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A method is given for calculating the spin-diffusion constant in a ferromagnetic metal using a spin-
transport equation. The result is that the diffusion constant in a ferromagnetic metal is reduced below that
for a normal metal by the factor (1+co, 'T„')1, where co, is the effective exchange frequency and T„is
the momentum relaxation time. The physical idea for the calculation was first thought of by L. L. Hirst,
who has obtained the same results using an alternative method of calculation.

"T has been previously pointed out by the author'
- ~ that the effective spin di6'usion constant in a ferro-
magnetic metal must be down by a factor 10 from
that in a nonferromagnetic metal. The reason is that
the inclusion of the diffusion term is found to be un-
necessary in order to make a Gt to the ferromagnetic
line shape, and its effect would be in evidence unless
reduced by the vector 10 '. Recently this point was
again noticed by Hirst, ' who developed an explanation
of the eGect in an unpublished report which he kindly
sent to me. The basic motivation of the calculation, i.e.,
that the eGective molecular Geld reduces the diffusion
constant by forcing the magnetic moment of a particular
electron to follow the local average magnetization, I
believe is correct, but the calculation itself I felt can be
put on a more rigorous and less intuitive basis. It turns
out that both methods obtain the same results.

It is assumed that the effective magnetic-moment-
bearing electrons obey the kinetic equation for the
distribution function f:
Bj e—+v V„g+VJ eE+-(v&&H)
Bt c

v ' ds

e—'ds

fo(co+a%,)fo—
fp(eo aM,)—(6)

where fp is the equilibrium Fermi distribution. The
form for the spin relaxation is not critical as our results
will be essentially independent of T,.

Equation (1) and the expression for the current and
magnetic moment

e
j=— v Trjd'p,

h'

parts —the momentum relaxation and the spin relaxa-
tion. Thus one has

/Bf)

EBt l„u
where

which has been used in a number of previous calcula-
tions. ' The Hamiltonian for the spin is given as
B,=pe H, gg where

H,ge
——Ho+ H, (+aM+ bv'M

I=Hp+H, ).

(2)

The a and B in Eq. (2) are constants which arise from
expanding the local magnetization about the position
of the electron of interest. 4 The collision term has two

~This work was supported by Advanced Research Project
Agency.' J. I. Kaplan, Phys. Rev. 115, 575 (1959).' L.L. Hirst, Technical Report No. 471, University of Maryland
(unpublished).

I M. Ya. Azbel, Y. I. Gerasimenko, and I, M. Lifshitz, Zh.
Eksperim. i Teor. Fiz. 32, 1212 (1957) )English transl. : Soviet
Phys. —JETP 5, 986 (1957)j; M. Ya. Azbel and I. M. Lifshitz,
Progr. Low Temp. Phys. 3, 288 (1961).

C. Kittel, Introduction to Solid State P/zysics {John Wiley L
Sons, Inc., New York, 1957), 2nd ed. , Appendix 0.

p
M=—Trsfd'p,

h'

are simpliGed by writing

f"'=fr+f a.
The spin-dependent part of Eqs. (7) and (1) can then
be written as

2p
M=—fd'p,

h'

where for no saturation

M, =— XpdoP
h'

and
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where a is a unit vector in the Ho direction,

Xp= pLfo(oo+aM*) fo(op aM)j

To simplify the problem, we will take EIo=H, to be
perpendicular to the surface of the ferromagnet. Then
assuming that the rf radiation is circularly polarized, of
a single frequency ~, and that one can ignore saturation
effects Eq. (11) can be written as

( 2p, 8& (f) 2p
~

1/t i —aM—,+v,
~ f——+i—K,n=0, (12)

h 8) Tv h

where

Considering only the Fourier component of OR and f
going as e'p' one has from Eqs. (12) and (13)

(f)/T, i(—2p/h)(X, f+aSK bg—'OR)
f= . . (14)

1/t+iqv cos8—i(2p/h)aM,

Integrating over energy one has

5K/Tv i(2—p/h)(ae, )+ant bq'—OR)
OR(8) = (15)

1/t+igv p cos8 i—(2p/h)aM,

where OR is the angular average of OR(8) and vp is an
effective average velocity in the region about the Fermi
surface. After averaging Eq. (15) over 8 one finds that

1/t= 1/T„+1/T.+i(co ".), —

f= (f.+if.)/Xo
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or solving for 5R one has

(16)

L
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5K= (17)
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To 6nd the resonance character of ÃL one expands the where

denominator in powers of q up to q' and obtains H, gg
——H,g+Ho+BP'M, (21)
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which near resonance becomes approximately

2pMebg' q'vp'T
1/T, +i((o (op) i —+-

h
(19)
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where co„=M,a(2p/h) is the effective molecular field.

If one takes the effective Bloch equation' to be

dM/dt=y(MX8, ff)+Dp'M —M/T„(20)

then corresponding to Eq. (19) one would obtain

i2@3',Bq'
1 /Te+(i(0 —No) — qD. —(22)

h

Thus by comparing Eqs. (19) and (22) one sees that

Do
D—

1+"eeTv

D=DoX4X10 '.
The addition of the diffusion term as given in Eq. (20)

maybe needed to make a theoretical resonance fit for
ferromagnetic metals with a very low Curie point,

where Dp=vo Tv/3 is the spin di6'usion constant in a
nonferromagnetic metal. This is the same result as
obtained by Hirst. ' For a Curie point of the order of
500', one has co,~sX10"and thus with T„10"


