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Atomic Radial Distributions and Ion-Ion Potential in Liquid Gallium*
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The atomic radial distributions for liquid gallium at 50 and 150 C have been derived from the measured
neutron-diffraction intensity patterns. In this study the fundamental equation of the Percus —Yevick (PY)
theory of liquids has been set out in a simple form suitable for the direct exploitation of neutron-di6raction
data. Equivalent forms of the (PY) equation have been obtained. An approximate form of the ion-ion
interaction in liquid galhum at 50 and 150'C has been derived. Analogies in the atomic short-range order
have been found between the liquid phase and the solid metastable phase P. These analogiesare stressed
by the changes in the density and in the resistivity of the metastable phase P at melting point; the behavior
displayed is common to the majority of metals.

SECTION 1

1.1 INTRODUCTION

obtain an eGective ion-ion potential in liquid gallium
from neutron-diGraction intensity data.

Apart from any plausible approximation involved
in the (PY) theory of liquids or in its exploitation for
a liquid metal, it must be admitted that at this stage it
is rather idealistic to expect more than a qualitative
result by this kind of approach, especially for metallic
systems (where long-range interactions are predicted),
mainly because of experimental difficulties in small-

angle neutron scattering. This question will be discussed
further in this study.

' 'N the last few years much theoretical eGort has been
~ ~ devoted to the molecular theories of liquids' and to
the electronic properties of liquid metals. '

Gallium is an interesting element because of its
anomalous behavior in melting. Among its other well-

known features —for example, the increase in density
from solid to liquid phase at melting point —we should

point out the recent discovery of two solid phases
metastable at normal pressure. ' These metastable
phases, named P and y, melt at —16.3 and —35.6'C,
respectively, and have densities higher than the liq-
uid phase (undercooled) at the same temperature. '
Moreover, work on positron annihilation' ' suggests
directly a change in the electronic structure at melting,
whereas measurements of electronic transport proper-
ties' point out difhculties in the interpretation of

liquid-phase experimental data.
In this work, neutron diGraction is used to determine

the structure of liquid gallium at two temperatures

(50 and 150'C). A comparison is made with previous
x-ray ' and electron-diGraction' studies. Finally, the

liquid structure has been compared with that of solid

stable and metastable phases. "
In this study, an attempt is made (in the wave-

vector space) to exploit the Percus- Yevich (PY)
approximation in the theory of liquids, " in order to

1.2 EXPERIMENTAL PROCEDURES

Neutrons of wavelength X=0.905 A were selected
from a beam of neutrons from the CP-5 Ispra 1 reactor,
operated at a power of 5 MW by reflection from the

f 111)planes of aluminum single crystal. The spectrom-
eter used has been described previously. "The liquid

gallium was put into a very thin-walled cylindrical
quartz container (17 cm high and 0.9 cm diameter)
chosen in order to obtain a good compromise between
the scattered intensity and the level of multiple
scattering.

The container was supported and surrounded by two
cylindrical pieces of copper which were heated by two

electrically isolated heaters in parallel connection, and

set vertically at a distance of 6 cm from one another.
The upper heater was supported by a very thin-walled

aluminum cylinder (3.4 cm diam), which also acted as

thermal screening between the gallium sample and the
atmosphere. Hence the impinging and scattered neutron

beams (5 cm high, 2 cm wide) passed into and out of
the quartz container only through this thin aluminum

cylinder. During the experiment the temperature of the
sample was continuously registered using as a sensing

element an iron-constantan thermocouple threaded

through a thin Pyrex capillary tube closed at one end.

A drop of re,ercury was placed at the extremity of the

capillary tube in order to ensure good thermal contact
between the joint of the thermocouple and the wall of

*Preliminary results of this paper were communicated at the
"LCongresso Nazionale di Fisica" in Catania, 1964 (unpublished).
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132, 495 (1963).
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~ H. Richter and S. Steeb, Z. Metallk. 7, 369 (1959).
»H. Curien, E. Rimsky, and A. Defrain, Bull. Soc. Franc.

Mineral. Crist. 84, 260 (1961).
~ J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

"G. Caglioti, E. De Agostino, F. Marsili, A. Paoletti, U.
Pellegrini, and F. P. Ricci, Nuovo Cimento Suppl. 23, 17 (1962).

143 36



ATOM I C RADIAL D ISTRI 8 TENT IONS

II retractary

gg copper

aluminum

amiantus

gallium

~ iran
imn costantan
therrnocouple

Qp heating element

neutron
beam

84C, furthermore taking into account the transmission
through liquid gallium.

This transmission has been measured, and a value has
been found in good agreement with that of the BNL-325
compilation. In each pattern the data begin at approx-
imately s= (47r/h) sin(esp) =0.4 A '; from thispoint the
curve has arbitrarily been extrapolated to the s=0
value.

Having taken into account the small-angle scattering
due to compressibility of the liquid, the extrapolated
intensity for s=0 gives the measurement of both
multiple and incoherent scattering.

The positions of the intensity peaks, compared with
those obtained by other workers, are given in Table I.
The position of the main peak does not seem to vary
appreciably with temperature, but its intensity de-
creases with increasing temperature. The subsidiary
maximum to the right of the main peak becomes less
noticeable at higher temperatures owing to the broaden-
ing of the main peak.

1.4 ANALYSIS OF THE DIFFRACTION
PATTERNS

FIG. 1. The sample holder.

the capillary tube, which was dipped into the liquid
gallium so as to skim the irradiated region.

As a sensing element for an electronic control unit
another iron-constantan thermocouple was used, the
hot joint of which was directly soldered to the lower
piece of copper. With this experimental setup (Fig. 1)
it was possible to have a temperature gradient of about
2', along the 5 cm of the irradiated sample, also for
the higher temperature at which the experiment was
pel formed.

The Quctuations registered by the measuring thermo-
couple were of about one degree.

The incident beam of monochromatic neutrons was
monitored with a Qssion counter, and the number of
scattered neutrons was counted with a 8' F3 detector
for a pre-set number of monitor counts. The intensity at
any scattering angle was measured stepwise every 1'
of arc in the range 3'14' to 94'14'.

1.3 EXPERIMENTAL RESULTS

Figure 2 shows the intensity curves observed for
liquid gallium at 50 and 150'C. These patterns have
been corrected for the background, which has been
calculated on the basis of measurements performed with
the quartz container, when empty and when filled with

The experimental patterns have been analyzed in
order to determine the atomic radial distributions. The
equation used is given by the well-known formula"

2r
4srsp(r) =4srrsps+ si(s—) sin(rs)ds, (1)

7f 0

where p(r) is the density of atoms at distance r from the
atom in the origin, po is the mean atomic density, and

In Eq. (2), I(s) is the observed neutron intensity
corrected for the background, as previously described.
Io is the value of the extrapolated intensity for s=0,
which is connected with scattering processes (multiple,
incoherent, and coherent due to compressibility) that
are isotropic to a very good approximation. I(~)
=lim, Q(s) is dered as the constant intensity at
large angles, where interference sects can no longer
be observed.

As is shown in Eq. (1), a Fourier integral has to be
performed in the range s=0 to ~, but in practice
available experimental data are limited to a 6nite
upper value s, and to a lower value s~ of s.

As far as the upper value s, is concerned, the
Js" has been replaced by Js' ~ in the calculation of
Eq. (1), supposing I(s) equal to I(~) for s=s, . The
consequence of this hypothesis (the well-known ter-
mination error), '~" (see later) is the introduction of
ghost ripples in the atomic radial distribution.

"N. S. Gingrich, Rev. Mod. Phys. 15, 90 (1943)."J.Waser and V. Shomaker, Rev. Mod. Phys. 25, 671 (1933).
~6 C. I. Pings and H. H. Pallman, Rev. Mod. Phys. 35, 389

(1963)."K.Furahawa, Rept. Progr. Phys. 23, 393 (1962).



P. ASCARELLI

S.000-

CL

lX~ 4.O0O-
CD
OC

M

UJI-~ 2.000-

T 50(C')

2NO-

T=150fC')

ig'f'

O

pro. 2, Angu]ar distribution of neutrons (X=0.905 L) scattered by 1]qu]d ga]]in~

Crr ~

5 =—Sl fl-a 2

—27Ppp = s'e (s)ds. (3)

The value of I(~) obtained in this way for the two
diGraction patterns is indicated in Fig. 2, by a dotted
line.

As far as the lower value s~ of s is concerned the
intensity I(0) has been smoothly extrapolated to the
value I0 at s=0.

Some remarks which must be made concerning this
I0 level are given below, and the matter will be taken
up again when the interatomic potential is considered
(Sec. 3). The erst point is that Ie, for experimental
reasons, is established with a degree of uncertainty, of
about 10% in our case. This uncertainty is reflected
at most by an uncertainty of approximately 1%
affecting the i(s) function Lsee Eq. (2)j. This un-
certainty is nearly as great as that due to the exper-
imental statistical errors (see Fig. 2), and other
researchers have established that a reasonable possible

The value I(~) has been chosen to satisfy the
relation

smax

lim I(s) =Ip
e~0

(4)

is accepted, from Eq. (2) we have

lim i(s) = —1,

that is, the isothermal compressibility of the liquid is
taken as zero. In fact, it is known (see Green, "p. 64)
that in the region far from the critical point the follow-

ing equality is obtained:

1+i(0)= 1+ [p(r) po]4mr'dr=10'4&&X—T peKT, (6)

"G. T. Clayton and L. Heaton, Phys. Rev. 121, 649 (1961)."H. Green, Molecular Theory of Liquids (North-Holland
Publishing Company, Amsterdam, 1952).

change in I0 level may give rise to alterations, which
are not severe, in the resulting curves for atomic radial
distributions. '

The second consideration is connected with the
coherent small-angle scattering due to isothermal
compressibility. If
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Ter.z I. Intensity patterns for liquid gallium.

Reference

This work
(neutron diffraction)
Menke (Ref. 8)
(x-ray diffraction)

Hendus (Ref. 9)
(x-ray diffraction)

Temp. (C')

50
150

18 undercooled
45
20 undercooled

2.54%0,02
2.52%0.02

2.45
2.45
2.5

3.1+0.01
3.1~0.01

4.88&0.05
4.96~0.05

7.34+0.05
7.34~0.05

3.1

2.83 (s.m. (3.13

4.66
4.66
4.87

7.17
7.17
7.34

Peak position s= (kr/X) sin(s/2)LA Ij
s.m. II III

9.7 ~0.05
9.74&0.05

9.66
9.66

where Xz is the isothermal compressibility, p0 is the
mean atomic density of the liquid (atoms/As), E is the
Boltzmann constant, and T is the temperature.

For liquid gallium 10'4 p0ET&~ is equal to 10 ' or
0.6&(10-', depending on the value one selects for
Xr (Xr——4X10 ""or 2.3X10 ""respectively).

This small-angle coherent scattering can be neglected
as far as our interest in atomic radial distribution func-
tions (far from critical point) is concerned. This is
mainly due to the following circumstances:

(a) When s is small si(s) is small also," and the
contribution to the integral in (1) deriving from the
lower s region is slight.

(b) The value of the integral Jo"(p(r) —poj47rr'dr
would eventually vary by about 1% from —1, and this
variation is, at this stage, quite negligible.

88-

80-
0

ee

I
I
I
I
I
I
I
I

I

-96

-88

of the first maximum (as in our case), its validity is,
unfortunately, doubtful.

(c) The area is taken as that under the first peak,
when the right-hand side of the peak is extrapolated to
the abscissa. This is the most widely known method
used, and is (in spite of the arbitrariness of the ex-
trapolation) a reliable compromise among the other
methods by which the irst peak area may be evaluated.

SECTION 2

2.1 ATOMIC RADIAL DISTRIBUTION
FUNCTIONS AND ERRORS

Figure 3 shows the radial distribution functions for
liquid gallium at 50 and 150'C. The positions and areas
under the 6rst peak are compared with those obtained
by other workers in Table II.

Although it is not yet well defined how the area
under the erst peak is designated, in the present work
the areas have been calculated by four methods
(Figs. 4, 5).

(a) The right-hand side of the first peak area is
made symmetrical with that on the left. The number
of atoms calculated by this method may evidently be
considered as a lower limit, but in fact no reliable
physical reason supports the minimizing of the contribu-
tion from atoms in other coordination shells.

(b) The area is given by

r2

4nr'p(r) dr, -

where rj. and r~ dehne the limits of the first peak.
Although this method is considered the best mathemat-
ically, in many cases, when ripples affect the right part
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P. Pascal, Eoueeau traite de Chimie Alirierale (Masson et Cie. ,
Editeurs, Paris, 1961), p. 691.

~' P. J. Kleppa, J- Chem. Phys. 18, 1331 (1950).

PIG. 3. Atomic radial distribution (a.r.d.) functions of liquid
gallium. The full curve indicates the a.r.d. at T=50'C; the
dotted curve, at T=150'C (S.P.=stable phase; M.P.=~etastab)g
phase).
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FIG. 4. Possible ways to calculate
the area of the 6rst peak in the atomic
radial distribution of liquid gallium
at T=50'C: (i). The right-hand side
of the 6rst peak is made sym-
metrical with that on the left. (ii).
The area is calculated by the integral
J„',"~4s.rsP(r) dr, where r~ and rs de-
6ne the limits of the 6rst peak,
(iii). The area is taken as that under
the 6rst peak, when the right-hand
side of the peak is extrapolated to the
abscissa. (iv). The area is calculated
by the integral J;,"3 4n-r~p {r)dr, where
rI and re de6ne the limits of the 6rst
peak and when the ripples, which
a6ect the right-hand part of the 6rst
maximum, having been considered as
caused by the termination error, have
been arbitrarily suppressed.

(d) The area is calculated by

4rrr'p(r)dr,

where fy and ts dc6ne thc limits of thc 61st peak and
when the ripples which aGcct the right part of the 6rst
maximum, having been considered as caused by the
termination error, have been arbitrarily suppressed.
A smooth idealized mean 4rrrsp(r) curve (light line in
Figs. 4 and 5) has been drawn in this region. In any
case it is reasonable to assume that the true number of
atoms connected with the 6rst peak area is contained

between the values calculated with methods (c) and (d),
i.e., 9~& e ~& 9.6 for T=50'C and 8.4&~n ~& 9.1 for
T=150'C. In Table III the positions of the erst peak.
in the radial atomic distributions together with the
number of atoms in the erst shell for the temperatures
T=50 and 150'C are compared. with the positions
and numbers of surrounding atoms, up to the fourth-
nearest neighbors of the stable solid phase and the
metastable phase P. Although the structure of the
metastable phase y has not yet been determined exactly
because of experimental difliculties, very recently its
density4 has been measured, and it is reported in Table
III.The density of this phase is slightly lower than that

Tzm.x Ij.Atomic radial distribution functions (R.D.F.) for liquid gallium.

This work (neutrons}
s =10.24 A '
This work
grnfLX 6 6 A.

Menke'
(x rays)

Hend usb

(x rays)
H. Richter and
S. Steeb'
(electrons)

Temp.
('C)

50
150

room
temperature

2.84&0.02
2.82~0.02

7.2
6.78

2.9 a0.05

Position of
6rst peak Peak made

(A) symmetrical

Area under first peak (number of atoms)

%ith spurious
ripple suppressed

f3 t'g

4rr'p r)dr

8.07 2.38 3.28
7.63 3.37 3.M

9.87 2.2 3.6

9.63 2.38 3.5
9.1 2.37 3.48

R.D.F,
extrapolated
to abscissa

9
8.35

10
Reported by

Hend us
14-15

ss Reference 8. & Reference 9. Reference iD.
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FIG. 5. Possible ways to calculate
the area of the first peak in the atomic
radial distribution of liquid gallium
at T=150'C: (i). The right-hand
side of the first peak is made sym-
metrical with that on the left. (ii).
The area is calculated by the integral
J;,"&4m-r'p(r) dr, where r1 and r2 de-
fine the limits of the first peak. (iii),
The area is taken as that under the
first peak, when the right-hand side
of the peak is extrapolated to the ab-
scissa. (iv). The area is calculated by
the integral j;,"I 4nr'p(r) dr, where r&

and ta define the limits of the first
peak and when the ripples, which
a8ect the right-hand part of the first
maximum, having been considered as
caused by the termination error, have
been arbitrarily suppressed.
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of the P phase but always higher than that of the
liquid phase, undercooled at a temperature of —35.6'C.

The errors on the atomic radial distribution functions
have been considered along the lines of Refs, 15 and 16.

As was suggested in Ref. 15 the termination error
has been studied on the function 4rrrp(r) rather than
on 4rrrsp(r). This has been done in order to study the
direct result of the Fourier transform (apart from an
additive factor 4rrrps) [see Fq. (1)); in fact, the
conventional multiplication of 4rrrp(r) by r introduces
a certain amount of asymmetry and shift into the
aberrations, which might aGect the real unknown
curve.

The spurious features introduced by truncating the
formal infinite Fourier integral LEq. (1)$ at a value
s=s, display themselves approximately as: (i)
"ghost" ripples on either side of the Grst main peak in

4rrrp(r), showing maxima at distances'r

5 x 9 mhr~-
2 ~max 2 ~max

from the position of the main peak; and (ii) broadening
of the main peak.

hr has been calculated for s, =10.24 A-' and also
for s, =6.6 A-'. The calculated values, which should
be temperature-independent, are compared with the
experimental results in Table IV.

The good agreement (see Table IV) between the
observed and calculated values of the position of the
"ghost" maxima indicates that the radial distribution
functions are clearly inQuenced by the termination
error.

TmLz III. Comparison of liquid and solid phases of gallium.

Liquid gallium

Melting point
Density (g/cc) 6.153 at —35.6'C

6.136 at —16.3'C
6.09 at +29.80'C

Neighboring 9-9.5 atoms at
atoms 2.84~0.02 A

at T=50'C

Solid gallium
metastable phase (Gay) &

—35.6'C
6.20

This metastable phase is more
compact than the liquid

Solid gallium
rnetastable phase (GaP)b

—16.3'C
6.23

This metastable phase is more
compact than the liquid

2 atoms at 2.68 A
4 atoms at 2.87 A
2 atoms at 2.90 A
2 atoms at 3.17 A

Solid gallium
stable phase (GaI)'

+29.78'C
The stable phase less compact
than the liquid
5.90 at 29.65'C

1 atom at 2.44 A
2 atoms at 2.70 A
2 atoms at 2 74 A
2 atoms at 2.795 A

a See Ref. 29.
b See Ref. 11.The gallium atoms are grouped in zig-zag chains. The distances between two atoms in the chain is 2.68 A and the angle Ga-Ga-Ga is 72' 30'.
o See Ref. 20. Each atom has one neighbor very near. The possible existence of a Gag molecule has been suggested.
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TABLE IV. Ghost ripples in the radial distributions functions due to the termination effect.

Left-hand side of main peak
Position of Position of

erst ripple (A) second ripple (A)

Right-hand side of main peak
Position of Position of

erst ripple (A) second ripple (L)
Observed T=50'C, s =10.24 A '
Observed T=150'C, s = 10.24 A '

5 e 9 e
Calculated

I
&—

2 smsx 2 smax )
Observed T=50'C, s =6.6 A

( 5 gr 9
Calculated

I
a——;—;~ ~

2 smsx 2 smax

1.25+0.05

1.43+0.02

0.74a0.05

0.74+0.02

1.95%0.03
1.98+0.03

2.05~0.02

1.59&0.03

1.69%0.02

3.48~0.03
3.46+0.03

3.48~0.02

vanishing

4.07&0.02

4.3 +0.05
4.16=0.05

4.20~0.02
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In Fig. 6 the 4rr'p(r) curves are shown for s = 10.24
A ' and s „=6.6 A ', respectively.

The position and the area under the erst peak in the
radial distribution function connected with the value ofs, =6.6 A ' (T=50') are compared with those corre-
sponding to s, = 10.24 A ' in Table II.

A rough evaluation of the broadening of the main
peak induced by the termination error can be made if
a Gaussian approximation is accepted. That is, the real
unknown main peak in 471rp(r) and the modification
function folding with it are taken to be approximately
of the Gaussian type. On this basis, as far as the width
at half-maximum of the main peak is concerned, one
can say that the two curves for T=50 and T=150'C
are broadened less than 10%%uq by the modifying function.
Unfortunately, this evaluation does not give any
information about the eventual variation of the area
of the first peak in the 4srr'p(r) distribution, because it
is well known that, when the range 0 to s, of the
Fourier integration is increased, this peak becomes more
and more squeezed and sharper in a rather unexpected
way. For comparison see the discussion on this area
in Refs. 18 and 22.

48-

40-

—64

-56

SECTION 3

3.1 THE INTERATOMIC POTENTIAL FROM
NEUTRON-DIFFRACTION PATTERNS

32-

24-
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Some years ago Percus and Yevick presented one
of the most promising among the approximate theories
of Quids, "by which the atomic radial distribution can
be deduced directly from the interatomic forces, which
are assumed pairwise and central.

It is not the purpose of this work to test the validity
of this theory, which is widely discussed elsewhere, "—"
but only to use its final result in order to derive a force
law between atoms in a liquid once the neutron-diffrac-
tion pattern is known.

Let us recall the final form of the (PY) integral
equation

SR i I ONE ATOM i

H.P.
r(A)

=1—pp
I (I) I (r—&)

(ee(u/KT 1) —1 dl, (7)
P0 —- Po

2 4 6 8 10 12 14

FIG. 6. Atomic radial distribution function of liquid gallium.
The full curve indicates the a.r.d. calculated by data terminated
at s =10.24 A ', at T=50'C; the dotted curve, at s =6.6
A-', T= 50'C.

"G. Caglioti and F. P. Ricci, Nuovo Cimento 24, 103 (1962l.
'I A. A. Broyles, S. U. Chung, and H. L. Sahlin, J. Chem. Phys.

37, 2462 (1962).
~ A. A. Khan, Phys. Rev. 134, A367 (1964).
2e A A Khan, Phys. Rev. 136, A1260 (1964).
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L(e""' '—1)p{l)jLp(r —l)—pojdl (g)

I,et us introduce the two Fourier transforms:

f(s) = C(""' *—1)p(r) je"'«

i(s) = b(r) —poje"'«. (10)

H we multiply each member of Eq. (8) by e"'dr and
perform the integration on r, Eq. (8) is reduced to the
SIInplc cxpI'esslon

f(s)+i(s) =—i(s)f(s)

where p(r)/po is the two-body distribution function, po

the mean atomic density, p(r) the mutual potential
energy of a pair of atoms separated by a distance r,
E the Boltzlnann constant, and T the temperature in
degrees Kelvin.

The equation is then written in the following form:

(e"" '—1)p(*)+p(r)—po

y(r)=U(r)+ET In 1+
2g fpo

i(s)'
X s — sin(rs)ds, (14I)

o i(s)+1

y(r)=U(r)+Zr ln 1—
(O

t"po
(e4 (o) I&V ])p (y)ydy

This formula permits us to derive directly the mutual
potential energy P(r) between pairs of atoms once the
i(s) function de6ned in terms of the neutron diffraction
patterns in expression (2) of this paper is known.
Relation (14) has been used ln order to 6nd thc mutual
potential between pairs of atoms in liquid galliuIn.
Owing to the fact that gallluIn ls a metal, and following
thc recent theories of electronic properties of liquid
metals, it can be argued tha, t this potential may give a
fair description of the ion-ion interaction in liquid
gallium. Equivalent forms of Eq. (14) can be easily
derived frorQ it. Thc 6nal results axc reported herc,
their derivation being described in the Appendjz:

Ol

f(s)=—i(s)/Li(s)+13. (12) »Lp(r) —poj«, (14")

Considering p(r) and @(r) independent of the solid
angle and integrating the exponential function e"'
over it, the following relations are deduced:

sin(rs)
f(s) = (ee(""xr—1)p(r) 4o»»'dr, (9')

0 fS

i(s) = sin(rs)
Lp(r) —p.j

ol) by FGUllcI' lnverslon~

2r
4s r'(e&(")(xr—1)p(r) =— sf(s) sin(rs)ds,

(I

4)»r'p(r) = 4m »'po+ — si(s) sin(rs)ds. (10")

It is noted that Eq. (10") is exactly expression (1)
of this paper, the notations having the same meaning.
By eliminating the quantity 4mr'p{r) by the Eqs. (9")
and (10")we now obtain

(2»/m) Joys f(s) sin(rs)ds
eo(r) IKT ] — (13)

4s»'po+ (2r/s) Jo"si(s) sin(rs)ds

If we recall the expression for f(s) in Eq. (12), we
6naHy obtain:

4(»
(2»/o») Jo"s{i(s)/Li(s)+1j}sin(rs)ds

=ETln 1—
4s»'po+(2»/s) Jo"si(s) sin(rs)ds

(14)

where U{f) is de6ncd ln the usual way (see Green &o

p. 75) as
p(r)/po e (v(r)Jxr)—- (15)

and has the xneaning of a mean potential energy of a
pair of atoms in the con6guration p(r)/po.

i(s)

i(s)+1 o

sin(rs)
(ee( )I &x1)p(„) 4 rod» (1y)

3.2 INACCURACIES IN THE COURIER TRANS
FORM OF THE FUNCTIOm f{s)

In order to 6nd the ion-ion potential by formula (14),
two FOUI'1cl 1ntcgI'als have to bc calculated. Onc of
them, Jo"si(s) sin(rs) ds, has been discussed in Sec. 1.4;
here we are interested in the second one; that. is,

i(s)
~)(r)= (2»/~) s sin {rs)ds.

o i (s)+1

The conscquenccs of limiting thc range of integration
(0 to s, ) have been studied in the same way as in
Eq. (2) and in general, we have nothing to add to what
has already been said. Nevertheless, vre should stress
that the termination error influences F~(r) at small and
nmdiuln r but not at large r. This is important because
it can be concluded that the termination error does not
a6ect the long-range behavior of the potential (t(r)
Lsce Fig. (7)j. Ma)or attention has to be paid to the
effect of i(s)/i(s)+1 for s-+ 0 on F~{»).

Rcmbcring (12) and (9), we derive
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This means that

s(0)

s(0)+1
(eeI"Ii~r 1)p(r)4mr—'dr. (18)

0&Xr &~ Xr*~4X10 "cm'/dyn,T~ T

00

2 2ac ~)(ee(')I&&—1)p(r)44rr dr~) 10 .

It Is clcR1'ly Impossible to take ppke the a roximate va ue
for s(0); in fact, in this case, the integral in

would diverge, w ic is n

lim y(r) =0

lim p(r)=p, .
p ~0@

compressibility. Besides, from (6) we fin

1 10"XrppKT—
(e&I"&«r 1)p(r) X—4mr'dr (19).

10'4Xrp pKT

'n 19j~we see that the situation here &s

integral in ~q
~

'
sitive o

f (0) ol' 1I1 par tlcular to the iso c1'Illa

conclusion (for liquids far rom cri ic

given ranggeof Xp—s we6ndl

0&~X&~Xr*~4X10 "cm'/dyn,

[y (r) pe]4xr'dr &~ —0.9—8

f X * should be considered as anThe numerical va ue o
f the IC. (In particular, we haveorder of magnitude o t e

the IC of gallium reported in Ref.

as well as or accura e nte neutron-diGraction intensity
scatterin angles. However, asmeasurements fol sITla Sca

far as the IC is concerned, we shouM po~nt ou a
natel the (PV) theory does not give good

results. Neverthrtheless, in or er o see
r and p(r) have beensmall change in the IC both Ej r an r

found for two different values of Xr (see Fig. 7).

3.3 ION-ION POTTENTIAL IN LIQUID GALLIUM

By expI'ession (14) the ion-ion potential in liquid
allium has been derived in particular:

a From the observed intensity data on gallium at
50'C, using a va ue o e il f the isothermal compressibi ity
X,=2.4X10 ~ cm'/dyn from Ref. 21.

bq From the observed intensity data on gallium at

0 which is almost=4X10-~ cm'/dyn from Ref. 20, w Ic is~t
t 50'Cthe same as that of mercury at

~ ~ F the observed intensity data on ga ium a
50'C, arbitrarily terminated at s, = .

~cm' d
&d, From the observed intensity ata on ga

'

a value of the isothermal compressibi ity
Xt ~=45X10 ~ cms/dyn equal to that o

es X at 50'C only.150'C, this because Ref. 21 gives t a
These different g(r) curves are shown in Fig.
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We observe, respectively, for case
(a') A minimum at r=2.85 A with a depth of —8

meV, a maximum atr=3.85

upwith

a height of 25 meV.
(b') A minimum at r= 2.85 A with a depth of —10

meV, a maximum at r=3.85 A with a height of
22.5 meV.

(c') A minimum at r= 2.9 A with a depth of —7.5
meV, a maximum at r=3.6 A with a height of 23.5 meV.

(d') A minimum at r=2.85 A with a depth of
—19.5 meV, a maximum at r =3.8 A with a height of
21 meV, and for the long-range tail with deGned

oscillatory behavior, the positions of the minima are
r—6, 9, 12, and 15 A etc.

A comparison of the curves indicated as a and b

shows that an error in the correct value of the isothermal
compressibility roughly reQects itself as an uncertainty
in the zero level of the energy scale; at least this is
true for not too high values of r.

The effect produced by the termination error (see
also Sec. 3.2), which can be appreciated by comparing
curves b and c (Fig. 7) seems to inQuence mainly the
short-range part of P(r); in fact the two curves coincide
for r) 7 A.

Moreover, we remark that the ripples appearing on
each side of the first maximum in P(r) at about 3.5 and
4.2 A are clearly spurious Lcf. analogous spurious
ripples already discussed for 4rrr'p(r) in Fig. 6j.

Long-range oscillatory interactions between ions in
a liquid metal have been pointed out earlier by Johnson
and March" and recently reported by Johnson ei al.'r

These authors analyzed the atomic radial distributions
functions for eight liquid metals.

The long-range form of the interaction is given by

g(r) = cos(2Err)/r',

where Ef is the radius of the Fermi sphere, assuming
that the screening is due to free electrons, with a Fermi
momentum distribution.

This long-range oscillatory behavior is not found for
the p(r) of gallium at T=50'C. In contrast, an ill-
dehned oscillating feature can be identiGed in the
@(r) for T= 150'C.

Moreover, the p(r) for T=150'C displays a deeper
minimum than the&(r) for T=50'C. Letus now suggest
one of the causes that could have generated these
features. We shall try to justify them physically in the
following section.

The anomalies" could well arise from the rather
arbitrary way of extrapolating the observed intensity
to zero angle (see Fig. 2), especially for the intensity
pattern for T=50'C. Unfortunately, until now, no
analytic small-angle asymptotic form of the structure
factor (see Fig. 2) has been proposed for a liquid metaL"
"M. D. Johnson and N. H. March, Phys. Letters 3, 313 (1963)."M. D. Johnson, P. Hutchinson, and N. H. March, Proc. Roy.

Soc. (London) 282, A283 (1964).
"Recently, J. K. Enderby, T. Gaskell, and N. H. March,

Proc. Phys. Soc. (London) SS, 217 (1965),discussed the asymptotic
form of correlation functions in classical Quids and in liquid

SECTION' 4
4.1 DISCUSSION

It seems rather dificult to interpret the results we
have obtained either for the structure or for the ion-ion
potential of liquid gallium, inasmuch as data and
conclusions on gallium electronic properties published
so far are often conQicting. The values for electronic
transport properties reported by Cusack et al. ,' are in
fact dificult to reconcile with the interpretation and
the results of positron-annihilation measurements on
solid and liquid gallium by Stewart et al. ,' and by
Gustafson and Mackintosh. ' Nevertheless, by the
position of the Grst coordination shell, by the number
of atoms in this shell and by a comparison reported in
Table III, we might argue that the structure of liquid
gallium, at least at temperatures not far from the
melting point and on a short-range order scale, displays
the main features of the structure of the metastable
solid P phase.

The exact structure of the metastable y phase is not
known, but in Ref. 29 it is reported that the smallest
distance between two atoms is 2.44 A, as in the stable
solid phase. This distance 2.44 A has not been resolved
in the liquid structure. For this reason we exclude at
the moment the idea that the liquid could have a
structure similar to that of the y phase.

The metastable P phase is stable at very high pres-
sure, " while at room temperature and at normal
pressure it has a density larger than the stable phase.
This means that ions set in a situation such as that
displayed by the structure of the P phase experience a
strong repulsive Geld. We can say that the potential of
curve a, Fig. 7 may be justified by a situation of
"quasimetastability" of the liquid phase near the
melting point, the ion experiencing a long-range
repulsive potential with a small potential well at short
range. When the temperature is raised, the density is
lowered; the volume occupied by every ion increases
and the configuration of the liquid evolves to a higher
degree of stability, which is described by potential
curve d.

The electrical resistivity pp of the metastable phase
has been measured. " The ratio E=pr/ps of the
resistivity of liquid gallium to that of metastable p phase
is in the range 2.2 &~ E~&3.It is remarkable that a value
of 2,2&~E&~3 connects gallium with the other elements
of its group, as is reported in Table V, in a certain sense
"renormalizing" the situation.

It is interesting to note that the Mott formula' "
pr, /p, =exp(80L/T„) (L in kJ/mole, T in 'K),

helium 4. In this paper they present an expansion for small s of
the structure factor of a classical insulating liquid. The structure
factor for small s of a liquid metal is not discussed.»P. Blaconnier, thesis, Faculty des sciences de 1'Qniversitb
de Paris, 1964 (unpublished).

~L. Bosio, A. Defrain, and I. Elpboin, Compt. Rend. 250,
2553 (1960).

O' N. Cusack and J. E. Enderby, Proc. Phys. Soc. (London)
75, 395 (1960).
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TmLE V'. Ratio of resistivities of 1iquid and solid phases
for elements of the gaHium group.

2.2 ~&E ~&3

connecting the ratjo of the resistivity of the liquid and
of the solid phase vnth the latent heat of fusion I and
~ith thc melting tcIQpcrRtuI'e T, gives R value of
E=2.29, vrhich is in agreement vrith the experimental
one, when we take the value" 9.09 cal/g as the latent
heat of fusion of the metastable 1.~ phase, at the melting
temperature T = —16.3'C.

Nevertheless, it is doubtful vrhcther Mott's theory
can apply to gallium, because pI, is not proportiona]. to
thc absolute temperature, Rs onc of thc assumptions of
this theory" requires.

Fjnally, recalling tha, t @re obta, ined 9»& n »&9.6 atom. s
in the 6rst coordination shcH for gaHium at 7=50 and
8.4&»g, &»9.1 for gallium at 150'C, it may be observed
tha, t a, rough extrapolation predicts Rbout %=7 atoms
for gaBium in the range 300&T&350 and
~=$0 atoms for undercooled liquid gallium near the
melting point (—16.3'C) of the p phase. This is in

agreement at high temperature with the density of
liquid gaHiuIQ; this density Rt 3j.5 C bclng equal to
that of the stable phase at the melting point 29.7'C:
and is in agreement at lour tempera, ture vrith the number
of atoms in the erst coordination shell for the p phase.

Wc think, lt %'ould bc very lntercstlng to have
confj.rmation of our hypothesis determining the struc-
ture of liquid undercooled gRHium at a temperature near
—16.3'C.

42 COÃCLUSI053

The atomic radial distributions for liquid gallium at
50 and 150'C have been deduced by the observed
neutron diftraction intensity patterns. An approximate
form of the ion-ion interaction in liquid gallium at 50
and a,t 150'C has been obtained using thc fundamental
equation of the (PY) theory of liquid.

The (PY) equation has been set in a simple form
suitable for the direct exploitation of neutron di6raction
data. Equivalent forms of the (PY) equation have been
derived. Analogies in the short-range structure of
liquid gallium with the solid metastable p phase have
been stressed. If the metastable P phase is considered as
the parent solid phase of the liquid gallium, the melting
behavior of gaBium can be regarded as much more
normal, at least as far as the changes in density and in
electrical resistivity are concerned. The main features of
the ion-ion interaction derived by the (PY) equation
for liquid gallium seem to be justified if the analogy
between liquid and solid metastable P phases is accepted.
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APPENDIX

From Eq. (14) in the text we derive the following:

-4sr'p(r) —(2r/s) J(ps(i(s)/Li(s)+ij} sin(rs)ds-

4sr'p(r)

&p(r) = U(r)+ET ln

having d«ned s """x'=p(r)/po
Finally, by adding the two integrals in the above expression we obtain the Eq. (14') (see text):

1 " ji(s)g'
y(r)= V(r)+ET In 1+ s sin(rs)ds .

2s'rpo 0 i(s)+1

» I.. gosio and A. Defrain, Compt. Rend. 258, 4929 I'I964).
33 N. Cossack and P. K.endall, Proc. Phys. Soc. 75, 309 (19Q)).
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Rewriting the integra

in the form

- Li(s)3' . („,)d,
~(s)+1

~~

sin (rs)ds
j(s)

q(s)+1

s see text), we obtaini the fiinction f(s) (seeand recalling the definition o t e

sf(s)i(s) sin(rs)ds=—
0 0

e«»lx — p d '(s) sin(rs)dse&(»lx~ —1)p(y) sin(ys)4)ry yj

d i(s) sin(ys) sin(rs)ds(:~(»'"~—1)p(y)4mydy ~ s si(

s ds ——,
' i(s) cosL(r+y s dsd —', i(s) cosL(r —y s ds ——,(g4 (»/&& 1)p(y)4~ydy

Observing that

we then derive

i(s) cos(rs)ds=+
d2'

si(s) sin(rs)ds= 2ir'rQ(r) —p(),

(r,4(u)l&& 1)p(y)ydy rQ (r) poJdr. —

(~""" '—1)p(y)ydy (14")

14") (see text):. (14'), we obtain Eq.
'

n of the Fourier transform in Eq.e above express~on o

F+f/

If

erenow

su
'

e asubstitute the a

2'
r9(r)—pol«

(i b Johnson et ul."as been use yThis equation ha


