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TaBLE V. Comparison of the v values of the first superlattice
reflections in two states with order parameter $>0.9 and S=0.6,
respectively.

§>09 S5=0.6
(kl) - -
(100) 0.460-0.009 0.4004-0.018
(110) 0.4194-0.005 0.331+0.019
(210) 0.317=:0.006 0.193+0.022
(211) 0.299-0.004 0.24 +0.04
(221) 0.229--0.007 0.1414-0.017

superlattice peaks with the state of order (Table V)
rules out such an hypothesis, which would imply that
the magnetic moments on Co and Pt in the ordered
matrix should stay constant even if the average order
parameter decreased.

Finally, the magnetic-density distribution indicates
a fair agreement with calculations as far as the spherical
part is concerned. The fact that the cobalt form factor
in CoPt; lies a little lower than the one measured by
Moon in the pure metal* could possibly be ascribed to
a different exchange-polarization effect and orbital
contribution.

F. MENZINGER AND A. PAOLETTI

143

In regard to the aspherical part, we have seen that
the symmetry of the unpaired 3d electrons of cobalt in
this alloy is mainly #;, independently of the order, in
contrast with the predominantly e, symmetry of mag-
netic electrons in fcc Co.?” It has been noted by Shirane
et al.® that in the Pd-Fe system there is a trend from e,
to f;, symmetry as the Fe content is decreased; the
results on Co and CoPt3 seem to show a similar trend in
regard to the Co content. In fact some preliminary
results on a CoPt disordered alloy? indicate that the
symmetry, though of fz, type, is less prominent than
in CoPts.
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The coupling of photons and magnons can be treated by the same methods developed for the coupling
between photons and phonons. The coupled wave equations are derived directly from the Hamiltonian
density for the quantized fields with the density-matrix formalism. The similarity between the spin Raman
effect and the vibrational Raman effect is emphasized and it is shown that the spin Raman effect will usually
be one or two orders of magnitude smaller than the vibrational effect in Raman liquids. The possibility of
exiciting spin-wave modes by light in ferro-, ferri-, and antiferromagnetic materials is discussed. The com-
bined coupling of magnetic, vibrational, and light waves is also analyzed and a magnon excitation may be
induced by the stimulated Brillouin effect on a magnetoelastic mode.

I. INTRODUCTION

HE Raman effect can be described as a second-
order inelastic scattering of light, in which the
scattering system makes a transition to an excited
state.! Originally the spontaneous Raman scattering was
almost exclusively employed to study vibrational and

* This research was supported by the U. S. Office of Naval
Research.

1 On leave from Harvard University.

1P, A. M. Dirac, Proc. Roy. Soc. (London) All4, 710
(1927).

rotational excitations of molecules.? Loudon? suggested
that electronic excitations of transition-metal ions
should be observable in the Raman effect. Hougen and
Singh* independently succeeded in finding this purely
electronic Raman effect for Pr** ions in LaFs.

It is also possible for the excitation to be of a purely

2 See, for example, G. Placzek, Marx Handbuch der Radiologie,
edited by E. Marx (Academische Verlagsgesellschaft, Leipzig,
Germany, 1934), 2nd ed., Vol. VI, part II, p. 209.

3R. J. Elliott and R. Loudon, Phys. Letters 3, 189 (1964);
R. Loudon, Advan. Phys. 13, 423 (1964).

4J. T. Hougen and S. Singh, Phys. Rev. Letters 10, 406 (1963).
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mg=+%, m =0
} ALSt AL-S + Verys
mg=—Y, m =1
Fi1c. 1. Energy diagrams showing
the spin-Raman processes. (a) Mag-
netic-dipole Raman transitions in a
two-level spin system; (b) electric- , .
dipole Raman transitions in a system 4 5 3
with negligible crystalline field; (c) + + mi—mg=0, %1, %2
electric-dipole Raman transitions in a N N
system with an appreciable crystalline ert ez. -+ +
field. ng+ QBS, +; E_;
—] mg=+Y% ——] mg=+Y% Z|mg)
m =0 N ALS+V,,
— A B — 3|ms)

(a)

magnetic nature. In this case the excited state differs
from the ground state in the spin magnetic quantum
number. Such two-photon processes are well known in
magnetic resonance.® The Raman susceptibility for the
purely magnetic dipole transitions in a two-level system
[Fig. 1(a)] has been reviewed by the present authors.®
The final state with a different magnetic quantum
number may also be reached with electric dipole transi-
tions via a virtual electronic excited state, as shown in
Fig. 1(b). It is of course necessary in this case to invoke
spin-orbit coupling to change the spin quantum number.
This process was also suggested by Loudon.? In the
simplest case, the transition from the state m,=—3% to
m,= % in a Kramers ground-state doublet of a 2Sy,5ion
would take place with a virtual optical transition to the
2Pg32 or 2Py, manifold. Although the optical electric
dipole matrix elements cannot change the spin magnetic
quantum number, it is possible to reach the final state
with Am,= =1 by invoking the spin-orbit coupling, as
indicated in Fig. 1(b). More generally, for transition
metal ions with spin-orbit coupling in crystalline fields
of arbitrary strength, different magnetic sublevels of the
ground-state multiplet could be reached via a two-
photon process with electric dipole matrix elements,
provided the initial and final states have components
whose magnetic quantum numbers differ by Am,=0,
=41 or &2, as shown in Fig. 1(c).

In ferro-, ferri-, and antiferromagnetic materials, the
spin excitation is not localized and the elementary
excitation is described as a spin wave. It is the purpose
of this paper to present the formalism which describes
the coupling of light waves to these spin-wave excita-
tions and to discuss the possibility of observing the
stimulated spin Raman effect in magnetic media.

The same formalism that was developed” 8 to describe

5 A. Javan, J. Phys. Radium 19, 836 (1958); J. M. Winter, zbid.
19, 834 (1958).

6 N. Bloembergen and Y. R. Shen, Phys. Rev. 133, A37 (1964).

7E. Garmine, F. Pandarese, and C. H. Townes, Phys. Rev.
Letters 11, 160 (1963); R. W. Hellwarth, Current Sci. India 33,
129 (1964).

8 N. Bloembergen and V. R. Shen, Phys. Rev. Letters 12, 504
882‘513 Y. R. Shen and N. Bloembergen, Phys. Rev. 137, A1787

(b) ©

the coupling of light waves with acoustical waves
(stimulated Brillouin effect) and with optical phonons
(stimulated Raman effect) can be adapted to the case of
magnetic excitations. In Sec. II, the general quantum
mechanical formulation for coupled boson fields is
applied to the coupling of electromagnetic fields and
vibrations. The wave equations for the expectation
values of the fields and the nonlinear coupling constants
are derived directly from a Hamiltonian. Although
localized electronic states are used, as would be ap-
propriate for insulators, the considerations could readily
be extended to conductors by using itinerant Bloch
wave functions.

In Sec. ITI this same procedure is applied to magnons.
The exponential gain for the Stokes wave in the spin
Raman effect is derived from the coupled wave equa-
tions. The result reduces to that derived from a spin
Raman susceptibility for isolated magnetic ions, which
would be appropriate in the paramagnetic case.

The possibility of detecting the spin Raman effect in
various magnetic systems is discussed in Sec. IV. Some
explicit equations are given for the two-sublattice model
for ferri- and antiferromagnetic materials. The spin
Raman effect is roughly 1 or 2 orders of magnitude
smaller than the ordinary Raman effect in liquids, be-
cause the oscillator strengths of the electronic transi-
tions involved in the magnetic ions are smaller than
those involved in the molecules. In Sec. V, the general
case of coupling between laser, Stokes, and infrared
electromagnetic waves with phonon and magnon waves
is discussed. A magnetic excitation could be induced by
the combination of the stimulated Brillouin and the
spin Raman effect.

II. COUPLING OF LIGHT WITH PHONONS

A detailed calculation of the ordinary stimulated
Raman and Brillouin scattering has been given earlier.?
In this section, a brief review of the subject is given in
order to develop notations convenient for the later
discussion of coupling of light with magnons. This also
affords the opportunity to generalize the formalism so
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that both the light and the other coupled boson fields
are quantized. The wave equations together with the
coupling constants are derived directly from the total
Hamiltonian of the system

SC:Gcrad+gcphonon+gcelec+3cint- (1)

The Hamiltonian for the radiation field can be quantized
in the usual way,? as well as the phonon Hamiltonian in
its harmonic approximation.!?

3Craa=2_, Forc, s (exi'axi+3),
i

(2)
JCphonon= Z g, i (@qstaq;+3).
'

a, o and @, a' are the annihilation and creation opera-
tors for photons and phonons, respectively. Their
operations on the number states yield o|n)=n'2|n—1)
and af |#)= (n+1)"2| n+1). The photon and the phonon
wave vectors are indicated by k and q, respectively. The
particular phonon branch under consideration is labeled
by j.

The interaction Hamiltonian consists of two parts,
the electron-phonon interaction and the electron-radia-
tion interaction, which may be written in the form

3Cim;=t’»‘ce-p_i'gce-r, (3>
with
Gce-r":' - Z (er)mb' Emb 3
m,b

)
gce-p= Z \/MmbUmb'fmb-
m,b

In a nonpolar medium the phonon-radiation interaction
can be neglected. The Raman effect in polar media has
been discussed elsewhere.’! In Eq. (4), er, E, M, U, and {
are the electric dipole, the electric field, the atomic mass,
the atomic displacement, and the generalized force on
the atom, respectively. The indices m and b refer to the
bth atom in the mth unit cell of the lattice. Both
operators E and U can be expanded in terms of annihi-
lation and creation operators. In the Schrodinger
representation,

Eny=3« [E* (e ®nt-E- (K)o ®n],
E+(K)=1:(2nhwy/ V)2 eay,
E-(k) =1 2nhwy/ V)2 e*ayt,

where the fields are normalized with respect to a
volume V;

U.=3 [Ut(q,b,7)e’ *+U~(q,0,/)e R ],
q-7
U+(q)byj) = (h/ZMbWTw Q.i)llze (q7b)j)aiﬁ )
U- (q7b7j> = (h/szVw qf)l/ze* (q:b)j)a’qjT )
{e(q7b)j)} : {e(qybni)}TEZb € (qabyj) -e* (q7b).7) =1.

9 See, for example, W. Heitler, Quantum Theory of Radiation
(Oxford University Press, New York, 1954).

10 See, for example, J. M. Ziman, FElectrons and Phonons
(Clarendon Press, Oxford, 1960).

Y. R. Shen, Phys. Rev. 137, A1741 (1965).

(5a)

(5b)
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Here N is the number of unit cells in the lattice, R,, the
position of the zth unit cell, & the unit vector indicating
polarization of the E field, and {e} a set of & vectors
with e(q,d,7) denoting the relative displacement of the
bth atom in a unit cell corresponding to the phonon
mode specified by q and j.

The wave equations for photons and phonons can be
derived using the density-matrix formalism. Let p be the
density-matrix operator for the entire system. The
density-matrix operator for the radiation system alone
is obtained by taking the trace over electron and phonon
systems, such that p,=Trpp. From the equation of
motion for p, we find

(.f)j+wk2)((n+ Dl ()| nx)
il

[¢)
“(5)
X (1/ih) Tr(e-py (n+1)x| [3inesp ()| mi),  (6)

where (nx| is the photon number state for # photons in
the mode k. With (Ex(R,))="Trp(H)E*(k) exp(ék-R)
and wi= k¢, and with the aid of Eqgs. (2)-(5), the above
equation yields the wave equation for (Ex(R,)). In first
approximation with p(£)=p,(f)p.»(t), one finds

1 6% 47 9
(-— ——+k2><Ek(R,t)>= ——
at2 62

2

2
—(PR)), ()
ot

where (Px(R,f))=Trp(¢)er is proportional to exp(sk-R
—iwit). In summing over all Fourier components, one
can replace the factor k2 by — V2; Eq. (7) then reduces
to the classical wave equation for (E(R,?)).

The radiation density as measured by photosensitive
detectors is, however, proportional to (| E2|)=TrpEtE-.
The differential equation for (| E*|) can also be readily
derived from the equation of motion for p. As expected,
the spontaneous emission noise, if present will turn out
in this full quantum-mechanical treatment. The noise
problem in parametric quantum oscillators and ampli-
fiers has been discussed by other authors in the Heisen-
berg representation.’? In the classical treatment, the
spontaneous emission noise can usually be taken into
account in an ed koc manner by inserting in the field
amplitude equation a noise term with a random phase.
In the following discussion, we are mainly interested in
the parametric amplification of a coherent input field.
The spontaneous noise will not be considered. The
radiation fields will be treated classically, since the
quantized field treatment yields exactly the same results
as long as the approximation p(f)=p,(#)p.,(¢) is made.

2 W, H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev. 124,
1646 (1961).
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We shall assume the presence of only two em modes, The phonon wave equation can be obtained from the
such that equation of motion for p,,. For simplicity, we assume

) ) _ ) only two electronic states for each atom, the ground
E(R,5)= & exp[iki R—iwit ]+ &5 exp[iks: R—iwst] state (g|ms and the excited state (i|ms Let (G|

+complex conjugate. =I]m,5{gms|. The equation of motion for p., yields
62 6 . . a .
(&,+2F'é_t+‘°q2><(”+1)q) Glpep'@ | nq,Gleiot=(— l/h)<"~’q+"‘5t‘><("+1)q) G|[3Cerpep ]| ng,Gle ™t (8)

where w= w;—wsg, 74 denotes the number of phonons with wave vector q and frequency wq, and I' is the phenomeno-
logical damping constant. The matrix element of [3Ce.r,p.p | can be calculated by a perturbation expansion. The
lowest order nonvanishing result is

((n+1)q, G | [3Corrspep ) l ng,G)= 2

m, I

_(("'H)q, g1 (er)y 8| XT3 (ex) s 85| ng,9)
h(w,s—l-wz,gnq)

Here (ony"—p(nt1)q") is the average population difference between the phonon number states (14| and ((#+1)q]
at an arbitrary temperature and (7| is the intermediate state with arbitrary mixing of electronic and vibrational
character. The states ((#+1),] and |#,) in the square bracket yield a factor exp(—4q-R,.) in the explicit calcula-
tion. The above matrix element is therefore nonvanishing only if the momentum matching condition g=k;—kg is
satisfied, since otherwise Y., exp[<(k;—ks—q)-R,.]=0. The matrix element would vanish if the electron-phonon
interaction were absent, as the electron-radiation interaction cannot change the occupation number of phonons.

In the long-wavelength limit, the dispersion of the phonon modes has the form

wl=wi+B¢.

For acoustic phonons, 8 is positive and wo=0. The phonon wave of wave vector q attached to the ground electronic
state (g| can be defined in terms of a dimensionless normal coordinate,

(Qq(&R0)=(G | s (2M oo/ 1) Tr (3 per Ut (g,0) exp (iq- R—iw) | G)
=(Q(q,0)) exp(iq-R—iw?). (10)

Equations (9) and (10) lead to the phonon wave equation

l:(("+1)qy gl 2 u(er) s 8% | IXT| X u(er)s 81| nq,g)

h((z)l_wj, gnq)

Jori=ptning explitiu—k) R )

9? i}
[——2—}— 2F—+wo"’—,8V2jl<Qq (g,R,0))=2®:EEs* exp(iq- R—iwi),
at o0

where A is a third-rank tensor:
%= (2000/B) (14 1) E (0= pni g2
((n41)q, gl Znlen)os| XU | 2o (ex)oi| nq,8)
WI—WI, gng (11)
{t1)q, gl X (en)uil IXT| Zn(er)os|nasg)

wS+w1,anq

E={e(q,0)} (/W)X 1(n+ 1)q—1/2‘7\n/2|:

:l exp(iq-Ry).

The square bracket in the expression for £ is likely to be proportional to (z-41),'2, since the states ((z41)4| and
| n4) must be connected implicitly by the operator U*(g,b) or aq. The factor N2 in £ arises as a normalization factor
attached to the states ((n+1)4| and |n4) because of the definition of U, (g,0) in Eq. (5). The quantity &, which has
the dimension of an atomic polarizability, is then independent of #4, and since

an(%+ l)q(anO—p(M—l)qo) =Z’”q p"q0= 1 ’

A= (wg/H)E. (11a)

Eq. (11) gives
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This can be shown explicitly for the case where the electron-phonon interaction is small so that it can be treated as
a small perturbation, mixing the states. The intermediate state can be written as (/| =((n-+1), |, and

, (i]er|g) , ,
<("+1)q; 1’[ erlnq,g)= © [<("+1)th 1’580-””‘171)—((”_"1)% glgcff-plnq:gXl ’
v (12)
. (glerld) , ,
((n+1)q, glex|ng,i)= _ [((n+1)q, 1] 3Ceup]| 124,8)—{(n+1)q, g|5Ce-p| 74,8} ].
With 3Ce.p, given by Eq. (4), and substituting the above expression into Eq. (11), one finds
g={e(q,0)} (1/M(g| X s(ex)vs| )X o (er) na| ) (1] X o 8%) 5| D)—(g| Z (£ 8%)5| ) J(A/w0g),  (13)

A=[(ws—wng) = (01— wng) ' H (w5t wng) 1 — (witwng) /1,

where f is the generalized force in Eq. (4). The phonon
wave is coupled to the laser and Stokes fields (E;) and
(Eg) to give rise to the stimulated Raman and Brillouin
effects. The wave equation for (E;) and (Eg) is

VXE;, )+ (w1,8%€1,8/¢)(Er,s)
=— (4nwy,s*/c)(P1,s¥ ), (14)

where (P;,s¥ L) is obtained from the usual iterative pro-
cedure in the density matrix formalism. In particular,

(P (R,0)=n&"eQq(gR,1)), (15)

where 9T is the number of unit cells per unit volume. The
Boltzmann factors p.° disappear in the nonlinear
coupling terms of both Eq. (11) and Eq. (15). There-
fore, the stimulated Raman gain, obtained from the
solution of the coupled wave equations for (Es) and
(Qg) would be independent of the average thermal
excitations of phonons.

For acoustic phonons the harmonic approximation on
which the linear expression for the displacement opera-
tor U is based, is nearly always valid. The effect of
anharmonic terms may be taken into account as a
damping term, caused by collisions between the acoustic
waves. The temperature dependence of the stimulated
Brillouin effect is entirely contained in the temperature
dependence of the damping constantI'. Even though the
concept of elementary excitations breaks down at high
temperature, the classical acoustic wave can still be
described in the same manner, even in liquids.

The situation is different for optical phonons. In this
case the anharmonicity of the molecular vibrations
limits the validity of the harmonic collective excitations
to the low-temperature regime, where the probability to
have an excitation at a particular localized site is small
compared to unity.

The dispersion law for optical phonons is very differ-
ent from that of acoustic phonons. The contribution of
the collective motion to the wavelength-dependent part
of the energy is small and the damping is relatively
large, Bg*<wyl'. Under these circumstances it is ap-
propriate to consider thelocalized vibrational excitations
of individual melecules.® Since the vibrations are
strongly anharmonic, only the ground state and the first

vibrational level need be considered. It is a well-known
result for this case of individual molecules that the
Raman susceptibility is proportional to the population
difference in these two states, po®— ps°. This temperature
dependence through the Boltzmann factors does not
appear in the calculation with collective elementary
excitation waves, which is strictly valid only at absolute
zero. The case of optical phonons derived for a lattice
array of molecules wlth two vibrational levels is analo-
gous to the case of spin waves derived from a lattice of
spins with S=3. The representation by elementary
excitations with boson characteristics is a low-tempera-
ture approximation.

The formalism of the coupling of light with optical
phonons may be taken over to the case of spin waves.
The coupling of light with plasma waves has been
discussed elsewhere.!

III. COUPLING OF LIGHT WITH MAGNONS

The electronic Hamiltonian for a magnetic system
consists of spin and orbital parts. The spin part, with
exchange interaction among spins, forms the magnon
system. The radiation field is treated classically and is
again assumed to consist of two waves, E; and Eg. The
total Hamiltonian is written as

3= Scmagnon'!'gcorb"l’ﬁcint . (16)

The nuclear vibrational part is omitted in this section.
The interaction Hamiltonian consists of spin-orbit, spin-
radiation, and orbit-radiation interactions,

Hint=3s.L+ICrr+IHs.r. 17
These interactions have the familiar bilinear form
GCS.L= Z }\mbLmb' Smb )
m,b
(18)

3ere=— 2 [etms EmptpLms Hims],
m,b

Hgop=— Z Zusmb‘Hmb )
m,b

13 N. Bloembergen and Y. R. Shen, Phys. Rev., 141, 298 (1966).
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where A and p are the spin-orbit coupling constant and
the Bohr magneton, respectively. The electric and
magnetic fields of the radiation at the #th atom in the
mth unit cell are designated by Enp and Hmp. The terms
pL-H and 2uS-H correspond to magnetic-dipole transi-
tions. Javan and Winter first suggested the stimulated
Raman maser action in a paramagnetic two-level spin
system [compare Fig. 1(a)]. In the optical spin Raman
transitions, shown in Figs. 1(b) and 1(c), the inter-
mediate states can be connected by the electric-dipole
interaction er- E. The magnetic-dipole terms uL-H and
2uS-H are negligible in comparison. The interaction
Hamiltonian reduces in these cases to a form similar to
the one in the previous section. The role of 3C.., is taken
over by 3Cs.L.
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The magnon Hamiltonian is

C‘cmagnonz - Z me—mb'smb' Sm’ b’_zﬂHO' Z Smb ] (19)
m, m’ m,b
b, b’

where J is the exchange coupling constant and Hy the dc
magnetic field. In the harmonic approximation, 3Cmagnon
can be quantized as!4

Jcmaznon=z. hrg; (alu'quj"l"’zl‘) . (20)
a7

The spin component is expressed in terms of creation
and annihilation operators a4, aq; from the linearized
Holstein-Primakoff transformation!®

Smb+= (Smb)x'*'i(smb)y: (ZSb/N)1/2 Z e(q,b,j)aq,- exp(zq R"‘)

49,7

(Smp)2=Ss(Sp+1).

The magnon modes wq; are obtained by solving the set of linearized Bloch equations of motion for .S, s+ for the
magnetically inequivalent atoms in a unit cell,*¢ just as in the case of phonons. The number of magnon branches is
of course equal to the number of magnetically inequivalent atoms in each unit cell. In the long-wavelength limit,

wqj=wo(Ho,/)+B(J)g. (22)

In particular, when there is only one magnetic sublattice with one magnetic atom per unit cell, there is only one
magnon branch with we=2uH, and 8=JSa?, where a is the lattice constant.

The magnon wave equation can now be derived from the density matrix formalism. Let p be the density matrix
operator for the material system. We shall again assume only two states for the orbital part of each atom, (7| ms
and {g| ns and (G| =IIm.» (g| ms- Consider the equation for {(n+1),, G|p|74,G), where (nq| denotes the excitation
of the magnon wavelength wave vector q=k;—kg. From the equation of motion for p and Egs. (16)-(20), we
find

d 1
(igz—wq‘l"ﬂ‘)((”'i'l)q: G I p ! ”q>G>e_wt=;l< (n+1)q, GI [C‘Ce-r,P.—.l(w) i”q»G>e_iwt s (23)

where w=w;—wg. The lowest order nonvanishing result in the perturbation expansion of [3Ce.r,0 |’ gives

((n41)q, gl Zs(er- 85*)o| (I | X o(er- 81)s|1q,8)

h(w;—-wz,,,,,)

(+1)0 61030719 e G)= £ [

_((%+1)q, gl X u(er- 82)s| IXI| Lo (er- €5%)s| nq,8)
h("’S'*‘“’I.aﬂ)

Jori=pesn ) explia R 20

Here, the intermediate state with arbitrary mixing of spin and orbital character is denoted by (|, and wr,4n is the
frequency separation between (/| and (n4,g|. Since 3C..r cannot change the occupation number of magnons, Eq. (24)
would vanish if the spin-orbit interaction 3Cg.1, were not present. When 3Cs.1, is small, it can be treated as a perturba-

4 See, for example, C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc., New York, 1964).
16 T, Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
16 See, for example, B. Harris, Phys. Rev. 132, 2398 (1963).
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tion in mixing the states. With the intermediate state written as (/| =(nq,|, one finds

((nt+1),4 l 3Cs-1, | Mgyt )11’ ! erl 1g,g)

((n41)q, i]et|nq,g)= Z’ [

hwi(n+l),i’n
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((n41)q, i|er| (n+1) " (n+1)q, i,IJCS-LI”q,g>
b
ho n, i (n
g (n+1) (25)

<(”+1)fb gl er! (n+1)q’ 'L,><(”+1)fb i,|JCS-LInQ)7:>

(D), elerlng)=3

hwin,i’(n+])

| <(n+1)¢17 gl‘,}CS-L] "q;i'><"qy’i' I er ] nq:’i>:|
I .

70 g(n1), v/ n

These equations may apply for certain iron-group ions. If (g| and (7| denote eigenstates in the crystalline field
potential, the quenching of the orbital angular momentum implies that the diagonal elements of the spin-orbit

interaction vanish

((n+1)q, 1|3Cs.1.| nq,0)=((n+1)q, g|5Cs.1.| 4,8)=0.
This is different from the phonon case described by Eq. (12).

The spin wave is defined as

(Sa(R0)=(G|Tr L 4(1/25,)"pS s+ (q,0) | G) exp(iq- R—iwt).

Equation (23) then leads to the equation for the spin wave

(26)

E)
l:igz—wo—{—il‘—i-ﬁV?:l(Sq(R,t)) =%s:8:85% exp(iq- R—iwt),

As=#"1 an (”'I'l)qzs (ano—‘P(n+1)qo) ’

((n41)q, gl Zn(en)us| IXT| X (er)ni| n4,)

@n

fa= (/M) {e(0,0)) Nwﬁ(n+1>q—”2[

Wi—wWr, gn

_<(%+1)q, gl s(en)or| IXT| X p(er)ss| 14,8)

Note the similarity of this expression and the corre-
sponding Eq. (11) for the phonon case. The expression
in square brackets can be evaluated explicitly in the case
of weak spin-orbit coupling with Eq. (25). It is seen to
be proportional to (n+1)42 This result has probably
more general validity, as the term in square brackets
connects two boson eigenstates differing by one unit of
excitation. The factor V'/2 in the expression again arises
asanormalization factor attached to the states ((#+1)|
and |#,). The expression for Ag is independent of the
png in this case by the same arguments which led to
Eq. (11a) and, in fact ds= £s/%. The coupling constant
is therefore independent of temperature in this harmonic
approximation. This result can only be expected to have
validity for temperatures well below the Curie or Néel
temperature. When T becomes an appreciable fraction
of T, higher order terms in the spin-wave variables can
no longer be ignored in the Holstein-Primakoff trans-
formation. This is the usual restriction on the validity
of spin-wave theories.

] exp(iq-Ra).

wS+wI, gn

The spin wave is coupled to the two light waves E;
and Eg to give rise to the spin-Raman effect. The wave
equation for the Stokes wave is

V2Es(R, 1)+ (wstes/ct)Es(R,0)
= — (4rws?/)(PsVE(RD)).  (28)

The nonlinear polarization in Eq. (28) can be found by
the usual perturbation calculation,

PsVE(R,1) = NEster(S (q,))* exp(iq- R—iwt) ,  (29)

where 91 is the number of unit spin cells per unit volume.

The above derivation is very similar to that in the
coupled photon-phonon case. If the spin-orbit coupling
and the crystalline-field interaction are large, a pure spin
wave of course does not exist. The formal derivation
remains valid in this case, which is represented by
Fig. 1(c).

The gain coefficient for the stimulated spin Raman
effect® 8 can now be solved from the set of coupled wave
equations (27) and (28) with As replaced by £s. For
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infinite plane waves with linear polarization in a

medium of plane boundaries, the Stokes wave vector is
found to be

1
ksi=ks°+2{5(ias—D/Zﬁqz°)

i/ D* 2 29rws?Es?| 81|22
ﬂ:‘[( +1a,s) *‘———-} }, (30)
2L.\2Bq.0 *BksLq .
where

ks°=wszes’/62 )
as=wsbes’’/2cks,°,
D*=w—wy—pg"—iT's,
=ki—ks°,
d=k/—ks and k¢'=¢".
The laser field &; is assumed to be a constant parameter
and the unit vector £ is normal to the boundaries of the

Raman cell. The imaginary part of ks is the gain or loss
coefficient. The corresponding waves are given by

(31

Es=[Cgy exp(tkgy - 1)+Cs_exp(ths_- 1) Jewst, ‘

(S)=[Cs,' exp(igs- 1)+Cs- exp(ig--1)Je~*,
Cs4/Csy =N(mws?/c*ks ) ts 81/ (ks—kL+ia) .
If the spin wave is highly damped, such that
(D*/28¢041as)2>29nwsts?| 8112/ c*Bq.tk s

the square root in Eq. (30) can be expanded into a power
series to give a gain coefficient

231770)s2fszl 81!2} (32)

Imkgy =as+Im {
ks D*h

The gain is a maximum when both linear momentum
and energy matching conditions are satisfied, i.e.,

ki=k+q°

This is indicated by the resonance point R in Fig. 2.
Curves 2 and 3 in this figure are given by

= |ki—kg*| =[wi(nki—nsks") - +wsnsks ¢7/c

for the forward and backward scattering, respectively.
Here, #’s are the indices of refraction, and £’s the unit
vectors. The Raman susceptibility corresponding to the
Raman gain of Eq. (32) assumes the very simple form,?

XRammspinz mgsz/hrs ’ (33)

and w;i=wstw.

where £s is given by Eq. (27) and has the dimension of
an atomic polarizability, and I's is the damping con-
stant for the spin wave.

When the probability for spin excitation at a localized
site is not very small compared to unity, this harmonic
approximation of the spin waves loses its validity. In the
opposite limit of very high temperature, above the
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Fi6. 2. Dispersion curves describing the spin Raman effect,
Curve 1 is the dispersion curve for an acoustic magnon wave,
Curves 2 and 3 describe the linear-momentum and energy-
matching condition given by

= |ki—kg®| =[wi(nk1—nsks®) - @+onsks® /¢

for the forward and backward Stokes scattering, respectively. The
resonant points are denoted by R. ’

Curie or Néel point, it is clearly more appropriate to
consider the energy levels of localized spins. In this
paramagnetic case, the Boltzmann factor p®—p;® ap-
pears. The effect is proportional to the difference in
population of the two magnetic levels concerned. If
these levels form a Kramer’s doublet, the temperature
dependence is the same as the paramagnetic magneti-
zation arising from these two levels. This suggests that
the temperature dependence of the spin Raman transi-
tions in a ferromagnet is similar to, although not
necessarily identical to, the temperature dependence of
the magnetization M (7).

1V. THE SPIN RAMAN EFFECT IN PARA-,
FERRO-, FERRI-, AND ANTIFERRO-
MAGNETIC MATERIALS

The possibility of observing the Raman effect in
magnetic systems was described in the introduction.
Hough and Singh* observed the spontaneous Raman
transitions between two electronic levels of Pr3* in a
LaF; crystal. The Raman scattering due to spin excita-
tions, however, has not yet been observed.

Both the spontaneous and the stimulated Raman
scattering depend on the coupling constant £s. The
Raman transition probability increases as |£s| in-
creases. As shown in Eq. (27), the magnitude of &g be-
comes large if (1) the frequency w; or wg (or both)
approaches a resonance, and (2) the matrix elements are
large. In some simple cases, there are also selection rules
governing the Raman transitions.

Consider first a paramagnetic system with a small
crystalline field, so that  is still a good magnetic
quantum number. The localized spin model applies to
this case. The Raman transition probability is pro-
portional to 9| £s|?| &:|2(p— p1%)/T, where &s is given
by Eq. (27) with the magnon states replaced by the
local paramagnetic states. The degeneracy of the mag-
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netic states is of course lifted by the applied dc magnetic
field. In order to have the initial and the final magnetic
states, (g| and (f|, in the normal Raman transitions
connected by the electric-dipole operator, the magnetic
quantum number must change by Am=m,—m,=1 or 2.
With Am=1 [see Fig. 1(b)] the selection rule requires
the laser polarization to have a circular component
around, and the Stokes polarization to have a linear
component along, the magnetic field, or vice versa. The
exciting beam propagating along the magnetic field
cannot excite Stokes scattering in the forward direction.
In the spontaneous Raman emission, one observes
preferably at right angles to the incoming beam. One
would find a linearly polarized Stokes light if the ex-
citing beam is propagating in the direction of the
magnetization, and a circularly polarized Stokes light if
the exciting beam is propagating in the direction per-
pendicular to the magnetization. In the stimulated
Raman effect, it is best to have the laser and the Stokes
parallel to each other. They may then propagate at 45°
with respect to the magnetic field. The geometry used
by Dennis and Tennanwald” with the laser beam at an
angle to the Stokes beam would also be possible. With

Am=2, the selection rules require the polarizations of

the laser and the Stokes to have components circulating
in the same sense around the magnetic field. Again, the
polarization properties depend in an interesting way on
the direction of the magnetization and on the directions
of propagation of the two beams. If the crystalline field
is so large that m is no longer a good quantum number,
the above selection rules in general break down.

Consider next a simple ferromagnet with a single
sublattice, and assume the spin waves originating from
individual ion states with pure magnetic quantum
numbers m=-1. Only the acoustic magnon branch
exists. The states corresponding to zero- and one-
magnon excitation can be written as

<OQI=I—_I<+|1?7

(34)
(tal = (/)" £ (=1 IT 1) explia Ry,

where (4| ; and (— | ; are the two spin states for the ith
spin. Substituting Eq. (34) into Eq. (27), one finds that
£s is nonvanishing only if the product of matrix ele-
ments of the type (g, — |er|IXI|er|g, +) is different
from zero. This requires that the magnetic quantum
numbers of the initial and the final states in the Raman
transitions differ by Am= 1. The selection rule governing
the polarization properties for the laser and the Stokes
discussed previously for the paramagnetic case again
applies. If the crystalline field is large, the spin wave is
no longer composed of pure spin states. Then, in general,
the selection rule breaks down.

- 17 7. H. Dennis and P. E. Tannenwald, Appl. Phys. Letters 5, 58
(1964).
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In ferromagnets with more than one sublattice, and
in ferri- and antiferromagnets, the sublattices are
coupled together through exchange coupling to give
different magnon branches. The eigenmodes and the
eigenvectors are obtained from the coupled Bloch equa-
tions for the magnetizations of the sublattices. Assume
a ferrite with two sublattices 4 and B, the corresponding
spins being S4 and Sp, respectively, with pure spin
states (43| for each spin. Since the spins are pointing in
opposite directions, we write S4,=S, and Sgz,=—S5,
and Sa%|£)a=|£)4 and SpE|£)p=|F)s. Also as-
sume that the exchange coupling exists only between
spins on different sublattices. The coupled Bloch equa-
tions for S4* and Sp* yield the magnon exchange
eigenfrequency, or optical magnon mode at q=0'8

wo= % (weB+waA_weA'_waB)'{'%[(weA‘l_w eB
+wad+wa3)2_4weAweB:|1/2 )

(weBtwea)Z (Weatwasr),

where we4, wes, waa, and w,p are the exchange and
anisotropic frequencies for the two spins, respectively.
The corresponding eigenmode is

(Sah/(Sph)=—ai/as,
a1=weA/D )
as= (we+wes—wo)/D,
D=[wes?+ (wen+waa—wo)? ]2

The states with zero- and one-magnon excitation can be
written as'

(OQI =Hi <_, +l iy
g = /N2 3 [(al+, +|j—ax(—, — 1))
X I}K—, +| ] exp(iq-R)),

(35)

(36)

(37

where (%, & |; are the combined spin states for the
spins in the jth unit cell. We have S4;| —+);=|++);
and Sg;|—=);=|——); A typical term in Eq. (27)
which contributes to the value of &g is

a1<g’ +y + [ (67’4++61’3+) IIXI[ (erAz_’_erBz) |g7 ) +>
—ax(g, —, — | (erat+ers)|I)
X<I] (erAz-i_erBz) lg: ) +>;

or with the superscripts + and Z interchanged. This
again requires that the polarization of one beam, the
laser or the Stokes, has a circular component around and
the polarization of the other beam has a linear com-
ponent along the direction of magnetization. The situa-
tion here is very similar to that in the direct infrared
excitation discussed by Tinkham for the case of rare-
earth garnets!® There, the absorption coefficient is

(38)

(1;85’%‘). Nagamiya, K. Yosida, and R. Kubo, Advan. Phys. 4, 14
8 M. Tinkham, Phys. Rev. 124, 311 (1961); A. J. Sievers and
M. Tinkham, 7bid. 124, 321 (1961).
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proportional to the square of the matrix elements

I:a1<g, +, +l (MA++MB+)Ig7 ) +>
—a2<g7 R ] (MA++MB+)]g7 ) +>]

Because of the antiparallel exchange coupling between
the two sublattices, the two terms tend to cancel each
other, so that the infrared absorption coefficient (and
the Raman transition probability) becomes smaller
when the exchange coupling increases relative to the
anisotropy energy. The above analysis also applies to
the case of antiferromagnets if one puts S,=S3,
Wea=wpB, and wea=w.p. The direct far-infrared excita-
tion of magnons in the antiferromagnet FeF, has also
been investigated by Tinkham.® The eigenfrequencies
and the eigenmodes given in Egs. (35) and (36) should
be slightly modified in the presence of a dc applied
magnetic field. If the crystalline field is large, the
selection rule governing the polarizations of the beams
again breaks down.

The magnitude of the spin Raman effect may be
estimated as follows. Comparison of Egs. (15) and (27)
shows that the two coupling constants ¢ and £g are
comparable in magnitude. In the case of optical pho-
nons, £ would be zero if the electron-phonon interaction
were absent, it therefore suffers a reduction factor
3Cep/ (vibrational energy). In the case of magnons, &g
would be zero if there were no spin-orbit interaction ; the
reduction factor is 3Crs/ (crystal field). The two coupling
constants would be of the same order of magnitude if the
matrix elements involved were the same. In practice, the
ultraviolet oscillator strength for organic molecules is
close to 1, but for magnetic ions it is usually less than
0.1.21 If the reduction factors and the damping constants
for the two cases are approximately the same, the spin
Raman effect would be about 2 orders of magnitude
smaller than the ordinary Raman process in liquids. The
linewidth of the spin excitation at low temperatures
seem to be comparable to the optical phonon linewidth
which is about 1 cm™. For example, the antiferromag-
netic resonance in FeF; has a width of 0.1 cm~! at 1°K
which increases with temperature as 742 The damping
constant for the ferromagnetic spin excitations at room
temperature, lies in the range I's~10°—10" sec™!. The
narrowest ferromagnetic linewidth in a garnet is about
0.5 G or I's~107 sec! at low temperatures.’

An alternative way to estimate the order of magni-
tude of the spin Raman effect is by comparison with the
optical rotatory power of the magnetic system.?2?
Physically, the spin Raman effect and the Faraday
rotation are closely related magneto-optical effects. The
former is derivable from a thermodynamical potential
connected with the coupling between light waves

® R. C. Ohlmann and M. Tinkham, Phys. Rev. 123, 425 (1961).
2 Estimated from optical absorption data in rare-earth and iron-
%i'ggg) ions. See, for example, B. R. Judd, Phys. Rev. 127, 750

2y, R. Shen, Phys. Rev. 133, A511 (1964).
% A. M. Clogston, J. Phys. Radium 20, 151 (1959).
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and a spin wave. The coupling energy per ion is
EEE XS (w—ws))*. The Faraday rotation is derivable
from a potential that gives the difference in coupling
energy of a right-circular- and a left-circular-polarized
light wave with a longitudinal dc magnetization. This
time-averaged energy per ion is &pa{ | Eit|2—|Ei|2)
X{(S(0)), where 2¢p,. is the difference of the right and
the left circular polarizabilities. Both effects would
vanish in the absence of spin-orbit coupling, and the
coupling constants in the two cases are quite similar.
The constant &g has the same order of magnitude as the
circular polarizability, and so has &par, if the two
circular polarizabilities do not accidentally cancel each
other. This is the case of some iron-group ions, such as
Mn?*, etc. Such a relationship was also noted by
Pershan and coworkers.* They were only concerned
with light polarizations perpendicular to the magnetiza-
tion. Thus, only Am=0 or Am=--2 Raman transitions
occur in their geometry. For the excitation of magnetic
spin waves, the Am==-1 transitions are significant.
They require the presence of a light component parallel
to the magnetization. The ratio £p../fs depends of
course on the detailed geometry, crystal field splitting
and mixing of the magnetic states.

The rotary power at magnetic saturation is related to
the Faraday susceptibility by?

=47 Epa, (0/nc) rad/cm

where 9 is the number of magnetic ions per ¢c and # is
the index of refraction. For Eu** the rotary power per
ion has been determined experimentally.?5 For light at
the ruby wavelength one finds £p.,=5X10"27 esu.

If we take 91="5X10% in Eq. (33) and I's~ 10! sec?
for a typical ferromagnet, one finds Xgpaman™i2~10—14
esu. This is about two orders of magnitude smaller than
the Raman susceptibility of several liquids in which
stimulated Raman emission has been observed.

In principle, all magnon branches can be excited
through the Raman process. In a spin Raman laser,
however, the mode with the highest gain would be
dominant. The stimulated Raman process would also
have to compete with the ordinary stimulated Raman
and Brillouin scattering.

For a single magnetic lattice, the acoustic ferromag-
netic spin wave is of course the only magnon mode. It
is interesting to compare the Raman excitation of this
magnon mode with the Brillouin scattering. In both
cases, the dispersion of the mode frequency is quite
strong so that the Stokes radiation in different directions
has different frequencies. The Stokes radiation in the
spin Raman scattering can also go in the forward direc-
tion. If a strong dc magnetic field is applied, the mode
frequency for ¢=0 is still different from zero. The fre-
quency of the spin waves in the forward direction would

# J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, Phys.
Rev. Letters 15, 190 (1965).
%Y. R. Shen and N. Bloembergen, Phys. Rev. 133, A515 (1964).
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be low in small external fields. Themomentum-matching
condition becomes unimportant if the length of the
sample / is so small that ¢/<1, as the uncertainty in the
wave vector ~1/1 exceeds the wave vector g itself.

Since stimulated Brillouin scattering has a threshold
which is comparable to that of the ordinary Raman
effect in liquids, it will often dominate the spin Raman
effect. The dispersion law is more favorable for spin
waves in the forward direction. Note that the frequency
of the magnon mode can also be tuned by the applied dc
magnetic field.

In using giant-pulse lasers, one may still use the
steady-state solution of the coupled wave equations, if
the group velocity (or 8/2) is small. This is the case for
ordinary Raman effect and should also be valid for
optical spin waves (or exchange modes) and for acoustic
spin waves in very high fields. Otherwise, the transient
solution of the type developed by Kroll2¢ for the
Brillouin case must be used.

The more interesting aspect of the spin Raman effect
lies in the optical magnon branches. This includes the
antiferromagnetic spin waves. Polarization properties of
the beams should be investigated to see whether the
simple selection rules break down or not. Experiments
on FeF, with a Stokes shift of 55 cm™ would be quite
interesting. The large Stokes shift makes optical detec-
tion relatively easy. Various garnets are also suitable for
investigation, especially yttrium iron garnet which is
quite transparent in the near infrared.

In paramagnetic materials, the spin Raman effect
arises from isolated ions. The Raman effect between two
magnetic sublevels of the ground state and the Raman
effect between two electronic levels have thesa me
nature. The latter process was found by Hougen and
Singh* in LaF;:Pr¥*. Their experimental results give
assurance that the spin Raman process and the Brillouin
process might have the same order of magnitude.
Although the concentration of magnetic ions in para-
magnetic salts would be low, the linewidth could be as
narrow as 10~2 or even 10~* cm™, corresponding to a few
gauss. The gain is proportional to the average popula-
tion difference between the magnetic sublevels. If only
these two sublevels are populated, the paramagnetic
spin Raman gain would be proportional to the magnet-
ization. This effect could be observed in the forward
direction and could be tuned by the dc magnetic field, as
distinguished from the Brillouin effect.

It appears worthwhile to search experimentally both
for the spontaneous and the stimulated spin Raman
effect. For the former, a gas laser focused into crystals
at low temperature would be appropriate to observe a
scattered radiation with a small Stokes shift.?” For the
latter, a resonant cavity with a different feedback factor
for spin Stokes and Brillouin-shifted radiation would be
useful.

26 N. Kroll, J. Appl. Phys. 36, 34 (1965).

27 R. Y. Chiao and B. P. Stoicheff, J. Opt. Soc. Am. 54, 1286
(1964); T. C. Daman, R. C. C. Leits, and S. P. S. Porto, Phys.
Rev. Letters 14, 9 (1965).
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V. COUPLING OF LIGHT WITH
PHONONS AND MAGNONS

In discussing the spin Raman effect, we have neg-
lected the term u(L+2S)-H in the Hamiltonian. This
term would add to each electric-dipole matrix element a
magnetic-dipole counterpart. In addition, if the em
mode at the magnon frequency is present, there is a
direct coupling between this em wave and the spin
wave. It is this direct coupling that gives rise to mag-
netic resonance and far-infrared magnon excitation. We
have also neglected the nuclear motion which is re-
sponsible for the phonon waves.

In principle, all waves existing in the medium can be
coupled together either linearly or nonlinearly. The
coupling is, however, effective only when both linear
momentum and energy matching conditions are satis-
fied. Consider the case where five waves are present in
the medium, the laser and the Stokes waves at w; and
wg, and the infrared (or micro-) wave, the acoustic
magnon wave, and the acoustic phonon wave at » with
w=w;—wg. The laser and the Stokes waves can be
coupled to the phonon and the magnon waves through
the nonlinear Raman-type coupling, and to the infrared
(or micro-) wave through a nonlinear susceptibility of
mixed electric and magnetic dipole character. This
coupling constant is given by A, or A4 in Egs. (39) and
(40). The magnon wave can be coupled linearly to the
phonon wave through the magnetoelastic coupling,28
and to the infrared (or micro-) wave magnetic field
through the magnetic-dipole interaction. The coupling
constants A¢ and A between the acoustic phonon and the
infrared (or micro-) wave is negligibly small since the
waves cannot be matched simultaneously in energy and
momentum. If the laser field is treated as a constant
parameter, the remaining four waves are linearly
coupled. The coupled wave equations can be written as

VEs+ (wstes/c®) Bs= ME(S) ¥4 MEE, *+ME A, *,
VIE,* 4 (w?e, /¢ B, * = ME *E s+ A5(S) *+26A, *,
V2A, *+ (paw?/Co)A, *— 1 (po/C.) 20T A, *

= MEFE s+ 2(S)*+2E,*,
VES)*+ (1/B) (w—wo—1iT'g)(S)*
= X1oE*+A0A, ¥+ 0B *E g,

where A, denotes the acoustic vibrational wave. The
coupling constants are either related to physical con-
stants or can be derived explicitly.

M=—N(drws*/?)Est,
3\.2’\’ (47rws2/62)
(er)an(er)na’[ﬂellz(L+zs)XQJaa'
X
hz(wl.ﬂ_“’no) (w+wo’a)

This coupling between three em waves in a medium
with inversion symmetry is about 4 to 6 orders of

(39)

(40a)

% C. Kittel, Phys. Rev. 110, 836 (1958).
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magnitude smaller than the coupling parameter for the
second-harmonic generation in piezoelectric crystals.
The magnetic-dipole term makes this term negligibly
small compared to the other types of coupling.

A~ (47w s*/c?) (—igq-p). (40b)

p is the photoelastic tensor, whose elements are of
order unity

%42 3"2 )
5= ue'? (L+28)X QJ 09’\/5 o/Sest.  (40c)

This is the magnetic resonance term, that couples the
magnetic field at the resonance frequency to the spin
wave.

A~0,
M~ (iq-p)/Cat.

Here p is the photoelastic tensor and C, is the elastic
modulus tensor;

(40d)

As=1qdy/C,. (40e)

This magnetoelastic coupling isderived from the inter-
action Hamiltonian

HCone= 21’2[ (Sz/s)gzz+ (Sy/S)VyZJ )
where

aye=(1/2)(94,/32+934./9y)

bl (ksz——wszes/c2) —>\181
—)\1251* - 2+ (w—wo—iFs)/ﬁ
—)\481* -‘)\5
-—)\781* “‘)\8

The imaginary part of kg gives the Stokes gain.

It is quite difficult to find the solution of Eq. (42).
However, the dispersion relations of the waves are such
that in general only three waves can be effectively
coupled, since the infrared wave E, is always decoupled
from the acoustic wave 4,.

Consider first the coupling of Eg, 4,, and (S). The
problem is essentially the same as the problem of the
Raman effect in a polar medium! where the Stokes
wave is coupled to the infrared and the optical phonon
waves. That calculation can be carried over to the
present case. Let

ks=ks'+ (AK)S,
k/=ks+¢',
k/=ks"+q°.

(ks'V=wses'/c*,

k=g, @)

We are interested in the solution AK<Kkg.?, k,.". In this
case Eq. (42) reduces to

(— AK+ias) (AK+F1/2k,%) (AK+Fs/ 2k,
+ A (AK+F2/2k,.0) — Ay (AK+F1/2k,.0)

+As(—AK+iag)—A1gs=0, (44)
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and
0:0=1(1/2)(0A4./0x+ 934,/ 9z)

are the shear strain components. The static magnetiza-
tion is along the z direction. This is the only magneto-
elastic coupling term in a cubic crystal which is linear in
the spin variable. For a normal ferromagnet, the
magnetoelastic constant d; has the magnitude of the
order of 5X10~7 erg/cm?.28

Ag~0 ’
1
o= = Lue(L28)X oo Sar /B, (400)

r= iny,Sot)/hy .

In this elastomagnetic coupling constant b is the volume
of a unit cell.

(= —&g/hB. (40g)

A and A2 are the spin-light coupling constants de-
scribed in Sec. IIL. Here, with E;= §; exp[ik; r—iwit], a
solution of the set of coupled equations (39) takes the
form

Es~exp|:iks I ’iwst:] y

E,, A, {S)~exp[iq- r—iwt].

The complex wave vectors ks and q=k;—kg* are ob-
tained from the determinant

(41)

_>‘28l —)\36l
—MA1o —Au =
— @t wle*/c 0 =0. 42)
0 — @+ (pa/ca) (W2—1201")
where

Fi= (w—wo—p(¢")?—1il's)/B,
Fa= (pa/ca) (*—120T)— (¢°)%,
Ar=—Nh1o| 84| ¥/ 4ks g,
Ao=Ns\r| 84]%/4k 5,00,
Az=—NA11/4(g:")?,

Aas=— (\MA1iHhshehiz) | 8:1]2%/8ks:0(g.")°.

The solution of Eq. (44) is shown diagrammatically
in Fig. 3. Curves 1 and 2 are the dispersion curves
for the acoustic wave 4, and the acoustic spin wave
(S). The momentum-energy matching relation for Eg,

g=|ki—ks| =[wi(niki—nsks)- @+onsks-¢/c,

is given by curve 3. For small coupling constants, the
curves simply cross one another instead of forming
gaps.? Two waves can be coupled effectively only near
the point where the corresponding curves meet. Thus,
in the parametric approximation stimulated Brillouin

% No gap appears at the junction of phonon and magnon
dispersion curves, if A3 (pa/ca)wITs/Bk2 See Ref. 11.
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and spin Raman effects will occur essentially inde-
pendently near the points R; and R,, respectively,!
where the corresponding stimulated gain would be
maximum. The three waves can be effectively coupled
together only when the three waves can be made to
meet one another at a single point, (R;). This can be
done by selecting the Stokes direction or by tuning the
magnon frequency with the applied dc magnetic field.
At this point, the gain for the mixed stimulated Brillouin
and spin Raman effect would be close to maximum.
Thus, the magnon can be excited indirectly by the
Brillouin effect or conversely, the acoustic wave can be
excited indirectly by the spin Raman effect. This has
practical importance in exciting the magnon wave.
Individually, the spin Raman effect may have a higher
threshold than the Brillouin effect. However, by coupling
the magnon waves to the acoustic waves, they can now
be excited with a lower threshold via the Brillouin effect.
The excited magnon frequency can be tuned by the dc
magnetic field, but the direction of the Stokes radiation
will also be changed. The exact solution for the case of
three waves tightly coupled together should be obtained
directly from Eq. (44). Further algebraic details may be
found with the methods of Ref. 11.

The coupling of Eg, E,, and {S) can in principle be
discussed in the same manner. The nonlinear coupling
between Eg and E, is often small in magnetic media
which are nonpiezoelectric. The mixed spin and infrared

q ~

Fic. 3. Dispersion curves describing the mixed spin Raman and
Brillouin effect. Curves 1 and 2 are the dispersion curves for
the acoustic phonon and the acoustic magnon waves. Curves 3
and 3’ satisfy the linear momentum and energy matching
condition

@= |ki—ks®| =[wi(nikbi—nsks®) - P+wnsks’ /¢
for two different directions of Stokes scattering. The resonant
points R; and R: denote almost pure Brillouin effect and spin

Raman effect, respectively. The resonant point Rs corresponds to
the mixed stimulated Brillouin and spin Raman effect.
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Fi16. 4. Dispersion curves describing the simultaneous coupling
of the acoustic magnon, the infrared, and the Stokes waves in an
anisotropic medium. Curves 1 and 2 are the dispersion curves
for the acoustic magnon and the infrared waves, respectively.

Curve 3 describes the linear energy and momentum matching
condition

¢*= | ki—ks| =[w:(nik1—nsks?) -§*+wnsks-§)/c

in a particular direction of scattering. The resonant point R
denotes simultaneous coupling of the three waves.

excitation is more easily excited through the spin
Raman coupling. In isotropic media, the dispersion
curves for the acoustic magnon and the infrared waves
(curves 1 and 2, respectively, in Fig. 4) could not
intersect the curve satisfying the linear momentum and
energy matching relation at the same point. Therefore,
the waves Eg, E,, and (S) cannot be effectively coupled
simultaneously. In anisotropic media with indices of
refraction satisfying the inequality #;<#g, this is how-
ever, possible as indicated by the resonant point R in
Fig. 4. The problem is similar to the Raman effect in
polar media discussed by Loudon.

VI. CONCLUSION

There is a close parallel between the coupling of light
with optical phonons and the coupling of light with
magnons. The spin Raman process appears to be two
orders of magnitude smaller than the ordinary Raman
process in liquids. Both the spontaneous and the stimu-
lated spin Raman scattering may be observable in
suitable magnetic substances, such as paramagnetic
materials at low temperature, insulating antiferro-
magnets or ferrimagnetic garnets. Magnetic excitations
may also be induced by light through the stimulated
Brillouin effect and magnetoelastic coupling.

# R. Loudon, Proc. Phys. Soc. (London) A82, 393 (1963).



