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eliminates some of the low-frequency phonons which in
turn decreases the phonon-enhanced density of states
at thc lowest tcIQpclaturcs. This would qualltatlvcly.
account for the decrease of T, with stress and the
decrease in heat capacity. However, it is apparent that
much more worl~ will be required before a definitive
explanation will be possible.
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A critical discussion is presented of the current status of the calculation of the dc electrical resistivity of
simple metals. The general formalism, which has recently been given sound theoretical justifIcation, shows
that there are two elements to the calculation: (1) the dynamical structure factor, which describes the de-
viation of the ionic positions from perfect periodicity, and (2) the matrix elements of the screened electron-
ion interaction. The 6rst element can be obtained directly from experiment. The second element, the crux
of the problem, has been calculated by a number of methods, including empirical means and the pseudo-
potential approach. These methods are shown to be inadequate for resistivity calculations because of the
sensitivity of the electrical resistivity to the value of the matrix elements at large momentum transfers.
It is demonstrated explicitly that the seemingly small errors present in pseudopotential calculations lead to
errors as large as a factor of 2 in the electrical resistivity.

l. DTTRODUCTION tron-ion interaction and

'HE calculation of the dc electrical resistivity of
the simple metals is one of the fundamental

problems of solid-state physics. Recent many-body
work' ' has shown that for static perturbing Gelds, the
transport coeScients are given correctly by the stand-
ard weak-coupling theory' which has long been used,
without any many-body electron-phonon interaction
corrections. Therefore, assuming only the validity of
the Boltzmann equation, 4 one can derive an exact
expression for the dc electrical resistivity. Baym' gives
the following result for a spherical Fermi surface based
on the usuaP variational calculation:

m2s

q'dqiv(q)i's(q),

where s(q) is the matrix element of the screened elec-
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As usual, P is the inverse of IeT, s is the number of
conduction electrons per ion, e is the density of con-
duction electrons, kg is the Fermi momentum, and ei is
the CBective mass without electron-phonon interaction
corrections. The quantity 5'(qp&) is closely related to
5(q,ee), the dynamical structure factor of Van Hove'
which is defined as the Fourier transform of the time-
dependent pair correlation function. The quantity
5'(q, &u) equals 5(q,eo) minus the elastic Bragg peaks,
which do not scatter electrons and therefore do not
contribute to the resistivity. The crux of the problem
of calculating p lies in the determination of v(q). The
quantity v(q) has been determined by a number of
methods. We will show that these methods are in-

adequate for resistivity calculations.
There are two parts to the calculation of the electrical

resistivity. First, one must determine S(q), which
describes the deviation of the ionic positions from
perfect periodicity, and second, one must determine

s(q), which describes the scattering of an electron by a
single screened ion. We shalL consider each of these
quantities in turn (Secs. II and III). In Sec. IV, we

' L. Van Hove, Phys. Rev. 95, 249 (1954).
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discuss some important features of the integrand of
Eq. (1) and demonstrate explicitly that the seemingly
small errors present in w(q) lead to substantial errors in
p. In Sec. V, we give a critique of current resistivity
calculations. A summary follows in Sec. VI.

II. DYNAMICAL STRUCTURE FACTOR

It has been shown' ' that 5'(q,u) can be measured
directly by inelastic neutron scattering. At the present
time, however, 5'(q, o&) has not been measured in suR-
cient detail to permit performing the integrations
required in Eqs. (1) and (2). Therefore, for the solid
phase, we resort to the one-phonon approximation. In
this approximation,

where e,), is the polarization vector and coq& ls the tem-
perature-independent frequency of the phonon of wave
number g and polarization X, and M is the ionic mass.
We can improve the one-phonon model in two ways.
First, we can ascribe a lifetime to the phonons. Numer-
ical evaluation shows that this improvement changes p
by only a few percent at all temperatures. Second, we
can let the phonon frequencies vary with temperature.
In the case of Na, the phonon frequencies ~~q were
measured at 90 K.' Incorporating approximately the
temperature variation of the co,~ of Na, as estimated by
the temperature variation of the elastic constants,
changes p by about 20% both at high and at low tem-
peratures. Similar results were obtained by Darby and
March. ' However, the elastic-constant data may lead
to an overestimate of the temperature variation of the
co,~, as has been shown by experiments on Al. The
temperature variation of the coq& of Al has been meas-
ured by Larsson, Holmryd, and Dahlborg, ' who com-
pared their experimental values with the resu1ts calcu-
lated from the temperature variation of the elastic
constants. They found that the calculation over-
estimates the temperature variation of the ar~z of Al by
about 50%. If the same holds true for Na, then the
maximum error introduced into p by assuming that the
co~q of Na are temperature-independent is much less
than 20%. The two improvements we have discussed
take no account of the multiphonon background.

For some metals, ignoring the temperature variation
of the co~~ gives rise to a larger error in p than for Na. In
the case of Al, using the co~q measured at an intermediate
temperature, say 300'K, as the temperature-inde-
pendent so,~ leads to an error in p of about 40% both at

'A. D. B. oods, B. N. Brockhouse, R. H. March, A. Y.
Stewart, and R. Bowers, Phys. Rev. 128, 1112 (1962).' J. K. Darby and N. H. March, Proc. Phys. Soc. (London) 84,
591 (1964}.

'K.-E&. Larsson, S. Holmryd, and U. Dahlborg, in Inelastic
Scattering of Eeltrons in Solids und Liquids (The International
Atomic Energy Agency, Vienna, 1961),p. 587.

high and at low temperatures. We computed. this error
from the measured, ' not the calculated, temperature
variation of the co~~ of Al. The values for Na and Al are
typical of many metals; the error introduced into p by
neglecting the temperature variation of the au~~ is
generally of order 20-40%.

In summary, for some metals, e.g. Na, assuming that
the or~~ are temperature-independent seems adequate
(&20% error in p), whereas for other metals, e.g. Al,
the temperature variation of the co~~ should be taken
into account. If this is done, the resulting "improved"
one-phonon approximation is adequate to calculate the
resistivity at all temperatures except possibly near the
melting point where, for certain metals, the multi-
phonon background may become important. It should
be emphasized, however, that one must make no
further approximation, " such as treating umk1app
processes inaccurately, lumping together longitudinal
and transverse phonon modes, using an approximate
rather than the measured phonon spectrum, etc.
Introducing any of these further approximations may
easily lead to an error in p of a factor of 2 or even more.
In particular, the Debye approximation to the phonon
spectrum is very poor for calculating p."

In the liquid phase, we are invariably at high enough
temperatures that

and therefore, $(q) equals the static atomic structure
factor. The validity of Eq. (4) has been veri6ed by
Greene and Kohn. " In the liquid phase, $(q) can be
read directly from neutron or x-ray diftraction data. "
A typical curve of $(q) is shown in Fig. 1. For some
metals, x-ray diffraction data are more reliable, whereas
for other metals, neutron diffraction data are more
reliable. There are recent neutron data" for all the
liquid alkalis. However, we should remark, on a general
difhculty with using the diffraction data to calculate
the resistivity. Diffraction data have always been taken
in order to obtain the radial distribution function of the
liquid. For the monovalent metals, the region q&2kp is
rather unimportant in determining the radial distri-
bution function and consequently the experimentalists
do not always strive for high accuracy in this region.
Therefore, for use in transport theory, the diftraction
experiments should be repeated with more emphasis
placed on the region q&2kg. Such experiments are
currently being carried out for the alkalis.

Our over-all conclusion is that $(q) poses no problem

'0 M. Bailyn, Phys. Rev. 120, 381 (1960).
"M. P. Greene and W. Kohn, Phys. Rev. 137, A513 (1965)."It should be mentioned that the diffraction data which give

S(q) in the liquid phase do not have the Bragg peaks subtracted
out. It is assumed that in the liquid phase, except for forward
scattering, there is no remanant of the long-range order which
gives rise to the Bragg peaks in the solid phase.

'3 N. S. Gingrich and L. Heaton, J. Chem. Phys. 34, 873 (1961).
I wish to thank Dr. Heaton for sending me the numerical data
from which their graphs were drawn.
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FIG. 1. A typical curve of S(g). The 6rst peak occurs approxi-
mately at E&, the smallest nonzero reciprocal lattice vector, and
$(0)=0.03 for the alkabs at the melting temperature.

in calculating the resistivity for either the solid or liquid
phase as long as one uses reliable experimental data,
rather than resorting to calculations.

III. ELECTRON-ION INTERACTION
MATRIX ELEMENTS

n(q) in the case of a spherical Fermi surface,

lV(k, k+q)= {y,I V, Iy&+,)
—2 (4x14.)(AI V~I4~+s) (5)

where V, is the screened pseudopotential, pt, is the prop-
erly normalized pseudo-wave function, IkI = Ik+tlI
=kg, and the sum is taken over all the core states f,.
Austin, Heine, and Sham point out that in practice the
second term may be neglected because V„ is nearly zero
in the core region where f, is nonzero. Furthermore, the
pseudo-wave function is mell represented by a single
plane wave in the liquid phase. Even in the plane-wave
approximation, the calculation of the matrix elements
is not trivial because V„ is a nonlinear operator, rather
than a simple potential. Harrison" has recently calcu-
lated matrix elements of V„between plane-wave states,
both lying on the Fermi surface; this is exactly what is
needed to calculate p. The normalization of Harrison's
plane waves divers from the normalization required of
the pseudo-wave functions in Eq. (5), but this difference
can be ignored because it leads to an error in w(q) of only
about 10%, which is smaller than other errors in this
calculation.

For all the simple metals, the curves of the screened
electron-ion interaction matrix elements e(q) are quali-
tative similar; a typical curve is shown in Fig. 2. At
q=O, tt(q) = —ssEr, and w(2k~) is near zero. There had
been some question about the possibility of large
electron-electron interaction corrections to the value of
e(0), but it has recently been shown" that the only such
correction is the insertion of the factor (tie/~ ),i e&, the
Landau effective mass which does not include the
elects of the electron-phonon interaction. The ratio
(m/no~), &,& differs from unity by only about 5% for all
metals's and even this small correction to w(0) does not
appear in the resistivity because all the effective masses
cancel in the q=O region of the integral in Eq. (1).

Various methods have been used to determine e(q),
including direct calculation, " empirical methods, "'
and the pseudopotential formalism. The pseudo-
potential formalism describes the scattering of electrons
in terms of pseudo-wave functions and the pseudo-
potential rather than in terms of the true wave functions
and the true electron-ion potential. This transformation
has been clearly described. by Austin, Heine, and Sham'
and we quote their Eq. (42}for the scattering amplitude

W(k, k+tl), which is equivalent to the matrix element

'4 V. Heine (unpublished). For an explicit derivation, based on
the Landau theory of Fermi liquids, see D. Pines and P. Nozieres,
Theory of QuumINm, I~as (%'. A. Benjamin, Inc. , New York,
1966), Part I.

~~ T. M. Rice, Ann. Phys. (N. Y.) 3I, 100 (1965)."J.Bardeen, Phys. Rev. 52, 688 (1937).
17 J. M. Ziman, Phil. Mag. 6, 1013 (1961);Advan. Phys. 13, 89

(1964), Sec. 7."B.J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 121, 276
(t962).

IV. CALCULATION OF THE RESISTIVITY

%e now turn to the actual calculation of p. Ziman"
has pointed out a distinction between the monovalent
and. the polyvalent metals which stems from the form
of the S(q) curve. As shown in Fig. 1, the 6rst peak of
S(q) occurs at approximately Et, the smallest, nonzero
reciprocal lattice vector, whose magnitude does not
depend on valence, but the integration over q in Eq. (1)
is carried out to 2k', which does depend on valence.
For the monovalent metals, 2ky&E~ and only the
shoulder of the Grst peak of S(q) is included in the
integration and, therefore, S(q) rises sharply near 2kr, .
The q' factor also weights the integrand. strongly
toward 2k'. Although Iv(q) I' decreases as q i~creases
and, in fact, passes through zero near 2k p, the net effect
of all three factors is to make the high-g region dominate
the integral. It is also true for the polyvalent metals
that the high-q region makes the largest contribution to
the q integration, even though the Grat peak of S(q)
occurs at a smaller value of q/kg.

FIG. 2, A typical
curve of v(g) for a simple y(q)
metal.

"W. A. Harrison, Phys. Rev. 131, 2433 (1963).
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In view of the foregoing discussion, we wish to em-
phasize the following point. In the dominant high-q
region, rt(q) is fairly small, and therefore small absolute
errors, of order 0.01-0.02 Ry, constitute large percentage
errors in s(q) and will lead to a substantial error in p.

To illustrate this point, we have taken Harrison's""
pseudopotential matrix elements for s(q) and calculated

p for several liquid metals. The main advantage of
performing the calculation for the liquid phase is that,
to an excellent approximation, the Fermi surfaces of
liquid metals are spherical and therefore we may use

Eq (1.), which has been specialized to the case of a
spherical Fermi surface. In the case of a nonspherical
Fermi surface, the pseudo-wave functions are not plane
waves, and therefore, the expression for p contains an
additional summation and more complicated angular
integrations. Harrison estimates that the error in his

s(q) curves is about 0.01—0.02 Ry. We shall see ex-
plicitly what the effect is on p of an error in s(q) of
0.015 Ry.

There are five metals for which both Harrison's
pseudopotential matrix elements" and also neutron or
x-ray diffraction data for the liquid" are available.
These metals are: I.i, Na, K, Zn, and Al. The results
of the calculation of the resistivity using these data are
shown in Table I, together with the experimental
values. " Note that the over-all agreement between
theory and experiment is not particularly good, but this
is not the point here. We are interested in the sensi-
tivity of p to errors in s(q). We have estimated this
sensitivity by varying v(q) by &0.015 Ry in the im-
portant region k~&q&2kg and repeating the calcula-
tion of p. The results are shown in Table I in the
columns labeled p+ and p . Since Harrison's s(q)
are accurate to about 0.015 Ry, either of the ratios

~ p~ —p«q, ~/p„q, gives an estimate of the percentage
error of p„l,. We see that the error is large, particularly

~In a subsequent paper I Phys. Rev. 136, A1107 (1964)j,
Harrison recalculated the pseudopotential matrix elements for
Na, Al, and Mg by electronic computer, using a somewhat
modified pseudopotential. The results were similar to his earlier
hand calculation (Ref. 19). Since the difference between the
numbers which result from these two calculations is within the
error of each and the later calculations do not cover all the metals
we wish to treat, we shall use the results of the earlier calculation
exclusively.

~'The pseudopotential matrix elements given in Harrison's
Table I (Ref. 19) were calculated at the electron density appro-
priate to T=O'K. We adjusted them to the electron density
appropriate to the temperature at which the diffraction data were
taken by means of a modification of the method described by
Harrison in Sec. IV of his paper. We used Harrison's Eq. (4) and
assumed that P is independent of density, but we did not assume
that p is independent of q.

22 The neutron data for Li, Na, and K are from Ref. 13. The
x-ray data for Al and Zn are from C. Gamertsfelder, J. Chem.
Phys. 9, 450 (1941).Note that the x-ray data are 25 years old.

~The experimental values for Zn and Al were taken from
A. Roll and H. Motz, Z. Metallk. 48, 272 (1957) and the experi-
mental values for the alkalis were taken from S. M. Kapelner and
W. D. Bratton, Pratt and Whitney Technical Report No. PWAC-
376 (Middletown, Connecticut, 1962). The latter document can
be purchased for 75$ from the OfEce of Technical Services,
Department of Co~rgerce, ashingtop 25, P. |„,

TABLE I. Experimental and calculated values of the electrical
resistivity of liquid metals. The units for p are pQ cm.

Tem
Metal ('C Pexpt Peale P+ P-

Error
of

b
Pcalo

P
(Sund-

strom)'

Li 180
Na 100
K 65
Zn 460
Al 700

25 22 31 24
9.7 22 13 43

14 123 49 237
37 36 38 37
25 40 50 35

40 17
100 9.4
90 32
6 44

25 25.

a p~ is the resistivity calculated with e(q) -+ e(q) +0.015 Ry in the region
ks (q &2k+.

~ By "errOr Of peale We mean the larger Of the tWO ratiOS ) pq —pc let/pca&c.
c The calculated values of Sundstrom are taken from Table 3 of Ref. 2S.

for the monovalent metals. By changing the matrix
element from s(q) —0.015 Ry to w(q)+0.015 Ry, we

change p by more than a factor of 3 for Na and by
almost a factor of 5 for K. Energy changes of order
0.015 Ry are fairly small on the traditional energy scale
of metals (only 2—10% of Es), but nevertheless, the
effect on p of such an error is quite substantial. It is
clear that pseudopotential matrix elements are not yet
accurate enough for electrical resistivity calculations.

We wish to emphasize that we are sot implying that
Harrison's pseudopotential matrix elements are too
inaccurate for any purpose. In fact, Harrison has made
detailed calculations'4 of a number of electronic proper-
ties of several metals and found generally good agree-
ment between theory and experiment. However, the
electrical resistivity is particularly sensitive to s(q) and
the presently available pseudopotential matrix elements
are inadequate for determining the resistivity, even
though they may lead to good results elsewhere.

'4 W. A. Harrison, Phys. Itev. 129, 2512 (1963); 136, A11O7
(1964),

V. DISCUSSION OF PREVIOUS WORK

We wish to discuss three recent papers which report
calculations of the electrical resistivity. The general
formalism and point of view of all three papers is the
same; they differ in their manner of determining e(q).
We begin with the work of Ziman, "who was the erst
to derive the high-temperature limit of Eq. (1) and
applied it to a qualitative discussion of liquid mono-
valent metals. In the absence of detailed knowledge of
e(q), Ziman suggested the following empirical approach.
He separated rt(q) into vr and srr, where wr (called the
plasma term) arises primarily from the screening of the
long-range Coulomb potential by the conduction elec-
trons, and srr (called the structure term) arises from the
detailed structure of the ionic core. He equated ei to
—

—s,Erf(q), where f(q) is some function which equals
unity at q=- 0 and approaches zero as q

—& 2k', and he
approximated v» in the region of q near 2k& by the
constant s(Kr)=--,'E„s, where Er is the smallest non-
zero reciprocal lattice vector and F„,is the band gap
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at the nearest zone face. For small q, v»=0 because of
scl'ccIllllg. ZIIliaii stl'csscd that tlm scpaI'at10I1 of tg(q)
into el and ~~~ is arbitrary but has the useful property
that for small q (plasma region), eii ——0, whereas for q
near 2kg (structure region), ei ——0. Moreover, in the
plasma region, S(q) =S(0)~ k T, whereas in the structure
region S(q) rises sharply. "Therefore, he split p into pi
and pry, the two parts coming from the plasma region
and structure region of the q integration in Eq. (1),
reSpeCtiVely. He ShOWed that picckT and pir~ (S),
(Ee,v)'. Ziman then stated that for Na the band gaps
are so small that one may disregard p» entirely:
p(Na)=pi(Na). On this basis he developed a quali-
tative theory of the electrical resistivity of liquid Na,
discussing the temperature dependence of p, the change
of resistivity on melting, and other properties, 6nally
extending the work to the other alkalis as well. How-
ever, inserting numbers into Eq. (1) shows that for any
reasonable e(q), pii(NR)) pi(Na)" even though Na has
a negligibly smaB band gap. Thus, the Ziman analysis
of Na has turned out to include only the smaBer term.
Moreover, the variation of Ig(q) near 2k' is very im-
portant and the approximation e(q) =e(EI) is in-
adequate. In fact, no calculation of p can succeed unless
Ig(q) is determined accurately in the critical region
near 2k@.

This brings us to the second paper we wish to discuss,
that of Greene and Kohn" (G-K). They calculated p for
Na at all temperatures in both the liquid and solid
phases. G-K determined S(q) from experiment, using
the one-phonon approximation in the solid, and ex-
pl'essed e(q) 111 tcHIls of pllRsc shifts rgg, two of wlllcli
they tried to determine empirically. With slight modi-
fications, "their Eq. (5.2) is

u(q)= —(4EI/3gr)gg gggPg(1 —q'/2k''), (6)

where Pg(x) is the I.egendre polynomial of order 1 and
ggg—= (21+1)rgb. G-K made preliminary calculations which
show that the magnitude of the phase shifts decreases
rapidly with increasing l and, in fact, ps is already fairly
small. Therefore, 6-K truncated the sum at 1=3 and
used their calculated value for ga. Of the remaining
parameters (gigg, rig, and ggr), one is fixed by the Friedel
sum rule,

(7)

~' As Ziman explained, this statement limits the discussion to
the monovalent liquid metals.

~6%'e took q=1.3k~ as a reasonable point at which to split the
g integration into the plasma resistance region and the structure
resistance region. If we had chosen a value of q larger than 1.3k',
then in the plasma region the approximation $(g) =S(0), which is
crucial to the Ziman analysis, would no longer be valid. Using the
neutron diffraction data at 100'C, the ratio pII(Na)/pI(Na)
equals 1.7, 1.2, and 2.8, using Harrison's pseudopotential (Ref.
19), Sundstrom's calculation (Ref. 28), and the 0-K phase-shift
analysis (Ref. 11), respectively.

1' We have divided the G-I equation for e(g) by the atomic
volume to conform to our e(q) and we have neglected the eBec-
tive-mass correction because all the masses cancel in the phase-
shift expression for p. Also, we have introduced the notation q~ to
simplify the later discussion.

which is equivalent to the statement e(0)= —,Eg-.
Thus, G-K reduced the problem of 6nding e(q) for all q
to the problem of Gnding~two q-independent parameters,
say po and p&, these were to be determined empiricaBy.
Substituting Eq. (6) into Eq. (1) and performing the q
integration yields an expression of the form

p=Z -4gg (T)aging,
Z, l

(8)

where A gg (T) contains the temperature dependence of
p. The plan of 6-K was the following. For any given
temperature, Eq. (8) represents an ellipse in gge, ggg space.
Therefore, one chooses several diBerent temperatures,
plots the corresponding ellipses, and their common
point of intersection 6xes qo and g~. However, 6-K
found that there was no common point of intersection.
Therefore, they resorted to their calculated values of
rge and ggg (which did correspond to a point on one of the
clllpscs) slid proceeded to calclllatc p Rt vallolls tciII-
peratures. The discrepancy between theory and experi-
ment was worst at low temperatures where it exceeded
a factor of 2.

In a note added in proof, 6-K report that they im-
proved the one-phonon approximation by letting the
phonon frequencies vary with temperature, as esti-
mated by the temperature variation of the elastic
constants. This alters Agg (T), which in turn alters the
ellipses, and their method now does lead to values for
go and qy. Using the values of qo and qj so determined
and the improved Agg (T), G-K obtain agreement
between theory and experiment to within 20% over the
entire temperature range in the soHd phase. From this
result, they conclude that the one-phonon approxi-
mation is inadequate for Na. This interpretation should
be clariied. The change in p of a factor of 2 which 6-K
found at low temperatures when they included the
temperature variation of the phonon frequencies
stemmed primarily from the modified values of go and
rgg, rather than from the modified values of A gg (T). In
fact, using G-K's modified phase shifts (ggo

——0.524,
~1=0.774, Ig, =0.168, g)e

——0.105) and the gggggggodiped

values of A gg. (T), i.e., assuming temperature-independ-
ent phonon frequencies, also results in 20% agreement
between theory and experiment for p both at high
temperatures (273'K) and at low temperatures (40'K).
Of course, if one wishes to calculate p to better than
20% accuracy Lor the ratio p(T=T )/p(T=O'K) to
better than 40% accuracyg, then even for Na the one-
phonon approximation must be improved, as 6-K have
pointed out.

We can uncover a difhculty with the application of
the G-K method by studying Eq. (6). At q=2kp, the
argument of the Legendre polynomials is —1.Using the
fact that Pg(—1)= (—1)', we have

tg(2kg )= —(4Ep/3gr)gg( —1)'rjg.

We combine Eqs. (7) and (9) and for rge we insert its



calculated value, q3
——0.105„ to obtain

. w(2k p) = —(SFp/3s. ) (0.68—qg) . (10)

The value of q~ which 6-K used in their original calcu-
lation was gy= 0.62. From Eq. (10), the percentage
error in u(2kp) is seen to be ten times as large as the
percentage error in qj. Ke feel that because of this
magni6cation of errors ln the lmpoI'tant I'eglon of g, the
6-K method is not practical for calculating p. However,
perhaps the method could be successfully modiied to
avoid the unfortunate cancellation which appears in
Eq. (10).

Finally, we turn to the work of Sundstrom. 28 She used
the model pseudopotential of Heine and Abarenkov, "
who determined the unscreened pseudopotential from
spectroscopic data of the free ions, rather than by direct
calculation. For those 6ve metals for which our work
overlaps, we give her results in the last column of Table
I. The error in the Heine-Abarenkov pseudopotentiaP'
is comparable to the error in Harrison's pseudopotential.
Correspondingly, Sundstrom's calculated. values for p
are comparable to, although somewhat better than,
those obtained using Harrison's pseudopotential. For
illustrative purposes, we plot in Fig. 3 the pseudo-
potentials of Heine-Abarenkov and of Harrison for Na,
together with the s(q) which results from the 6-K
phase-shift analysis. We see that the three curves are

& -.06—
C

p -.09—

-.l2—

-.l5 ——

.2 A 8 .8 I.O 1.2 l.4 l.6 I.S 2.0
q/kF

I'xo. 3. The screened, electron-ion interaction matrix elements
of Greene-Kohn, Heine-Abarenkov, and Harrison for Na at the
density appropriate to 100'C. At this density, ——',L&z= —0.150
Ry. I'or the Heine-Abarenkov curve, e(0) is slightly less than this
value because of the inclusion of effective-mass and orthogonality
corrections.

2'L. J. Sundstrom, Phil. Mag. 11, 657 (1965). I wish to thank
Dr. Neil Ashcroft for sending me the numerical data which Dr.
Sundstrom used in her calculations.

"V.Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964)."N. %'. Ashcroft and L. J. Guild, Phys. Letters 14, 23 (1965).

similar; they never diRer by more than 0.03 Ry and
usually by much less. Pet, the resistivities calculated
from the three curves diRer by more than a factor of 2.

%'e mention in passing the recent work of Darby and
March. s They calculated the resistivity of solid Na as a
function of temperature and report excellent agreement
with experiment. However, Darby and March have
reserved the description of their calculation of the
electron-ion interaction matrix elements for a later
publication.

VI. SUMMARY

From a qualitative point of view, the calculation of
the electrical resistivity is well in hand. The general
theory has now been put on 6rm basis. We see that
there are two ingredients to the calculation, viz. , the
matrix elements of the screened electron-ion interaction
and the dynamics of the ions, and each of these is well

understood, at least in principle. However, from a
quantitative point of view, the present status of resis-
tivity calculations is less encouraging. To obtain the
structure factor $(q), one must turn to experiment. The
one-phonon approximation, improved for some metals
by including the temperature variation of the phonon
frequencies, seems adequate in the solid at temperatures
not too near the melting temperature, with the provisos
that one make no further approximation and that one
use the experimentally determined phonon spectrum.
In the liquid, one may use the x-ray or neutron diRrac-
tion data. However, these experiments should be re-
peated with an eye to increased accuracy in the region
q&2k p. The main problem lies in the determination of
the matrix elements e(q). The calculation of p is very
sensitive to s(q) in the region of q near 2k p. This sensi-

tivity demands that one exercise great care in employing
empirical methods to determine s(q). The pseudo-
potentials currently available contain errors large
enough to lead to a 40-100% error in p for the alkalis.
'|A'e are forced to conclude that in general quantitative
agreement between theory and experiment has not yet
been achieved in electrical-resistivity calculations.
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