Although the oscillations in oii, »
d " re not known with good precision, i was

found that I+»I= lo'»I (thi»s m agreemen
results found by Zebouni, Hamburg and Mackey'), that

oi~, ~~ an ~~2 is a ri ui~, A a " ' tt 'buted to the fact that the gross
d e ' was very large compared to theeGect in pi~, y~~, an

e t that thesize of the oscillations in those eGects. It is e t t a e
differences of 20% which were actually obtained be-

d
~ I

re within experimental error and
that the theoretical prediction lo»l = Ioi2I is satis-
f t il demonstrated. For the same reasons, it is feltac oriy
that the experiments are also in goo agree
the predictions IXiil = IXt2I and lett" I

=
I

etm" I. In the
remain er o

'
d f this paper the equality is assumed

suits offor t e e ec s ih ffects discussed above and only the resu s o
t e most preciseyh t ecisely known of the oscillations are use .

peak to peak amplitudes 2EPlo. tml, 2''I-„TI i2 an
2H

I I
s functions of the Geld for several tem-6]i as un

14h .tht ..d(b) Comparison of Figs. 13 and 14 s ows a g
ith the %iedemann-Franz law is obtainedagreement wit e i

Ins ection offor the magnitudes of the oscillations. nspec
'

Eq. (7b) shows t a or) h th tf re')K(which isexpected since
mean free pat s or eh f th rmal processes are shorter than
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Fxo. 10. Oscillatory part of the Righi-Leduc conductivity X» at
2.0'K multiplied by B4, as in Fig. 9.
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zG. 12. Field positions of the maxima of the oscillations in 01~

imental eriod (565 0) while the intercept is related to the absolute
phase. Insert s ows ah th t the intercept is of the order of —70 Q.
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Fxo. 13. Averaged amplitude of the oscillations in the quantity
2BSIg shown as a function of Geld II. The amplitude of the
oscillations in 0.12 are seen to fall o8 as H~ in the range 4 to 11ko.
K, F, I represent respectively, the experimental extrapolated
value, the free-electron expected value, and the lens-shaped sur-
face expected value.
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Pro. 14. Averaged amplitudes of the oscillations in the quantity
2II'C,1.~1") 912 shown as a function of Geld. Comparison with

Fig. 13 shows that (I.~T) 'Les has approximately the same ampli-
tude and Geld dcpcndcncc as 01'.

"R. Hamburg, Master's thesis, Louisiana State University,
&N4 (unpIIblished).

mean free paths for electrical processes) the amplitudes
of the oscillations in the thermal conductivity and
Righi-Leduc effect should be smaller than those in the
electrical conductivity and the Hall eQect.

(c) Examination of Figs. 9, 10, 13 and 14 shows that
the amplitudes of 0~2 and X~2 Sall OB as II ' for 6elds
between 4 to 10 kG and then fall o8 more rapidly at
higher 6elds. The H ' dependence in o-~g is in agreement
with results found by Hamburg and Zebouni. "Similarly,
Figs. 11 and 15 show that ~~~" falls OB as II ' for the
region 4 to 10 kG and then falls off more rapidly at
higher Gelds. No explanation is offered for the Geld

dependence of the effects below 4 kG since this not
consldeled to be the asymptotic legion. The fact that
the oscillation amplitudes do not follow the II ' de-
pendence above j.i kG is believed to be due to the fact
that the crystal faces were not perfectly plane and
parallel. There is no way of ascertaining the depth and
variation of the damage to the surface caused by spark
cutting and the subsequent etchirig irregularities. Thus
the over-all effective thickness would vary from point
to point in a range u~d, u which would create a disper-
sion in the period by an amount I'+hI', and thus tend
to decrease the amplitude of the oscillations correspond-
ing to large integers. About 20 oscillations are observed
before such dispersive eBects become noticeable and by

the time 30 oscillations have been observed, the ampli-
tude of the oscillations has dropped to about 60/~ of its
expected value. It is in qualitative agreement with an
order of magnitude for ha/c of about 1/o, i.e., the
irregularities in the depth of the damaged layer should
be expected to be about j,0p,.

(d) It can be noted that the experimental amplitude
of o.ts and its corresponding to the flat region of the
curves in Figs. 13 and 14 are only slightly less than the
amplitudes predicted for the free-electron sphere and
the Ziman lens, which are indicated by the letters E and
I, respectively. This agreement corroborates the identi-
6cation of the lens as the cause of the morphic oscilla-
tion. More precise comparison can be done if an experi-
mental evaluation of the quantities e ~ can be made or
if the extrapolation of the amplitude lo'tel and I)I»I to
the case of in6nite mean free path (e x=1) is effected.
Such an extrapolation as outlined in the last chapter
and on Fig. 1S leads to a value a4l2~». l

=5X10Isa-~
cm ' G4 and is indicated in Fig. 13, Flg. 14 and Fig. I8
by the letter E. The agreement with the theory can be
seen to be excellent.

jt I I IIII I I I ) I I I I I I

,5 l 2 5 45 l0 20'
H{kG)

Fxo. 15. Averaged amplitudes of the oscillations in the quantity
2H'6&" shown as a function of 6eld.

~
ij&" l is seen to fall off as

JI ' in about the same region as ~0 qs l and l4s j fall off as H 4.

The same cannot be said for comparison of the experi-
mental and theoretical amplitudes of the thermoelectric
oscillations: here the experimentally obtained oscilla-
tions are about 20 times larger than expected. Since the
experimental values of ~&~" are determined by an in-
volved tensor calculation, it might be thought that
accumulated errors on the experimental coeKcient p, y,
and ~' could generate values of elj" abnormally large and
of the wrong phase. To eliminate any doubt about this
question an entirely new set of experiments was per-
formed and the calculations made again. The results
were almost identical with the results of the Grst set of
experiments. This seems to eliminate the possibility
that the discrepancy was caused by the incidence in the
tensor calculation of some experimental errors. Another
possibility might have been that the thermoelectric
power of the constantan leads was not corrected for the
calculations. This possibility was discarded when it was
found that the term which would have contained the
thermoelectric power of the leads was not of the proper
phase and magnitude to explain the oscillations found
in ~™~~".Assuming all possibilities of experimental errors
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have been eliminated, it can be stated that the ~"
results are anomalous with respect to free electron
theory and to the case of the lens. Indeed, matching
the experimental data to Eq. (19) leads to r=0.986 and
(1 —v) '(Bn,/.BP,) '=0 /9. ,, i.e., a fair agreement, but
trying to match also Eq. (20) leads to (m*/mp)(Bm'/BP )
=33 a result which is incompatible with cadmium band
structure. Therefore, the anomalous amplitude in the

™rphicoscillation remains still unexplained. Rough
estimates from other possible causes which may in-
Quence the ~i~" data such as phonon drag does not seem
to account for the anomaly either.

Short-Period Oscillations

These oscillations were Grst detected when it was
found that what appeared to be an unexplained noise in
the measurement of the oscillations in p» was entirely
reproducible at 1.6'K. Sy lowering the temperature to
1.3'K and adjusting the amplifier system to op™m
values, it was found that the "noise" was a set of oscilla-
tions periodic in the field' superposed on the main set
of long-period oscillations. Figure 16 shows a section
of the recorder trace with the two sets of oscillations
drawn in and the noise removed. Up to 70 of the short
period oscillations were observed. A detailed study of
these oscillations would be difficult because of their
small amplitude. However, a check of the orientational
dependence indicates that the relative amplitude of the
small period oscillations to the long period oscillations is
nearly independent of the field direction for angles be-
tween the field and hexagonal axis of the crystal of up
to 10 deg. The ratio of amplitudes found was

~
p"~'„,/

~
p2'~."„'=10. The periods of the long and short oscilla-

tions are very insensitive to orientation in this range. A
check of 43 of the short period oscillations showed that
the period of the oscillations was practically constant
with the ratio of long to short oscillations being given
by P&p&g/Pshor&=43

Since these size-effect oscillations are expected to be

2.S

Fze. 16. The top curve represents a recorder trace for the
oscillations in p» (Hall resistivity) which show the short-period
oscillations (1.32 G) superimposed on the long-period oscillations
(565 G). The separate contribution of those short-period oscilla-
tions are shown on the lower curve.

due to sections of the Fermi surface where dS,/dp, has
an extremum, the lack of orientational dependence of
the period indicates that the Fermi surface is one of a
type where the extremum of dS,/dp, is relatively con-
stant over angles of about 10 deg. This is, for example,
the case of the extremal values near the apex of the
lens-shaped surface of cadmium used in the interpreta-
tion of the long period oscillation. Examination of
published information" "on the Fermi surface suggests
that perhaps the "hole arms" in the second Brillouin
zone might be responsible for the short oscillations (see
Fig. 17).The maximal extremum which exists on one of
the arms could cause the oscillation; however, it is not
obvious that dS,/dp, would be constant enough with
respect to orientation changes to account for the experi-
mental results, but as pointed out later the truncation
e6ect due to the branching of the arm would provide for
an effect more insensitive to orientation.

If these oscillations are assumed to be due to the hole
arms then the present results could be compared to the
findings of Daniel and MacKinnon" (DM). In their
study of magnetoacoustic absorption in cadmium made
with the magnetic Geld and the direction of motion of
the longitudinal sound waves in the hexagonal direction
an oscillatory Geld dependence of the attenuation co-
ef6cient was interpreted as corresponding to the ex-
tremal value of BS,/BP, of the hole arms.

If it is required that the distance traveled in the
s direction in one orbit around the Fermi surface, "i.e.,

c 85,

eEE Bp,

should be some submultiple of the thickness of the
crystal, then

85 ea
=—y

Bpg c

where n is an integer and H„/e=P the period of the
oscillations when BS,/Bp. corresponds to an extrernum
or to a singularity. The short oscillation period of
P= 132 G corresponds to 6 '(BS,/Bp, )=2.04 A '. The
result quoted by DM of k—'(BS/BP,)=0.68 A ' at-
tributed to the hole arms, can be seen to be exactly
three times smaller than that presently obtained from
the short period oscillation. The apparent discrepancy
with DM results seems to indicate that the branching
of the arms suggested by Harrison" and illustrated by
Gibbons and Falicov'~ and Grassie" would be correct.

As pointed out at the end of the theoretical section,
magnetomorphic oscillation would appear whenever
(BS,/Bp, ) reaches some extremal value or presents
singularities. The singular property of the holes arm

"W. A. Harrison, Phys. Rev. 118, 1190 (1960)."D.F. Gibbons and L. M. Falicov, Phil. Mag. 8, 177 (1963).
'8 A. D. C. Grassie, P&l. Mag. 9, 847 (1964).
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5 @=~A

FIG. 17. The right side of the figure is an approximative representation of part of the "hole" Fermi surface in the second zone.
The left side of the figure shows cross sections of this hole surface in the repeated zone representation for two values of P„A 'Pz =0 &8 A '
and A 'P, =0.27 A. '. They characterize the shape of the electron orbits when slight deformations from the free-electron case are taken
into consideration. In one case (A 'p, =0.18 i. ') the orbit takes place around one branch of the hole surface; in the other case (A 'p,
=0.27 A ') it takes place around the set of three adjacent merging branches.

which may be stressed is the fact that, built up along an
edge of the zone adjacent to two other zones, it splits into
three branches" "at a level here referred to as pq (see
Fig. 17).The truncation of the arm at p, =pq is charac-
terized by the discontinuity S(p, =p&+)=3S(p,=p& )
in the Fermi surface cross section, with approximately
LBS(Pq+)/BP, ]=3[BS(Pq—)/BP, ]. This last relation
would explain the two values of 2.04 A ' and 0.68 A '
obtained from the two different experimental methods.
Acoustic resonance would be sensitive to the smaller
value of (BS/Bp,), i e , corresp. on. ding to orbit around one
branch and obtained for pq, whereas a galvanomorphic
effect would be sensitive to the larger value of (BS/Bp, )
corresponding to the orbit around the unsplit arm for
pq+. The two types of orbits are illustrated in Fig. 17.
The free-electron approximation for this part of the
Fermi surface would have the arm remaining in contact
all the way along the vertical edge of the zone. However,
any small overlap of the Fermi surface due to an energy
gap would immediately create suitable conditions for
such splitting of the arm into three branches. The value
of h '(BS./Bp, ) can be computed for the free-electron
approximation and is equal to 2.04 A ' for h 'p*

=0.202 A '. The deformation from the free-electron
approximation would most probably be such that
0 'pq(0. 202 A '. Since (BS/Bp,)=0for p, =0 there will

be two values of p„p~~ and p$2 corresponding to
A '(BS,/Bp, )=2.04 A ' and with an intermediate value

p„(p~~)p„)p~~) for which (BS,/Bp, ) would pass
through a maximum value

~
BS,/Bp, ~

. (It could be
possible that ~BS,/Bp,

~
would be very close to the

2.04 A ' value; such possibility would largely enhance
the corresponding morphic oscillations. ) The expected
asymptotic behavior for the amplitude in o-» in the case
of truncated type of singularity is a B ' field depend-
ence, as compared to the II—' behavior of the long-period
oscillations. It should be expected thus that the short-
period oscillations in p2~ would show an increase in
amplitude with the 6eld and as compared with the
amplitude of the long-period oscillations. The fact that
this behavior is not observed would simply be related
to the dispersive effect due to the surface imperfection
and the associate decay of the amplitude with the in-
crease in the oscillation integer number which for the
short period oscillations is more than four times that
for the long-period oscillations.
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Some Considerations About the Bulk
EBects and Gross Size Effects

In the galvanomagnetic effects

011 20» 011 $12

the gross effect o.»+iots is known with sufhcient pre-
cision whenever easily separated from the oscillatory
component ott+io. ts, a condition which requires a large
enough 6eld and for which the transport equations
simplify to their asymptotic limit. ' Taking the non-
oscillatory term out of Eq. (12), it can be shown that
the lens contribution to conductivity is o.»+io &s

=oq(1—u '(s,), ) where ob is the bulk contribution
o b est u——rr 'dn„hwere the integration is carried over
the volume of the lens, and where de, is the number of
electrons in the slice p., p,+dp, of the lens. If it is
supposed that 7r./o, = m* is independent of p, as in the
case of oman's lens, then

1x, eB e e
u 'o.=— +i—= (H)+iH) =—H('—

7v, c c c

is independent of p, and o b= ecN~H~' ' will be the lens
contribution to bulk conductivity, with N& number of
electrons in the lens and H~= cm~*jer.

With the same assumption as above, (s,)s„is the aver-
age (1/N~) J 7r.dr4 and a good approximation in the lens
case as in the quadratic case would be (s.,)zv=(3/8)s &.

Kith I'; the morphic period due to the band j and
de6ning H„= (3/8) (F';/2x. ), then

refers to all bands; j=l for the lens. In the two-band
model j=e and j=h would be used for electrons and
holes, respectively. The index s is, as de6ned, to charac-
terize the size effect. In further computation all H„will
be neglected except H, ~ of the lens (H, ~=33.8 G). The
bulk time of relaxation is supposed energy-dependent
with the law r = h& and as can be seen in Eqs. (22) and
(23) only e&t" is affected by this energy dependence.

A certain number of parameters in the Eqs. (22) and
(23) can be determined from the comparison with the
experimental result.

MearI;Free-I'uth Deternsinatioe

The bulk time of relaxation v appears in O.~i through
the saturation 6elds H;=cm;*jer. Should 1/r tend to
zero the asymptotic value JI'0-~~ would tend to the size
part ec +IV;H„=ecN~H, ~.

.

The bulk time of relaxation also appears in the
asymptotic amplitude of the morphic oscillation through
the term e ~. Defining a.»„ the Hall-conductivity-oscil-
lation values extrapolated to the condition of infinite
mean free path, then e x= ots/o. rs„and

!o12 ! ln2H [&12~

=P(H'o» ecN(H, (). —(24)

Those relations should hold also when the 0 terms are
replaced by the corresponding X,(E.„T) ' terms. In the
semi-log representation in Fig. 18 of 2H'!ots~ versus
B'0-~~ for different temperature and Geld values, a linear

o»+io»= ec g N;H/ '(1 FE„FE/ ')— — . —(21)

E

E
O

O

I

I-
C

bJ

CV

N

if all band j can be assimilated to lens shaped or
quadratic (with axial symmetry) Fermi surfaces. Here
H/ =(H;&iH) with the upper and lower signs corre-
sponding to electrons and holes, respectively.

For high fields EE»B;" the transverse conductivity
and Hall conductivity take the simple form
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~ X2.0 KIdentical expressions would be obtained for the elec-

tronic part of the thermal conductivity in the form of
(L„T) 9„"except for larger values of the H;. The
corresponding expressions for thermoelectric eGect can
be obtained starting from the nonoscillatory part of
Eq. (12) or more simply by applying the relation
e"=(s-'k'T/3e)(Bo/88) (8=() which is found valid in
the magnetomorphic case and in which 0. is given by
Eq. (21). The asymptotic condition yields

I ( ( ( (

I 2 3
ec N&H& H 0~f 8 H Rile(L~ T) (IO ohm (m 6 )

FIG. 18. Variation of the amplitude in the magnetomorphic
oscillations !o &s! and !Xqs! as a function of the time of relaxation
w, the time of relaxation being supposed to be proportional to the

~%t

gross rr» or 4i. conductivity. The ln H'!2o»( values are seen
to be linearly depending on H'o», with the mean free path infinite
or E=O for IPo.II=ecEEII,~. The E scale, the mean-free-path
scale, and the time of relaxation scale are thus determined and
shown on the right side of the figure. The different points, for
different field values correspond to 0 data (+at 1.6'K, )( at 2.1'K,
o at 2.8'K, ~ at 4'K) and to X data (~ at 1.6'K, Q at 2.1'K).

Hebs"= —(s''k'cT/3)Q Z; (23a)

H'e»" = (7r'k'cT/3)Q+Z; (H+4H„+ esp, H, ) (23b)-
if all band j can be assimilated to lens-shaped or quad-
ratic, axially symmetric Fermi surfaces. The index j

H'o.»= ec g N;(H;+H„), .(22a)

Ho~s ec PAN;(1 —H;——(H;+2H„)H ') . (22b)—
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TABLE I. Parameters related to the mobility of the electrons and phonons.

I
Temperature A.,

'K mm 10 'sec
&X

10 'sec

VI
Hg),

G

VII VIII IX
'Ag

10 'W'K ~ cm '

X
Ag

micron

1.6
2.0
2.8
4.0

3.0
2.5
2.0
1.2

1.8
13

1.9
1.6
1.3
0.75

1.2
0.8

30
35
44
76

47
70

0.63
0.5

0.68
0.6

0.22

0.30'
0.51'
1.3
3m 1{j

2.0
1.7
1.6
1.3

dependence of 1n2H4
~

O.i2
~

is achieved and it is seen that
2Z'~o. q2~ extrapolates to the value 2II'~oq2„[=5X10"
(0 ' cm' G4) for H'o»=eclV~H. ~=2.4X10» (0 ' cm '
6') (cVq is approximated from calliper size to be X~=4.4
X10"cm '). This extrapolated value is represented in
Figs. 13, 14, and 18 by the letter E. This value corre-
sponds to e ~=1, i.e., E=O or h.= ~; scales for both
K and A (the electron bulk mean free path) can be
determined and are shown on the right side of Fig. 18.
A direct mean-free-path reading can be made by use of
the h. scale, and despite a slight Geld variation, average
values for h., can be obtained for each temperature and
are shown in Table I, column I. The index 0. refers to
mean free paths corresponding to the galvanomagnetic
effect. It may be seen that the mean free paths are in the
millimeter range. When the electronic thermal con-
ductivity lI., terms are used in Eq. (24) and plotted on
Fig. 18, mean free paths corresponding to the thermal
process Aq can also be determined and are given in
Table I, column II.The ratio nq= Aq/h. , or bulk scatter-
ing eSciency shown in Table I, column VII is a meas-
urement of how eKcient is the scattering in galvanic
process as compared to thermal process. The fact that
n& is close to unity at the lowest temperature indicates
tha.t impurity scattering is already preponderant. It
may be estimated that impurity-scattering mean free
paths at O'K would be of the order of 5 mm. The ratio
n=X»,/(o»I. „T) given in Table I, column VIII is, at
high Geld, a measurement of the apparent efficiency
which differs from 0.& the bulk efficiency, since the size
scattering is also included. As expected, 0, is larger
than n~.

Columns III and IV of Table I give the values of
the bulk time of relaxation 7 =3/vr where the Fe.rmi
velocity" v& is taken as 1.58X10' cm/sec. A r scale is
also shown in Fig. 18. Since the lens cyclotron mass vs&*

is practically equal to the free-electron mass, the satura-
tion field Hq=cmg*/er for the lens would be the same
as that for a free electron Hq=Ho=cmo/er and these
values at the different temperatures are given in Table I,
columns V and VI for electrical processes (0) and
thermal processes (lj.), respectively.

Lattice Thermal Condlctivity und
Photon Mean Free Path

With the thermal conductivity given by R =R,+R, the
lattice contribution A,, can in principle be separated as

the curve A~~ versus 0» extrapolates to the value X, when
0» —+0. The X, values thus obtained are shown in
Table I, column IX and seem to decrease with tempera-
ture following approximately the law P T'4&. A
phonon-size effect scattering would give a T' law and a
phonon-electron normal scattering a T' law; the experi-
mental result would suggest an intermediate situation.
Nevertheless, it would be more correct to suggest the
preponderance of the electron-phonon process (normal
process plus a remnant of umklapp process), since the
phonon mean free paths A., are too small compared to
the sample size. An order of magnitude of A., can be
obtained with A, =3K,(C,v, ) ' where the lattice specific
heat C, is calculated with a Debye temperature
0=172'K and the sound velocity e, '2 is taken as
3800 m/sec. The phonon mean free paths are seen in
Table I, column X to be within micron range.

The E/ectricul Condlctieity, the Currier Densities,
und the Magnetic Breakdown

Equation (22a) predicts that o» depends linearly on
H ' and tends to zero as H —+~. Experimentally the
linear dependence is achieved but the extrapolation
H ~ gives a O.~~„value slightly different from zero.
Should any weight be given to this behavior it may be
suggested that it is due to a small fraction KV' of open
orbit carriers. If those carriers are attributed a mass mp

and the relaxation time 7, of Table I, the values RV'

are found to be of the order of 10 "e cm ' or 10 ~ e
atom ' as can be seen in Table II column I. It may be
suggested that at high fields a few electrons may be
altering through the pinched off region of the hole ring
as well as Altering from one arm branch to another near
the lateral edge of the zone, i.e., a weak reminiscence
of the occurrence in zinc and magnesium of the magnetic
break-down of the hole ring. ""But some ambiguity
exists between the temperature dependence of RV' and
the preceding interpretation.

When H'a» is corrected from the H'O. ~~„and ecÃ~H, ~

terms, an estimated value of g N;H; can be obtained.
In Table I, column IV the normalized value E'= H~

—'
Xg cV;H; is given. It can be considered to be a good
approximation for the total number of carriers supposing
that most carriers have masses nearly equal to pEp.

Although a fairly good analysis of 0» can be made, it
is not the same for o». Firstly, the expected condition
g+cV;=0 is not achieved and only a simple analysis
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TAsxE II. Parameters "independent" of the temperature and related to the carriers density and density of states. As a means of
comparison the free-electron sphere would have an electron density of N0 ——9.46& 10~ e cm ' and a density of state Z0= 1.16&(10"e cm '
erg '. Estimated values for the lens-shaped Fermi surfaces in the third zone are Ni=0.44X10" e cm ' and Zi=0.2&(10~ e cm ' erg '.

Temperature
'K

II
AN,

(1016.cm-s)

III
ANy

IV V

(12~ e cm ')

VI
Zef f

VII
Za

(10~ e cm ' erg ')

VIII
az'

1.6
2.0
2.8
4.0

1.24
1.6
2.
4.2

~160 ~200

—5000

1.8
1.7
1.6
1.7 0.38

165
1.8s
2.04
1o35

1.22
122
1.0
0.45

~—25~—28

~—30

with g&E,=B'AV, constant, can be made at 4.0'K.
The AN values are shown in column II of Table II with
excess of holes at 4.0'K and excess of electrons at other
temperatures, but in this latter case the AN, would be
highly Geld-dependent, reminiscent of one magnetic
breakdown oscillation in zinc. '0 The term ec +WE:„H;
X(H,+2H„)H ' is only a fraction of the Holm data.
At O'K, for example, the normalized value AN'=IIg-'
X[P&XyH;(H;+2Hi;)7 given in Table I column V
agrees with a two-band model in which E,= IVy, =E'/2,
H, =H& and HI,=H&/2, that is to say the electrons with
mass mo and holes with mass=0. 5mo. The analysis of
)», gives agreement within experimental error with the
conclusion from the 0.» analysis, but the analysis of X»
adds some confusion to the conclusion obtained from the
ai.„data as can be seen for hN~ in column III of Table II.

Thermoelectric Coegcients and Density of States

As expected from Eq. (23a) the Nernst-Ettinghausen
term H~i2" is nearly Geld-independent and the effective
density of states Z'"=P Z, can be obtained and seen
in Table II, column VI to be slightly larger than the
free electron estimated value of 1.16 e cm ' erg ' and
slightly temperature-dependent. Some partial phonon
drag may explain this behavior. If an estimated value
of full phonon drag is made" and full phonon drag
supposed to exist in the Cd crystal, the electronic den-
sity of state Z, would be obtained by dividing the Z"'
values of Table II, column VI by a coefficient of order of
(1+0.135T') and the resulting value Z, shown in column
VII of Table II indicates that taking account of a full
phonon drag leads to an over-correction at the upper
temperatures. The H'e»" values expected from Eq. (23b)
should be Geld-independent. This is found to be a poor
approximation. The order of magnitude of the normal-
ized quantity IsZ'=H&, g&Z;[EI+32';H;+ 43H„7 is
indicated in Table II, column VIII. They are an order
of magnitude larger than expected when compared to
Z"'; it may be an indication that the H; would be larger
than the H;„ it may also have some bearing on the
unexplained large amplitude found in the ~ji" magneto-
morphic oscillation; but the most probable cause of the

' R. W. Stark, T. G. Eck, W. L. Gordon, and F. Moazed, Phys.
Rev. Letters 8, 360 (1962).

~ J.R.Long, C. G. Grenier, and J.M. Reynolds, Phys. Rev. 140,
187 (1965).

large monotonic &~i" value would be associated
to the thermocouple effect due to the constantan leads
(—.o»e«). Indeed, a reasonable e«„value, nearly field-
independent, e,~,=+0 4ST p. V('K) ' would generate
this e»" apparently large value.

CONCLUSION

Periods, phases and amplitudes of the long-period
magnetomorphic oscillations in the transport coefficients
are in relatively good agreement with free-electron
theory with the exception of

i
c»"

i
and

t
e»" i, which

are an order of magnitude too large. Regardless of the
discrepancy in

i
e" i, it is felt that the relatively good fit

of the rest of the results to free-electron theory indicates
that the lens-shaped Fermi surface in the third Brillouin
zone of cadmium is responsible for the oscillations.
Extension of the theory to the case of lens-shaped Fermi
surfaces confirms this identiGcation, but still fails to
account for the large oscillations in ie" i. Magneto-
morphic oscillations of the type studied arise whenever
the surface derivative cjS,/Bp, has an extremum or a
singularity. Such an extremum is attained at the lens
apex and the corresponding period leads to the determi-
nation of the radius of curvature ~g of the lens at this
apex; crt is found to be about 9S% the value of the free-
electron sphere radius.

There is no Fermi-surface apex (in the hexagonal
direction) which could cause the appearance of morphic
oscillations with the short period found for the second
set of oscillations. But an extremum value for 8S,/Bp,
of the right order of magnitude is expected in the hole
arm of the second zone if this arm is in contact with the
arms in the adjacent zones. More likely, and to be in
agreement with Daniel and MacKinnon's results, the
cause of the short-period oscillation is the singularity
(discontinuity) of BS,/Bp, at the point the hole arm
starts to make contact with the two adjacent arms.

If attempts are made to use magnetomorphic oscilla-
tions to study Fermi surfaces, it is important that the
crystal faces be plane, parallel, undamaged, and that a
very accurate determination of the effective thickness
be made. The Hall eGect has been found the most
sensitive of the transport coeKcients for the study of the
magnetomorphic oscillations.

The gross behavior of the transport effect is generally
weQ accounted for, except for the case of Hall and



Righi-Leduc effects. The gross value of the thermoelec-
tric coeKcient ~II" is found to be an order of magnitude
too large as it also appears in its oscillatory component.
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Low-Temperature Speci6c Heats of e-Phase Copper-Silver Alloys
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Heat-capacity measurements between 1.6 and 4.2'K were made on a series of O.-phase copper-silver alloys.
The results suggest that the density of states at the Fermi surface decreases slightly upon alloying. Values of
the effective thermal mass calculated from the data are also found to decrease upon alloying. These results
are interpreted to mean that the Fermi surface is becoming more spherical.

INTRO DUCTIOH
' NTEREST in the electronic structure of the noble-
~ - metal alloy phases has been stimulated by the
experimental determination of the topography of the
Fermi surface in copper, silver, and gold. ' By means of
ncw techniques, it has been demonstrated that in these
metals the Fermi surface is already in contact with the
1111)faces of the Briilouin zone. The degree of contact
appears to be smallest in the case of silver, so that its
Fermi surface resembles most closely the free-electron
sphere with slight distortions in the $111j directions.

From the above observations, it follows, in terms of
simple models of the band structure, ' that the density
of states at the Fermi level shouM decrease initially
upon alloying the noble metals with elements whose
addition increases the electron concentration, e.g., 8-
subgroup elements.

Unfortunately, the techniques used to determine the
topography of the Fermi surface in the pure metals,
for example the measurement of the de Haas —van
Alphen CBect, cannot be used in the case of alloys
unless they are highly ordered. ' This is because the
increased scattering caused by randomly introduced
solute atoms substantially reduces the mean free path
of the conduction electrons. However, it is well recog-
nized that the measurement of electronic spcci6c heat
yields a direct measure of the density of states at the

~ Present address: Argonne National Laboratory, Argonne,
Illinois.' The Fermi Ssrfece, edited by W. A. Harrison snd M. B.Webb
(John %iley L Sons, Inc., New cwork, 1960).' J.M. oman Advan. Phys. 10 1 (1961).

I A. Beck, J. P. Jan, %.B.Pearson, and I. M. Templeton, Phil.
Mag. 8, 351 (1963).

Fermi level, and hence this technique can be used to
probe the band structure of dilute alloy systems. The
experiments of Rayne, on the e phases of the copper-
zlnc ' and copper-gcrmanluIQ systems have shown an
increase in the electronic component of the specihc
heat upon alloying. A similar trend is also found in
silver-tin~ 8 and silver-cadmium' alloys, and these
results which Indicate an lncI'case ln the dcnslty of
states are difEcult to explain in terms of a simple model
of the band structure of the noble metals. In a recent
attempt to reconcile experimental observations and
theory, Jones's has pointed out that on alloying the
broadening of the Fermi level caused by the impurity
scattering is large when compared with the thermal
broadening in the pure metals at low temperatures.
Such scattering should produce a virtual contribution
to the electronic speci6c heat particularly if the details
of the band structure in the vicinity of the Fermi level
include sharp changes in the density of states as is the
case in copper, silver, and gold where it is known that a
peak in the density of states exists just below the Fermi
level. This proposed contribution should be observable
even when the electron concentration and the band
structure remains unchanged on alloying.

The work described in the present paper was designed

' J. A. Rsyne, Phys. Rev. 108, 22 (1957).' B.W. Veal snd J. A. Rayne, Phys. Rev. 128, 551 (1962).
6 J. A. Rayne, Phys. Rev. 110, 606 (1958).
~ B. A. Green, Jr. and H. V. Culbert, Phys. Rev. 137, A1168

(1965).
ST. B. Massalski and L. L. Isaacs, Phys. Rev. D9, A138

(1965).
9 H. Montgomery and G. P. Pells, Conference on The Electronic

Structure of Alloys, University of Shefkeld, 1963 (unpublished).
"H. Jones, Phys. Rev. D4, A958 (1964).


