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Magnetomorphic oscillations periodic in the magnetic field have been observed in transverse magnetic
fields in the transport coefficients of a cadmium single crystal at liquid-helium temperatures. The experi-
mental coefficients in which magnetomorphic oscillations have been observed are: the transverse magneto-
resistivity p11, the Hall resistivity ps1, the transverse thermal magnetoresistivity i1, the Righi-Leduc re-
sistivity a1, the adiabatic thermoelectric coefficient e/, and tke adiabatic Nernst-Ettinghausen coefficient
e21’. These oscillations have an average period of about 565 G for a sample thickness 1.02 mm and are be-
lieved to originate with the lens-shaped Fermi surface in the third Brillouin zone of cadmium. The theory
of magnetomorphic oscillation for the case of free electrons is found to agree for the most part with the ex-
perimental results, except in the case of the oscillations in the quantity en’” (thermoelectric coefficient),
which have been found to be of an order of magnitude 20 times larger than predicted by the free-electron
theory. The extension of the theory to the case of nonspherical Fermi surfaces, and to the case of lens-shaped
Fermi surfaces in particular, fails to account for the anomaly in this coefficient. In addition to the oscillations
of period 565 G, another set of oscillations of period 132 G was detected in the Hall effect. It is suggested
that these short-period oscillations may be associated with the hole arms in the second Brillouin zone and
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are probably due to the truncation of the arm when it splitsinto its three branches.

INTRODUCTION

HEN the dimensions of a metallic sample are of

the order of the mean free path of the electrons,
scattering at the boundaries must be taken into account
when calculations of the transport effects are made.
Effectsin which boundary scattering cannot be neglected
are known as morphic or size effects and the magnetic
dependence of these size effects are known as magneto-
morphic effects. This paper presents the results of
measurements of magnetomorphic effects occurring in
the transport coefficients of a cadmium single crystal.
All measurements were made at liquid-helium tempera-
tures in a transverse magnetic field (see Fig. 1). It was
found that oscillations periodic in the magnetic field H
exist in the transport coefficients of the cadmium crystal.
These oscillations have been attributed to size effects.
Much of the work that has already been done on size
effects corresponds either to the zero magnetic field case
or the longitudinal magnetic field case! and little has
been done in the case of transverse fields. Oscillations
in the Hall effect and the transverse magnetoresistance
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Eksperim. i Teor. Fiz. 43, 399 (1962) [English transl.: Soviet
Phys.—JETP 16, 286, 871 (1963)].
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were predicted by Sondheimer? and have been observed
by several experimenters.®=% Oscillations are also ex-
pected in the transverse thermal magnetoresistance, the
Righi-Leduc effect, the transverse thermoelectric effect,
and the Nernst-Ettinghausen effect, as was shown by
Blatt® who extended Sondheimer’s theory to the case
of thermal effects. To the authors’ knowledge, magneto-
morphic oscillations in these effects have not previously
been observed.

Since the theories of Blatt and Sondheimer deal only
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F1c. 1. Orientation of the
crystal with respect to the
magnetic field H, the electrical
- current J, and the heat current
I W. The hexagonal axis of the
H g}lr(sital is along the magnetic
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with spherical Fermi surfaces, an extension has been
made to more general cases. The theory has been de-
veloped to include asymptotic high-field effects for
Fermi surfaces which have rotational symmetry about
the z axis, the z axis being parallel to the magnetic-field
direction. The extended theory reduces to the asymp-
totic form of Blatt’s theory for the case of free electrons.

Notation for the transport effects will be the same as
that used by Grenier, Reynolds and Zebouni!® where the
kinetic transport equations are given by

J=6E*—¢'G
W*=—A”E*+5\"G, (1)

where the fluxes J (current density) and W* (heat
current density) are given as linear combinations of the
affinities G (negative of the temperature gradient,
—VT) and E* [electrical affinity; see Eq. (9c)]. These
equations can be expressed in two alternative forms
which are useful for expressing experimental results.

=pI+eG  Wr=—2J+AG, (2a)
E*=pJ+e¢W*  G=#TJ+9W*. (2b)

For the geometry used in this experiment (see Fig. 1),
i.e., the magnetic field in the direction of the sixfold axis
of symmetry and the effects measured in the basal plane,
all the tensors in Egs. (1) and (2) reduce to 2X2. By
letting & be one of the tensors and by using Onsager’s
reciprocal relations, it can be shown that the tensors are
all characterized by a11= @22 and a91= — a;2. By defining
d=au+1a1s, it can be shown that the tensors @ are
homomorphic with the complex numbers a. (Note: The
complex notation used is chosen to give agreement with
that used by Blatt and Sondheimer.) This allows the
tensors to be manipulated like complex numbers; for
example, from Egs. (1) and (2a) with the temperature
gradient —G=0, one obtains ¢=p"1 or (o13+io12)
= (p11+14p12)~L. The tensor elements of ¢ are then easily
obtained from the complex notation, i.e., o11=p11/
(p112+p122) and o19=—p15/(p112+p122). Manipulation of
Egs. (1) and (2) yields, among other things, the following
set of results which are used in this paper:

é= ﬁ‘l (3a)
A= (3b)
¢ =&Xe =&e, (3¢)
N/ =\t (3d)

From Eq. (3a) it is seen that the kinetic coefficient ¢ can
be determined directly from the experimental quantity
p. Equations (3b) and (3d) show that, if &#”/<<\ (which is
usually the case at low temperatures), then A/ =iA=4"1,
Thus it is seen by Egs. (3) that the kinetic coefficients
¢, A\ and &’ can be determined from the experimental

© C. G. Grenier, J

M. Reynolds, and N. H. Zebouni, Phys.
Rev. 129, 1088 (1962)
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quantities g, 4, and &. In measuring these quantities, it
was found that all the following effects contained
magnetomorphic oscillations periodic in H: py (Hall
resistivity), p11 (transverse magnetoresistivity), vu
(transverse thermal magnetoresistivity), a1 (Righi-
Leduc resistivity), e’ (adiabatic thermoelectric coeffi-
cient), e’ (adiabatic Ettinghausen-Nernst coefficient).
The Onsager relation #''=T¢’ makes unnecessary the
determination of #’, the experimental adiabatic Peltier
coefficient, and if necessary allows the determination of
the corrective terms &’/ in Eq. (3d).

CRYSTAL

The monocrystal on which the measurements were
made was spark-cut and spark-planed from a bar of
zone-refined cadmium.!! After a slight acid polishing the
crystal had the shape of a slab of diminsions 1.8X0.556
X0.1035 cm at room temperature. The sample size at
the liquid-He* temperature can readily be obtained. For
example, the thickness ¢=0.102 cm will be used in
further computation; it takes into account the c-axis
contraction ratio 5.531/5.6167, which is the same re-
duction factor used by Daniel and MacKinnon.12

In addition to the quoted purity!! of 99.9999%, other
indications of purity are the facts that the resistance
ratio of the crystal is psoo/ps,2=35000 and that the
electron mean free path is of the order of millimeters
at liquid-helium temperatures.

The crystal was oriented (see Fig. 1) such that the
x or 1 direction was along the length of the sample, the
y or 2 direction was across the width of the sample and
the z or 3 direction was perpendicular to the face of the
slab and parallel to the hexagonal axis. The 1 and 2
directions are off by 12° from the binary and bisectrix
axis, respectively. The magnetic field was applied in the
z direction while the primary fluxes, i.e., the heat current
density W* and the current density J, were applied in
the x direction. Figure 1 shows the orientation of the
magnetic field and the primary fluxes.

FREE-ELECTRON THEORY

For the orientation of the crystal shown in Fig. 1, the
fields and temperature gradients are given by

H= (O;O:H) ) E= (EZ;EWO) ’
G=—-VT=(—9T/dx, —0T/dy,0).

Assuming a relaxation time 7, Blatt? solves the steady-
state Boltzmann equation [Eq. (4)] for the electronic
distribution function, for the case of free electrons
scattered diffusely at the surface of the sample,

Ve Vif—e[E+(1/c)vx H]-Vyf=—(8f/8)eon. (4)

1 The bar of cadmium was obtained from Cominco Products,
Incorporated and the spark cutter from Metal Research Limited,
Cambridge, England.

2 M. R. Daniel and L. MacKinnon, Phil. Mag. 8, 537 (1963).
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He then obtains expressions for the current density J
and the heat current density W. His results can then
be expressed in terms of the kinetic coefficients ¢, A",
and &’ which were defined in the introduction. Under
the simplifying assumption that  is independent of the
energy &, the equations are

00
do=0o1yFicig=0dw0 | () 2—iY)
1

X {1+ (st)[exp(—st)—17]}dt, (5a)
No=N11,FN12>Ao” = Rpo” / & 2—

1

X {1+ (st)"[exp(—st)—1T}dt, (5b)
&' = €1y +iers = &p0” / 2

1
X {1+ (st)[exp(—st)—1]}dt, (5¢)
where the bulk effects (index b) are given by

6‘50= (621'//’”1,0)1\70 ) (63.)

}\\bO”: L,.T(ezr'/mo)No ) (6b)

&v” = (w2k2T/3e) (27’ /mo) Zy. (6¢)

The notation used is essentially that of Blatt and
Sondheimer where applicable, i.e., s=K,+i8,=(a/A)
+i(a/ro) where a is the thickness of the slab, A is the
bulk mean free path of the electrons and ro= (mevsc/eH)
is the cyclotron radius; ¢=v;/v, is the parameter of
integration with v; the Fermi velocity and v, the velocity
component in the z direction; 1/7'=(1/7)43(eH/moc)
where 73 is the bulk time of relaxation; Vy is the number
of electrons per unit volume, Z, is the electronic density
of states and L,T is the free electron Wiedemann-Franz
ratio. The subscript (0) stands for the case of free elec-
trons. All other quantities are assumed to be expressed
in standard notation.

The Formulation of the Asymptotic
Oscillatory Effect

If an expansion of Egs. (5a), (5b), and (5c) is made
using the method of integration by parts, then for high-
field behavior, i.e., |s|>>1 and Bo>K, 13 it is found that
a good approximation to the results can be obtained by
taking only the first term of the expansion. Retaining
only the oscillatory part, the transport coefficients are
given by

11,7+ 1812= (—3012,867%¢F)

X [cosBo+1 cos(Bo+7/2)], (7a)

18 This asymptotic condition is incompatible with the condition
wer<1 of rigorous applicability of the transport Eq. (5), but it
will be supposed this last condition of applicability is not too
stringent. (w. is the cyclotron frequency.)
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N tihigy= L, TeE~K") (5 1y41615) , (7b)
&1y iEie) = (— €19, 'Bo 2 K"")

X [cos(Bo—m/2)+14 cosBo], (7c)

where o012, and e, have their asymptotic values
01250~ — (NoEG)/H, and 612,,,,"= ot (w’szcZo/SH). Differ-
ent K, K’, and K’ have been used to take account of
possible different mean free paths for electronic and
thermal effects. Equations (7) are valid also in the case
where 7, is energy-dependent.

Equations (7a), (7b), and (7c) are the expressions
needed to compare free electron theory to experiment.

The Expected Oscillatory Behavior in the
Free-Electron Case

The free-electron sphere in cadmium has the following
characteristics'?: radius #~1R,;=1.41 A-1, Fermi energy
7.73 €V, Fermi velocity 1.63X10% cm/sec. When Egs.
(7) are used the asymptotic free electron theory predicts
the following results for periods, phases, and amplitudes
of the oscillations.

Period

All the effects should have the same period. Since
Bo=a/ro=2wH/P,, it is found that Py=(2nc/ae)R;,
where Ry=mgv; is the radius of the Fermi sphere. Using
the value of #~1R;=1.41 A~ for the radius of the free-
electron sphere, the free-electron period should be
P,=572G if the apparent thickness of the crystal cor-
rected for temperature contraction is used in the com-
putation (i.e., 1.02 mm).

Phase

(a) The coefficients ¢11, A1 and &." are all in phase,
with field values for the maxima occurring at integral
values of the period Py, i.e., Huex=nPy where » is_an
integer.

(b) The coefficients ¢12 and ;5 are in phase with the
positions of maxima given by H pmax= (#4=1/4)P, where
the minus sign refers to electrons and the plus to holes.
Note that for electrons these two coefficients should lag
in phase by 37 as compared with the #11, X1, and &."
coefficients. Opposite results are expected for the &1’
coefficient, with Hmax= (nF1/4)P,.

Amplitudes

(a) Equality of amplitudes should hold between the
real and imaginary parts of each of the complex terms in
Egs. (7), ie., |du]|=|81|, |Au|= R, |&"| = &"].

(b) For low temperatures e X=¢ X’ so that the
Wiedemann-Franz law should hold, i.e., |X|=L,T|#|.

(c) |#ul, |#:2], |Xu| and |Xs2| should fall off with
the fourth power of H, ie., |6u|~H™ etc., while
| &2”| and |&y”’| should fall off as H-3,



143

vz

>~ -
Tz = CONST

§=ConsT

pl

F16. 2. Schematic representation of surfaces of constant energy
& for axial symmetry, shown by the sections §(p.,p’) =constant.
The figure shows how the value of =, is determined from the
intercept of the normal to the surface of constant energy with the
p. axis. Surfaces of constant =, are also indicated in broken lines
by the sections 7, =constant. The figure shows how the value of
p is determined from the intercept of the normal to the surface
of constant 7, with the p, axis.

(d) Calculation for K=0 of the free electron ampli-
tudes gives H*|2#:12| =6.86)X108G* (2 cm)™! and
H3|2&,"| =1.22TX103G34 cm~* (°K)~1. The first of
these values is represented by the letter F in Figs. 13,
14, and 18.

Some of the results required that a more general case
be considered. Therefore, the theory is herein extended
to include nonspherical Fermi surfaces which have
rotational symmetry about the z axis.

THEORY FOR FERMI SURFACES
WITH AXTAL SYMMETRY

The magnetic field and the direction of the axial
symmetry are in the z direction. The Boltzmann equa-
tion, Eq. (4), is approached in the same manner as for
the case of free electrons. With a trial solution of the
form f= fo+ f1 where fi=(cipa+tcapy)dfo/08, Eqs. (4)

become

V. P+, Pyt (eH/C)(vxCT'7)1/51)+Px[:51/7‘+'vz(651/az)___|
Fpules/74+v.(9c2/32) ]=0, (8)

where
o=—eE*+G.(3:/9T), (9a)
v=—el,*+G,(3/9T), (9b)
—eE*=—eE,+Ga(0¢/0T), (9¢)
—eE*¥=—eFE,+G,(3¢/3T), (9d)
with ¢ the chemical potential. Define P=P,—iP,,

g=c1—1Cs, V' =0v,—1vy, and p’= p,—ip, and note that
v/p'=v"*/p*=|V'|/|p’| =v./, for z the direction of
axial symmetry (see Fig. 2 for the geometrical definition
of 7). The differential equation

ag 1
Zi(—+
9z TV,

ieaH) P (10)

g+—=
Te

CT,
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is obtained, which has the solution
g=—m"(s:/a)"P[1+F(p)exp(—s:z/a)],  (11)

where F(p) is determined by the boundary condition
f= fofor electrons scattered diffusely at the surface. Itis
seen that

Flp)=—1 for v,>0
F(p)=—exps, for v.<0,
where
. e teaH a
=K+if=—-+ =—
™, cm, T,

Defining a complex current J= j,—i4, and remembering
that fo does not contribute to the current integral, one

obtains
3==% / f v fdad
= 2dp
ha

= j v Re(p’*g)—idzdp
e

(12)

Let dp=|p’|dp’dp.dy, integrate over z and ¢ and retain
only the oscillatory term, the result is

J=(eutisw) B*— (" +ias")G,

where

. dame? 7, €9 fo
Futigre=— f / —|p|¥———=dp'dp., (13a)
h® 2:>0 T2 298

Sz
and
4ame
&’ —Ip |?
2250 Tz
E—\e* 9
X(———) —]idp’dp, (13b)
T ]s.2

Consider now a simple lens-shaped Fermi surface for
which the transformation of Eqs. (132) and (13b) by
p'=9'(8,7.), p.=p.(8x;) is unique for p,>0. By
making this transformation, defining p, by

p' o, / o,

ps op'! ap.
and integrating the new expression for Eq. (13a) over
the energy &, one obtains

B [p'|2 eo=fam\!
d1t+id1= / (—)
h x>0 Tz sa? aPz

X <i—i)_1d7r,, (15)

Tz Pz

(14)




410

where all quantities now refer to their values for §=¢,
ie., to their values on the Fermi surface. Note that
(see Fig. 2) p, is related to curves of constant =, in the
same manner as m, is related to curves of constant &.
Although the derivation will be completed only for the
case of the simple lens, the same procedures are appli-
cable to other simple-shaped Fermi surfaces. An alter-
native form of Eq. (15) can be obtained by defining
t=m/m, and S,=mp'? where ¢ is now the parameter of
integration and S, is the cross sectional area of the
Fermi surface at some fixed value of p,. The quantity
m; is an arbitrary value of «, which in the case of the
simple lens, is chosen to be the value of =, at the apex
of the lens, i.e., the radius of curvature of the lens at the
apex. Equation (15) is now

4ge? * ey 1 1\7/9m\"'dt
Fntid1e= / Sz‘“—<—“‘—> ( ) -
VA t=1 s2\mr, Pz apz m

The Asymptotic Oscillatory Behavior Formulation

(16)

Since Eq. (16) has the form
6’11+1:5'12=/‘ U(t)ebudt,
1

it can be expanded under the asymptotic condition
Bi=eaH /cr>1 by the method of integration by parts
to obtain

¢ \*8re?a pr \2/0m )\ "2 _
511+’i5'12=(_‘> 7i'l6< >< ) e—(K+zm),
eaH h pi—mi/ \0p.
(17)

where only the first term of the expansion has been
retained. The radius of curvature of the surface m,=m;
at the point it touches the apex of the lens (see Fig. 2)
is given by p;. The case of free electrons is obtained by
letting .= p., and m;= Ry, where R; is the radius of the
Fermi sphere. It can be shown that the surfaces of
constant ., are planes for the case of free electrons,
thus p;= . Substituting these quentities into Eq. (17)
yields:

F1i, 1812, = (c/eaH ) {(8me?a/h®) R foe~KFiP0) | (18)
which, since Ry= 3Nok?/8w and 8= aeH /m*vc= aeH / Ryc,
is identical with the asymptotic Eq. (7a) obtained from
Sondheimer’s theory. Thus the amplitude of the oscilla-

tion associated with an apex, as compared to the free-
electron case, is

|6‘|/I5’0| =rs(l—v)—Z(avrz/apz)—2,z=,,,

where r=mi/Rys; v=m1/p1.

(19)

Similar treatment of Eq. (10b) for €’
|/ & | = (m*/mo)r*(1—v)™(9m./3p:)", (20)

where m* is the cyclotron mass at the apex and my is

gives
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the mass of a free electron. Equations (19) and (20) are
generally true even with 74, m, and m* being smooth
functions of & and p.. Extension of the theory to the
study of the heat flow and the determination of A’ leads
to aresultin A;1”/+4X;y” similar to those in ¢ in Eq. (19).

Thus it is seen that the case of nonspherical Fermi
surfaces can be solved if the surfaces of constant § and
surfaces of constant , are known, and that an asymp-
totic solution is readily obtained for the case of the lens-
shaped surface. Extension to other simple Fermi sur-
faces with rotational symmetry about the z axis is only
a matter of mechanics. More specifically, morphic
oscillations should appear for any extremal values of ,
(or m*v, or 8S,/9p.). This includes not only an apex but
also cases for which =, reaches a maximum or minimum,
such as inflection zones occurring between the neck and
belly of some Fermi surfaces. For those Fermi surfaces
with inflection zones, |#12| would follow an H-"/2 law
rather than the H—*law found to hold in the case of the
apex. Discontinuous or truncated Fermi surfaces would
give | 12| following an H—*law, while “monochromatic”
Fermi surfaces, i.e., those for which 95,/9p. becomes
independent of p, over a finite range of p,, would exhibit
an H~2law.

Equations (19) and (20) are the results needed to
compare the theory of a lens to that of the free electron.

Expected Results in the Case of a
Lens-Shaped Fermi Surface

To be more specific, cadmium has an electron lens-
shaped Fermi surface in the third zone, the mapping of
which apparently follows well the theoretical formula-
tions given by Ziman.'* Using the experimentally deter-
mined!? principal axis radial values of the lens % 1p,
= 1py=0.725 A1, #1p;=0.25 A-1 and Ziman’s lens
formula, the following parameters are obtained for this
lens: energy gap A=0.91 eV; Fermi energy=7.47 eV;
len’s apex radius of curvature #~lm;= (471/27)(8S./3p.)
=1.36; A~ ie, r=m/R;=0.96;; cyclotron mass
m*=my; Fermi velocity at the apex 1.57, 108 cm/sec;
the surfaces of constant =, are planes (d7,/38=0) i.e.,
p.=» and »=0, dr,/9p,=1.18 at the lens apex; the
amplitude factor for morphic conductivity oscillations
r8(1—v)~2(dm,/3p.)2=0.58; the amplitude factor for
morphic thermoelectric oscillations

(1 —») =201,/ 3\ (m* /mo) =0.76.

Period

The period will depend on the radius of curvature of
the lens at the apex, i.e., P=(2wc/ae)m; where = is the
radius of curvature at the apex. If the Ziman’s lens
model is used, the expected period will be P=553 G,
for a sample thickness of 1.02 mm.

¥ M. Ziman, Electrons and Phonons (Oxford University Press,
London, 1960), p. 100.
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Phase and Amplitudes

The relative phases and general considerations about
the comparative amplitudes between the different effects
are the same as that for the free electron case. Examina-
tion of Eq. (19) and Eq. (20) shows that |#| and |&”’|
should not differ appreciably from the free-electron
values as long as the apex characteristic parameters
w3, 01,/ dp., v, m* do not differ widely from those of the
free-electron sphere. More specifically, if the lens model
formulated by Ziman is used, with ¢~¥ supposed equal
to unity, then the following amplitudes are expected:

H*|2812| =4.0X108Q7! cm—1G*
and
H?|2&,"|=0.93TX108 ACCK)™L.

The first of these values is indicated by the letter L on
Figs. 13, 14, and 18.

EXPERIMENTAL RESULTS

A complete set of results has been obtained for the
elements of the tensors g, 9, and ¢ at four temperatures:
4.0, 2.8, 2.0, and 1.6°K. During the course of these
experiments, two distinct sets of oscillations were ob-
served, both of which are periodic in the field H. One
set, which will be referred to as long period or main
oscillations, has a period of 564243 G and has been
observed in all the measured effects under appropriate
conditions of temperature, magnetic field, and primary
flux. These oscillations correspond to those observed by
Zebouni et al.% in the Hall resistance and magnetoresist-
ance of a cadmium sample. The second set of oscillations
was observed only in the Hall effect,® at the lowest
temperatures. These oscillations will be referred to as

20r

r 1.62K /~-2.0°K

n
o

N
£, (10%hm cm)
o)

H(kG)

Fic. 3. The transverse magnetoresistivity pu plotted as a
function of the magnetic field H, for four different temperatures.
Low-field size-effect oscillations are shown by the insert for
1.6 and 2.0°K.
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¥, L T(10%ohm--cm)

H(kG)

Fic. 4. Transverse thermal magnetoresistivity i1 versus
magnetic field H. The value of v1; has been multiplied by the free-
electron Wiedemann-Franz ratio L.T and expressed in (ohm cm),
to allow direct comparison with the resistivity data of Fig. 3.
Low-field magnetomorphic oscillations are seen in insert for 1.6
and 2.0°K.

short period oscillations since their period is 132 G,
or about 4.3 times shorter than the main oscillations.

Long Period Oscillations

As has already been reported®® these oscillations are
believed to be the magnetomorphic oscillations which
are expected from the theories of Sondheimer? and
Blatt.? Oscillations in pyy, y11, and e’ were very small
compared to the gross effects on which they were super-
posed; therefore they were only visible for small mag-
netic fields where the gross effect was of the order of the
oscillation amplitudes. In the case of ey’ it was also
necessary to use large heat currents. These quantities
are shown in Fig. 3, Fig. 4, and Fig. 5, respectively. Low
field oscillations are shown by inserts in each of the
figures. Oscillations were much more pronounced in
p21, v21 and €1y’ as can be seen in Fig. 6, Fig. 7, and Fig. 8,
respectively.

Although the long period oscillations were observed
over the entire field range of 400 to 17 000 G in some
cases, only oscillations at high field will be considered
because they are easier to interpret than the oscillations

30t
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Fic. 5. The adiabatic Nernst-Ettinghausen coefficient es’
showing dependence on magnetic field and temperature. Low-field
size-effect oscillations are shown by insert.
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£, (10%hm -cm)

Fi16. 6. Hall resistivity ps1 showing magnetomorphic oscillations
periodic in the field. Note that the gross effect becomes positive for
T>4.0°K thus agreeing with the bulk positive Hall effect usually
found in cadmium.

occurring at the lower fields. In order to study the oscil-
lations and compare them to theory, the elements of
é, A\, and &’ were calculated from the elements of 3, 9
and ¢, using Eq. (3). The corrective term A’—A=¢"#
was found negligible. The elements of the tensors ¢, A
and ¢’ were multiplied by H” (where » is an appropriate
integer) then fitted with a polynomial by the method of
least squares, and the gross effect subtracted out to leave
only the oscillatory part of the effects. The chosen
integers are =4 in the case of ¢ and A and =3 in the
case of ¢’ since the theoretical asymptotic quantities
H*|¢|, H*|N'| and H?|&’| are expected to be constant.
The results of such a procedure for &2, Ai2, and &’ at
2.0°K are shown in Figs. 9, 10, 11.

Comparison with Theory

Period. The experimental period of 56443 G is
slightly less than the period expected from the free-
electron sphere (572 G), and slightly larger than the

84 LpT(10%hm cm)
N
T

H(kG)

FiG. 7. Righi-Leduc thermal resistivity coefficient ys1 showing
size-effect oscillations similar to those found in the Hall effect.
This effect is multiplied by LT for comparison with the ps data
of Fig. 6.
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period expected for the case of the Ziman lens described
above (553 G). There is, then, not much doubt that the
lens-shaped electron Fermi surface in the third band is
responsible for the long-period morphic oscillations.
Trusting the experimental period and the measured
sample thickness, one finds that the lens’s apex has a
radius of curvature #—lr;=1.3940.00; A-1i.e., 7=0.98;
=+0.005; whereas Ziman’s lens corresponds to a radius
defined by r=0.96;. The discrepancy between the ex-
perimental and theoretical value of radius of the lens is
not serious and most probably caused from the error
which can be made on the correct evaluation of the
thickness of the sample. Since the crystal was spark
planed, a process which created a thin and irregular
polycrystaline layer on the surface, it is possible that the
effective value of the thickness ¢ is somewhat smaller
than the measured value. Manufacturers of the spark
cutter!! have estimated the depth of damage to lead

08V -cm/W)
g R

g,

»
o
:

-48f

8 10 12 14 16 18
H(kG)

Fic. 8. Size-effect oscillations in the transverse . adiabatic
thermo-electric coefficient e1’. A different zero position is used for
each temperature because of the lack of temperature dependence
of this effect.

crystals to be of the order of 25 to 100u when cut under
the same conditions as the cadmium crystal. Thus a
slight acid treatment was performed to remove the
deteriorated layer. The clear appearance of the etch
pattern of an inclusion crystal on the corner of the
main crystal was sufficient indication that most of the
polycrystaline layer was removed and replaced by the
slight irregularities associated with etched surfaces. It
is estimated that a 10 microns damaged or irregular
layer of the crystal surfaces would be sufficient to bring
the » value to agree with the »=0.96; value expected
from the lens model.

Thus it is seen that if this type size-effect oscillation
is to be used to make direct measurements of the curva-
ture of the Fermi surface, it is extremely important that
the thickness be well known and that the surface damage
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T=20°K
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F16. 9. Oscillatory part of the Hall conductivity a1z (with the
gross effect removed) multiplied by H* and shown as a function
of the field H for 2.0°K.

layer be very small compared to the thickness of the
sample. Enlarging the crystal would help but it would
also decrease the amplitude of the oscillations expo-
nentially by the factor ¢=(¢/4), where A is the mean free
path. Surface damage is reduced by finishing the surface
with acid-polishing techniques.

Phase. It has been found that the relative phase of
most of the kinetic transport coefficients is in good
agreement with theory. A summary of the relative
phases of the various effects is as follows:

(a) The oscillations in the quantities #;; and Xy are
found to be in phase. Oscillations in &'/ were too poor
forlany conclusion to be drawn about their phase.

(b) The oscillations in the quantities ¢19, A1, and &,”
are found with a good approximation to be in phase. A
lag in phase of 3 exists between these effects and ¢4; as
expected from theory in the case of electrons for ;2 and
X1z, but the phase of &," is in disagreement with this
expectation.

The absolute phase turns out to be very difficult to
determine since the limit of experimental accuracy is
reached in trying to make such a determination. In
Fig. 12 the field values for the maxima Hpax of &12 are
plotted against the integers. The low-field points should
be discarded because a phase shift would appear in the
nonasymptotic region, The best straight line through
the high-field points in Fig. 12 is given by

H o= (n—3%)564 G.
It is felt that the fact that 3 (i.e., a = phase) was

s '2( T=2.0°K
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F16. 10. Oscillatory part of the Righi-Leduc conductivity A2 at
2.0°K multiplied by H*, as in Fig. 9.
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Fi16. 11. Oscillatory part of the thermoelectric kinetic coefficient
enn” (2.0°K) multiplied by H?.

obtained instead of 1 (i.e., a 7 phase) is within experi-
mental error in view of its determination from the far
end extrapolation.

Amplitudes. (a) Although the oscillations in &1, X1
and &,”’ were not known with good precision, it was
found that |&1|=]|&12| (this is in agreement with
results found by Zebouni, Hamburg and Mackey®), that
|Xi1|=]|X:2] and |&;”|=]%."|. Lack of precision in
&11, A1 and &2” is attributed to the fact that the gross
effect in p11, v11, and ez’ was very large compared to the
size of the oscillations in those effects. It is felt that the
differences of 209, which were actually obtained be-
tween |¢11| and |&:2| are within experimental error and
that the theoretical prediction |Gu|=&12| is satis-
factorily demonstrated. For the same reasons, it is felt
that the experiments are also in good agreement with
the predictions |X;1| = |X12| and |&”’|=]&2"|. In the
remainder of this paper the equality is assumed to hold
for the effects discussed above and only the results of
the most precisely known of the oscillations are used.
For example, Figs. 13, 14, and 15 show the averaged
peak to peak amplitudes 2H*|&2|, 2H*L,T'|X12| and
2H3|&,""| as functions of the field for several tem-
peratures.

(b) Comparison of Figs. 13 and 14 shows that good
agreement with the Wiedemann-Franz law is obtained
for the magnitudes of the oscillations. Inspection of
Eq. (7b) shows that for K’> K (which is expected since
mean free paths for thermal processes are shorter than

16
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F16. 12. Field positions of the maxima of the oscillations in o153

lotted against integers. The slope of the line gives the exper-

imental period (565 G) while the intercept is related to the absolute
phase. Insert shows that the intercept is of the order of —70 G.
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Fic. 13. Averaged amplitude of the oscillations in the quantity
2H%G12 shown as a function of field H. The amplitude of the
oscillations in &1 are seen to fall off as H™ in the range 4 to 11 kG.
E, F, L represent respectively, the experimental extrapolated
value, the free-electron expected value, and the lens-shaped sur-
face expected value.

mean free paths for electrical processes) the amplitudes
of the oscillations in the thermal conductivity and
Righi-Leduc effect should be smaller than those in the
electrical conductivity and the Hall effect.

(¢) Examination of Figs. 9, 10, 13 and 14 shows that
the amplitudes of &2 and X;, fall off as H—* for fields
between 4 to 10 kG and then fall off more rapidly at
higher fields. The H—* dependence in &, is in agreement
with results found by Hamburg and Zebouni.® Similarly,
Figs. 11 and 15 show that &,” falls off as A~ for the
region 4 to 10 kG and then falls off more rapidly at
higher fields. No explanation is offered for the field
dependence of the effects below 4 kG since this not
considered to be the asymptotic region. The fact that
the oscillation amplitudes do not follow the H—* de-
pendence above 11 kG is believed to be due to the fact
that the crystal faces were not perfectly plane and
parallel. There is no way of ascertaining the depth and
variation of the damage to the surface caused by spark
cutting and the subsequent etching irregularities. Thus
the over-all effective thickness would vary from point
to point in a range a==Aa which would create a disper-
sion in the period by an amount P4=AP, and thus tend
to decrease the amplitude of the oscillations correspond-
ing to large integers. About 20 oscillations are observed
before such dispersive effects become noticeable and by
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F1c. 14. Averaged amplitudes of the oscillations in the quantity
2H*(LnT)™ ;2 shown as a function of field. Comparison with

Fig. 13 shows that (L,T)~;; has approximately the same ampli-
tude and field dependence as 2.

15 R, Hamburg, Master’s thesis, Louisiana State University,
1964 (unpublished).

GRENIER, EFFERSON, AND REYNOLDS

143

the time 30 oscillations have been observed, the ampli-
tude of the oscillations has dropped to about 609 of its
expected value. It is in qualitative agreement with an
order of magnitude for Aa/a of about 19, ie., the
irregularities in the depth of the damaged layer should
be expected to be about 10u.

(d) It can be noted that the experimental amplitude
of &2 and A2 corresponding to the flat region of the
curves in Figs. 13 and 14 are only slightly less than the
amplitudes predicted for the free-electron sphere and
the Ziman lens, which are indicated by the letters F and
L, respectively. This agreement corroborates the identi-
fication of the lens as the cause of the morphic oscilla-
tion. More precise comparison can be done if an experi-
mental evaluation of the quantities e~ can be made or
if the extrapolation of the amplitude |#;2| and |X;2| to
the case of infinite mean free path (e=X=1) is effected.
Such an extrapolation as outlined in the last chapter
and on Fig. 18 leads to a value H*|2¢12.| =5X 101801
cm~! G4 and is indicated in Fig. 13, Fig. 14 and Fig. 18
by the letter E. The agreement with the theory can be
seen to be excellent.

— 20,
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F16. 15. Averaged amplitudes of the oscillations in the quantity
2H%," shown as a function of field. |&,"’| is seen to fall off as

H~% in about the same region as |512| and |Asz| fall off as H—4

The same cannot be said for comparison of the experi-
mental and theoretical amplitudes of the thermoelectric
oscillations: here the experimentally obtained oscilla-
tions are about 20 times larger than expected. Since the
experimental values of &, are determined by an in-
volved tensor calculation, it might be thought that
accumulated errors on the experimental coefficient p, v,
and ¢ could generate values of &;"” abnormally large and
of the wrong phase. To eliminate any doubt about this
question an entirely new set of experiments was per-
formed and the calculations made again. The results
were almost identical with the results of the first set of
experiments. This seems to eliminate the possibility
that the discrepancy was caused by the incidence in the
tensor calculation of some experimental errors. Another
possibility might have been that the thermoelectric
power of the constantan leads was not corrected for the
calculations. This possibility was discarded when it was
found that the term which would have contained the
thermoelectric power of the leads was not of the proper
phase and magnitude to explain the oscillations found
in &,". Assuming all possibilities of experimental errors
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have been eliminated, it can be stated that the &’
results are anomalous with respect to free electron
theory and to the case of the lens. Indeed, matching
the experimental data to Eq. (19) leads to »=0.985 and
(1—»)~%(0mr./3p.)2=0.79;, i.e., a fair agreement, but
trying to match also Eq. (20) leads to (m*/m)(d7./0p.)
=33 a result which is incompatible with cadmium band
structure. Therefore, the anomalous amplitude in the
€11” morphic oscillation remains still unexplained. Rough
estimates from other possible causes which may in-
fluence the €;;”” data such as phonon drag does not seem
to account for the anomaly either.

Short-Period Oscillations

These oscillations were first detected when it was
found that what appeared to be an unexplained noise in
the measurement of the oscillations in ps; was entirely
reproducible at 1.6°K. By lowering the temperature to
1.3°K and adjusting the amplifier system to optimum
values, it was found that the “noise” was a set of oscilla-
tions periodic in the field® superposed on the main set
of long-period oscillations. Figure 16 shows a section
of the recorder trace with the two sets of oscillations
drawn in and the noise removed. Up to 70 of the short
period oscillations were observed. A detailed study of
these oscillations would be difficult because of their
small amplitude. However, a check of the orientational
dependence indicates that the relative amplitude of the
small period oscillations to the long period oscillations is
nearly independent of the field direction for angles be-
tween the field and hexagonal axis of the crystal of up
to 10 deg. The ratio of amplitudes found was |521| 1one/
| 521 | shors= 10. The periods of the long and short oscilla-
tions are very insensitive to orientation in this range. A
check of 43 of the short period oscillations showed that
the period of the oscillations was practically constant
with the ratio of long to short oscillations being given
by Plong/Pshort=4~3-

Since these size-effect oscillations are expected to be

Arbitrary Units

T=1.3°K

Recorder Trace

1 1 1
25 30 35 40 45

F1c. 16. The top curve represents a recorder trace for the
oscillations in pg (Hall resistivity) which show the short-period
oscillations (132 G) superimposed on the long-period oscillations
(565 G). The separate contribution of those short-period oscilla-
tions are shown on the lower curve.
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due to sections of the Fermi surface where dS./dp, has
an extremum, the lack of orientational dependence of
the period indicates that the Fermi surface is one of a
type where the extremum of dS./dp. is relatively con-
stant over angles of about 10 deg. This is, for example,
the case of the extremal values near the apex of the
lens-shaped surface of cadmium used in the interpreta-
tion of the long period oscillation. Examination of
published information!?:1¢ on the Fermi surface suggests
that perhaps the “hole arms” in the second Brillouin
zone might be responsible for the short oscillations (see
Fig. 17). The maximal extremum which exists on one of
the arms could cause the oscillation; however, it is not
obvious that dS./dp, would be constant enough with
respect to orientation changes to account for the experi-
mental results, but as pointed out later the truncation
effect due to the branching of the arm would provide for
an effect more insensitive to orientation.

If these oscillations are assumed to be due to the hole
arms then the present results could be compared to the
findings of Daniel and MacKinnon!? (DM). In their
study of magnetoacoustic absorption in cadmium made
with the magnetic field and the direction of motion of
the longitudinal sound waves in the hexagonal direction
an oscillatory field dependence of the attenuation co-
efficient was interpreted as corresponding to the ex-
tremal value of 95,/9p. of the hole arms.

If it is required that the distance traveled in the
2z direction in one orbit around the Fermi surface,?i.e.,

¢ a5,
f V= ——
eH 3p,
should be some submultiple of the
crystal, then

thickness of the

a ¢ dS S ea
—_— — or —=—P,
” eH, 3p. ap. ¢

where # is an integer and H,/n=P the period of the
oscillations when S./dp. corresponds to an extremum
or to a singularity. The short oscillation period of
P=132 G corresponds to #1(8S,/dp,)=2.04 A-L. The
result quoted by DM of %#1(3S/dp.)=0.68 A1 at-
tributed to the hole arms, can be seen to be exactly
three times smaller than that presently obtained from
the short period oscillation. The apparent discrepancy
with DM results seems to indicate that the branching
of the arms suggested by Harrison!® and illustrated by
Gibbons and Falicov!” and Grassie!® would be correct.

As pointed out at the end of the theoretical section,
magnetomorphic oscillation would appear whenever
(8S./8p.) reaches some extremal value or presents
singularities. The singular property of the holes arm

16 W. A. Harrison, Phys. Rev. 118, 1190 (1960).
7], F. Gibbons and L. M. Falicov, Phil. Mag. 8, 177 (1963).
18 A, D. C. Grassie, Phil. Mag. 9, 847 (1964).
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F1c. 17. The right side of the figure is an approximative representation of part of the “hole’” Fermi surface in the second zone.
The left side of the figure shows cross sections of this hole surface in the repeated zone representation for two values of p,, % p,=0.18 A1
and %71p,=0.27 A~ They characterize the shape of the electron orbits when slight deformations from the free-electron case are taken
into consideration. In one case (#%71p,=0.18 A1) the orbit takes place around one branch of the hole surface; in the other case (%7p.
=0.27 A7) it takes place around the set of three adjacent merging branches.

which may be stressed is the fact that, built up along an
edge of the zone adjacent to two other zones, it splits into
three branches!®—!8 at a level here referred to as ps (see
Fig. 17). The truncation of the arm at p,=ps is charac-
terized by the discontinuity S(p.=ps*)=3S(p.=ps")
in the Fermi surface cross section, with approximately
[8S(pst)/0p.1=3[0S(ps)/dp.]. This last relation
would explain the two values of 2.04 A-! and 0.68 A-1
obtained from the two different experimental methods.
Acoustic resonance would be sensitive to the smaller
value of (35/9p,),1.e., corresponding to orbit around one
branch and obtained for p5~, whereas a galvanomorphic
effect would be sensitive to the larger value of (85/dp.)
corresponding to the orbit around the unsplit arm for
put. The two types of orbits are illustrated in Fig. 17.
The free-electron approximation for this part of the
Fermi surface would have the arm remaining in contact
all the way along the vertical edge of the zone. However,
any small overlap of the Fermi surface due to an energy
gap would immediately create suitable conditions for
such splitting of the arm into three branches. The value
of #~1(8S./dp.) can be computed for the free-electron
approximation and is equal to 2.04 A~ for #~1p*

=0.202 A-1, The deformation from the free-electron
approximation would most probably be such that
#~1p,<0.202 A1, Since (3S/dp.)=0 for p,=0 there will
be -two values of p,, ps and ppe corresponding to
#71(8S./9p.)=2.04 A-! and with an intermediate value
Pm (P> pm> pre) for which (9S,/9p.) would pass
through a maximum value |9S,/9p.|m. (It could be
possible that |8S./9p.|m would be very close to the
2.04 A-1 value; such possibility would largely enhance
the corresponding morphic oscillations.) The expected
asymptotic behavior for the amplitude in &, in the case
of truncated type of singularity is a H~2 field depend-
ence, as compared to the H—* behavior of the long-period
oscillations. It should be expected thus that the short-
period oscillations in py; would show an increase in
amplitude with the field and as compared with the
amplitude of the long-period oscillations. The fact that
this behavior is not observed would simply be related
to the dispersive effect due to the surface imperfection
and the associate decay of the amplitude with the in-
crease in the oscillation integer number which for the
short period oscillations is more than four times that
for the long-period oscillations.
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Some Considerations About the Bulk
Effects and Gross Size Effects

In the galvanomagnetic effects
¢=(G1ut+1i612)+(d11+i612)

the gross effect ¢;3+44612 is known with sufficient pre-
cision whenever easily separated from the oscillatory
component &;+14512, a condition which requires a large
enough field and for which the transport equations
simplify to their asymptotic limit.®® Taking the non-
oscillatory term out of Eq. (12), it can be shown that
the lens contribution to conductivity is &1344612
=¢p{1—aI(m,)av} where é¢; is the bulk contribution
dv=e%f aa~'dn., where the integration is carried over
the volume of the lens, and where d#, is the number of
electrons in the slice p., p,+dp. of the lens. If it is
supposed that ,/v,=m* is independent of p, as in the
case of Ziman’s lens, then

1w, eH e
¢ la=-—+i—=-
TV, ¢ ¢

€
(H+il)=-H{
C

is independent of p, and é¢5=ecN;H;"~! will be the lens
contribution to bulk conductivity, with &; number of
electrons in the lens and H;=cm;*/er.

With the same assumption as above, (7,)av is the aver-
age (1/N,) S 'm.dn, and a good approximation in the lens
case as in the quadratic case would be (7.)av=(3/8)m:.

With P; the morphic period due to the band j and
defining H,;=(3/8)(P;/2x), then

Giticie=ec Z NjHj’_l(l—Ifstj'_l) (21)

if all band j can be assimilated to lens shaped or
quadratic (with axial symmetry) Fermi surfaces. Here
Hj=(H;=4H) with the upper and lower signs corre-
sponding to electrons and holes, respectively.

For high fields A>>H 3 the transverse conductivity
and Hall conductivity take the simple form

Hy=ec ). Ni(H;i+H,;),
H(7'12=66 ZiNj{l*Hj(Hj—f—ZHsj)H—z} .

Identical expressions would be obtained for the elec-
tronic part of the thermal conductivity in the form of
(LaT) I\, except for larger values of the H;. The
corresponding expressions for thermoelectric effect can
be obtained starting from the nonoscillatory part of
Eq. (12) or more simply by applying the relation
&' = (w*%2T/3¢)(36/98) (8=¢) which is found valid in
the magnetomorphic case and in which ¢ is given by
Eq. (21). The asymptotic condition yields

Hep'' = — (wszcT/S)Z Z; (23&)
H," = (r*k%T/3)2 .+ Z;(H;+5H +3m;H;)  (23b)

if all band j can be assimilated to lens-shaped or quad-
ratic, axially symmetric Fermi surfaces. The index j

(22a)
(22b)
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refers to all bands; j=1 for the lens. In the two-band
model j=e and j=% would be used for electrons and
holes, respectively. The index s is, as defined, to charac-
terize the size effect. In further computation all H,; will
be neglected except H,; of the lens (H,;=33.8 G). The
bulk time of relaxation is supposed energy-dependent
with the law 7= 8* and as can be seen in Egs. (22) and
(23) only &,” is affected by this energy dependence.

A certain number of parameters in the Eqgs. (22) and
(23) can be determined from the comparison with the
experimental result.

Mean-Free-Path Determination

The bulk time of relaxation = appears in é1; through
the saturation fields H;=cm;*/er. Should 1/7 tend to
zero the asymptotic value H%4; would tend to the size
part ec >_N;H;=~ecNH ;.

The bulk time of relaxation also appears in the
asymptotic amplitude of the morphic oscillation through
the term eX. Defining &1, the Hall-conductivity-oscil-
lation values extrapolated to the condition of infinite
mean free path, then e=X=g,5/642, and

K=1D2H4!5'12w| —11’12H4l5'12|

=,3(H26'11- eCNlel) . (24>

Those relations should hold also when the o terms are
replaced by the corresponding A.(Z,T)™! terms. In the
semi-log representation in Fig. 18 of 2H*|&s| versus
H?%y, for different temperature and field values, a linear
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Fic. 18. Variation of the amplitude in the magnetomorphic

oscillations |712] and |Xiz| as a function of the time of relaxation
7, the time of relaxation being supposed to be proportional to the

gross u or A, conductivity. The In H%|2612| values are seen
to be linearly depending on H?31;, with the mean free path infinite
or K=0 for H%suu=~ecNiHqg. The K scale, the mean-free-path
scale, and the time of relaxation scale are thus determined and
shown on the right side of the figure. The different points, for
different field values correspond to o data (4 at 1.6°K, x at 2.1°K,
o at 2.8°K, e at 4°K) and to \ data (A at 1.6°K, [] at 2.1°K).
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TaBLE I. Parameters related to the mobility of the electrons and phonons.
I II III v \% VI VII VIII X X
Temperature A, Ax To ™ Hi, Hi Ay Ay
°K mm mm 109 sec 1079 sec G G ap o 102 W°K1cm™ micron
1.6 3.0 1.8 1.9 1.2 30 47 0.63 0.68 0.305 2.0
20 2.5 1.3 1.6 0.8 35 70 0.5 0.6 0.515 1.7
2.8 2.0 1.3 44 1.3 1.6
4.0 1.2 0.75 76 0.22 3.15 1.3

dependence of In2H*| 41| is achieved and it is seen that
2H*|#12| extrapolates to the value 2H*|#5,| =5X 108
(@1 cm™ GY) for H%11=ecNHy=2.4X 10" (@1 cm™!
G?) (V,is approximated from calliper size to be N;=4.4
X102 cm™2). This extrapolated value is represented in
Figs. 13, 14, and 18 by the letter E. This value corre-
sponds to e %=1, i.e., K=0 or A= 0 ; scales for both
K and A (the electron bulk mean free path) can be
determined and are shown on the right side of Fig. 18.
A direct mean-free-path reading can be made by use of
the A scale, and despite a slight field variation, average
values for A, can be obtained for each temperature and
are shown in Table I, column I. The index o refers to
mean free paths corresponding to the galvanomagnetic
effect. It may be seen that the mean free paths are in the
millimeter range. When the electronic thermal con-
ductivity A, terms are used in Eq. (24) and plotted on
Fig. 18, mean free paths corresponding to the thermal
process Ay can also be determined and are given in
Table I, column II. The ratio as=Ax/A, or bulk scatter-
ing efficiency shown in Table I, column VII is a meas-
urement of how efficient is the scattering in galvanic
process as compared to thermal process. The fact that
as is close to unity at the lowest temperature indicates
that impurity scattering is already preponderant. It
may be estimated that impurity-scattering mean free
paths at 0°K would be of the order of 5 mm. The ratio
a=MA11./(11L.T) given in Table I, column VIII is, at
high field, a measurement of the apparent efficiency
which differs from a3 the bulk efficiency, since the size
scattering is also included. As expected, « is larger
than as.

Columns IIT and IV of Table I give the values of
the bulk time of relaxation 7=A/vr where the Fermi
velocity!? vp is taken as 1.58X10% cm/sec. A 7 scale is
also shown in Fig. 18. Since the lens cyclotron mass m;*
is practically equal to the free-electron mass, the satura-
tion field H;=cm;*/er for the lens would be the same
as that for a free electron H;=H,=cmo/er and these
values at the different temperatures are given in Table I,
columns V and VI for electrical processes (¢) and
thermal processes (\), respectively.

Lattice Thermal Conductivity and
Phowon Mean Free Path

With the thermal conductivity given by A=X.+A, the
lattice contribution Ay can in principle be separated as

the curve A\y; versus oy extrapolates to the value A\, when
o11— 0. The A, values thus obtained are shown in
Table I, column IX and seem to decrease with tempera-
ture following approximately the law A~T2%, A
phonon-size effect scattering would give a 7% law and a
phonon-electron normal scattering a 72 law; the experi-
mental result would suggest an intermediate situation.
Nevertheless, it would be more correct to suggest the
preponderance of the electron-phonon process (normal
process plus a remnant of umklapp process), since the
phonon mean free paths A, are too small compared to
the sample size. An order of magnitude of A, can be
obtained with A,=3\,(Cyv,)~! where the lattice specific
heat C, is calculated with a Debye temperature
60=172°K and the sound velocity v,!% is taken as
3800 m/sec. The phonon mean free paths are seen in
Table I, column X to be within micron range.

The Electrical Conductivity, the Carrier Densities,
and the M agnetic Breakdown

Equation (22a) predicts that &;; depends linearly on
H~2 and tends to zero as H —o. Experimentally the
linear dependence is achieved but the extrapolation
H—x gives a &11,, value slightly different from zero.
Should any weight be given to this behavior it may be
suggested that it is due to a small fraction V' of open
orbit carriers. If those carriers are attributed a mass m,
and the relaxation time 7, of Table I, the values sV’
are found to be of the order of 1076 ¢ cm™ or 1077 ¢
atom™! as can be seen in Table IT column I. It may be
suggested that at high fields a few electrons may be
filtering through the pinched off region of the hole ring
as well as filtering from one arm branch to another near
the lateral edge of the zone, i.e., a weak reminiscence
of the occurrence in zinc and magnesium of the magnetic
break-down of the hole ring.1%:* But some ambiguity
exists between the temperature dependence of 6V’ and
the preceding interpretation.

When H25y; is corrected from the H2%511,, and ecN H
terms, an estimated value of >~ N;H; can be obtained.
In Table I, column IV the normalized value N'=H;,~!
X2 N;H; is given. It can be considered to be a good
approximation for the total number of carriers supposing
that most carriers have masses nearly equal to m,.

Although a fairly good analysis of &1; can be made, it
is not the same for ;5. Firstly, the expected condition
2 =#=N;=0 is not achieved and only a simple analysis
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TasLE II. Parameters “independent’ of the temperature and related to the carriers density and density of states. As a means of
comparison the free-electron sphere would have an electron density of No=9.46X10%2 ¢ cm~3 and a density of state Zo=1.16)X10% e cm™
erg™l, Estimated values for the lens-shaped Fermi surfaces in the third zone are N;~0.44X10% ¢ cm™ and Z;~0.2X10% ¢ cm™ erg™L.

I II 11T v A% VI VII VIII

Temperature SN’ AN, ANy, N’ AN" Zeft Z, AZ!

°K (10% ¢ cm™3) (122 ¢ cm™®) (10% ¢ cm™ erg™)

1.6 1.24 ~160 ~200 1.8 16; 1.2, ~—=25

2.0 1.6 1.7 1.8 1.2, ~—28

2.8 2. 1.6 2.04 1.0 ~—=22

4.0 4.2 —95 —5000 1.7 0.38 1.35 0.45 ~—-30
with > 4N;=AN, constant, can be made at 4.0°K. large monotonic &,;” wvalue would be associated

The AN, values are shown in column II of Table II with
excess of holes at 4.0°K and excess of electrons at other
temperatures, but in this latter case the AN, would be
highly field-dependent, reminiscent of one magnetic
breakdown oscillation in zinc.!® The term ec 3. FN;H;
X (H;j+2H;)H2 is only a fraction of the Hay, data.
At 4°K, for example, the normalized value AN'=H;?
X[>o4=N;H;(H;+2H;;)] given in Table I column V
agrees with a two-band model in which N,=N;=N"/2,
H,=H;and H,=H,/2, that is to say the electrons with
mass mo and holes with mass=0.5m,. The analysis of
A11. gives agreement within experimental error with the
conclusion from the &;; analysis, but the analysis of A1z
adds some confusion to the conclusion obtained from the
12 data as can be seen for AN, in column III of Table II.

Thermoelectric Coefficients and Density of States

As expected from Eq. (23a) the Nernst-Ettinghausen
term He," is nearly field-independent and the effective
density of states Z°#=3" Z; can be obtained and seen
in Table II, column VI to be slightly larger than the
free electron estimated value of 1.16 ¢ cm™3 erg™! and
slightly temperature-dependent. Some partial phonon
drag may explain this behavior. If an estimated value
of full phonon drag is made® and full phonon drag
supposed to exist in the Cd crystal, the electronic den-
sity of state Z, would be obtained by dividing the Z¢ff
values of Table II, column VI by a coefficient of order of
(14-0.1357"?) and the resulting value Z, shown in column
VII of Table IT indicates that taking account of a full
phonon drag leads to an over-correction at the upper
temperatures. The H2&," values expected from Eq. (23b)
should be field-independent. This is found to be a poor
approximation. The order of magnitude of the normal-
ized quantity AZ'=H;, 1Y 4= Z;[Hi+3uwH+5$H,;] is
indicated in Table II, column VIII. They are an order
of magnitude larger than expected when compared to
Z°t, it may be an indication that the H; would be larger
than the Hj,; it may also have some bearing on the
unexplained large amplitude found in the &,”” magneto-
morphic oscillation; but the most probable cause of the

BR. W. Stark, T. G. Eck, W. L. Gordon, and F. Moazed, Phys.
Rev. Letters 8, 360 (1962).

% J.R. Long, C. G. Grenier, and J. M. Reynolds, Phys. Rev. 140,
187 (1965).

to the thermocouple effect due to the constantan leads
(—o116tm). Indeed, a reasonable e, value, nearly field-
independent, etn=-0.45T uV(°K)~! would generate
this &, apparently large value.

CONCLUSION

Periods, phases and amplitudes of the long-period
magnetomorphic oscillations in the transport coefficients
are in relatively good agreement with free-electron
theory with the exception of |&,”/| and |&.”|, which
are an order of magnitude too large. Regardless of the
discrepancy in |€’|, it is felt that the relatively good fit
of the rest of the results to free-electron theory indicates
that the lens-shaped Fermi surface in the third Brillouin
zone of cadmium is responsible for the oscillations.
Extension of the theory to the case of lens-shaped Fermi
surfaces confirms this identification, but still fails to
account for the large oscillations in |€’|. Magneto-
morphic oscillations of the type studied arise whenever
the surface derivative 95./0p. has an extremum or a
singularity. Such an extremum is attained at the lens
apex and the corresponding period leads to the determi-
nation of the radius of curvature m; of the lens at this
apex; m; is found to be about 989, the value of the free-
electron sphere radius.

There is no Fermi-surface apex (in the hexagonal
direction) which could cause the appearance of morphic
oscillations with the short period found for the second
set of oscillations. But an extremum value for 3S,/9p.
of the right order of magnitude is expected in the hole
arm of the second zone if this arm is in contact with the
arms in the adjacent zones. More likely, and to be in
agreement with Daniel and MacKinnon’s results, the
cause of the short-period oscillation is the singularity
(discontinuity) of 95./9p. at the point the hole arm
starts to make contact with the two adjacent arms.

If attempts are made to use magnetomorphic oscilla-
tions to study Fermi surfaces, it is important that the
crystal faces be plane, parallel, undamaged, and that a
very accurate determination of the effective thickness
be made. The Hall effect has been found the most
sensitive of the transport coefficients for the study of the
magnetomorphic oscillations.

The gross behavior of the transport effect is generally
well accounted for, except for the case of Hall and
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Righi-Leduc effects. The gross value of the thermoelec-
tric coefficient &"’ is found to be an order of magnitude
too large as it also appears in its oscillatory component.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to
Dr. N. H. Zebouni for his interest and cooperation, and

GRENIER, EFFERSON, AND REYNOLDS

143

to Dr. G. Hussey for reading the manuscript. The
authors are also indebted to Dr. G. N. Rao, Dr. H. J.
Mackey and Dr. J. R. Long for assistance in the various
phases of the research. Thanks are extended to the
members of the Low Temperature Group, most particu-
larly to C. R. Crosby and R. E. Hamburg for helping
in some phases of the work.

PHYSICAL REVIEW

VOLUME 143,

NUMBER 2 MARCH 1966
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Heat-capacity measurements between 1.6 and 4.2°K were made on a series of a-phase copper-silver alloys.
The results suggest that the density of states at the Fermi surface decreases slightly upon alloying. Values of
the effective thermal mass calculated from the data are also found to decrease upon alloying. These results
are interpreted to mean that the Fermi surface is becoming more spherical.

INTRODUCTION

NTEREST in the electronic structure of the noble-
metal alloy phases has been stimulated by the
experimental determination of the topography of the
Fermi surface in copper, silver, and gold.! By means of
new techniques, it has been demonstrated that in these
metals the Fermi surface is already in contact with the
{111} faces of the Brillouin zone. The degree of contact
appears to be smallest in the case of silver, so that its
Fermi surface resembles most closely the free-electron
sphere with slight distortions in the [1117] directions.
From the above observations, it follows, in terms of
simple models of the band structure,? that the density
of states at the Fermi level should decrease initially
upon alloying the noble metals with elements whose
addition increases the electron concentration, e.g., B-
subgroup elements.

Unfortunately, the techniques used to determine the
topography of the Fermi surface in the pure metals,
for example the measurement of the de Haas-van
Alphen effect, cannot be used in the case of alloys
unless they are highly ordered.® This is because the
increased scattering caused by randomly introduced
solute atoms substantially reduces the mean free path
of the conduction electrons. However, it is well recog-
nized that the measurement of electronic specific heat
yields a direct measure of the density of states at the

ll:k Present address: Argonne National Laboratory, Argonne,
Tllinois.
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Fermi level, and hence this technique can be used to
probe the band structure of dilute alloy systems. The
experiments of Rayne, on the o phases of the copper-
zinc®® and copper-germanium® systems have shown an
increase in the electronic component of the specific
heat upon alloying. A similar trend is also found in
silver-tin”® and silver-cadmium® alloys, and these
results which indicate an increase in the density of
states are difficult to explain in terms of a simple model
of the band structure of the noble metals. In a recent
attempt to reconcile experimental observations and
theory, Jones has pointed out that on alloying the
broadening of the Fermi level caused by the impurity
scattering is large when compared with the thermal
broadening in the pure metals at low temperatures.
Such scattering should produce a virtual contribution
to the electronic specific heat particularly if the details
of the band structure in the vicinity of the Fermi level
include sharp changes in the density of states as is the
case in copper, silver, and gold where it is known that a
peak in the density of states exists just below the Fermi
level. This proposed contribution should be observable
even when the electron concentration and the band
structure remains unchanged on alloying.

The work described in the present paper was designed
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