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in the outer regions of the 3d shell, " therefore overlap
integrals (and (y~H~D) matrix elements essential to
the evaluation of 10Dq) are relatively severely affected
while the repercussions on f are comparatively slight.
Given the expanded (or otherwise modified) basis
orbitals, the analysis developed in this paper can be
reapplied. ' Such an effort is beyond the scope of the
present paper.

One of the great achievements of the transferred
hyperhne investigations was, despite uncertainties, the
contact made with covalent mixing. The present effort
has attempted to provide similar contact between the

40 See Fig. 4 of R. E. Watson, Phys. Rev, 118, 1036 (1960) for
an indication of how an iron series 3d shell varies radially with
ionic charge.

4' When doing this, one should not assume a simple one-electron
spin-orbit operator of the form of terms in Eq. (3), when evalu-
ating g and fz„but should use the full ionic spin-orbit operators
including two-electron terms (see Ref. 9).

g shift and covalency. We leave it to the reader to
decide for himself how successful this has been. In our
opinion it is as, or almost as, effective as the transferred
hyperfine data reduction process. The resulting y has
proven to be of the same magnitude as p contrary to
common expectation concerning chemical bonding.
Introduction of such factors as 3d orbital expansion is
not expected to radically alter this tendency, i.e., it will
similarly reduce both p and p, .
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The method of Green's functions is used to derive an expression for the susceptibility of an ionic crystal
with defects in a homogeneous electric Geld in a harmonic approximation. For the sake of simplicity, the
polarizability of the ions is not considered and the general expression is specialized for the case of iso-
valent substitutional impurities. Using the temperature dependence of an anomalously low frequency
rcosz=y(T Tc)g of one transver—se optic mode of vibration of long wavelength in ferroelectric crystals, it is
shown that the inRuence of such defects on the static dielectric constant is seen as the shift of the Curie
temperature, as is known experimentally. The Curie-temperature shift is expressed by means of the force
constants between ions, and in the crystal model in question it depends linearly on the concentration of
impurities in a broad range of concentrations. The Curie-temperature shift is used to estimate the magnitude
of the relative change in frequency of the anomalous optic ("ferroelectric"} mode in the (Ba,Sr)TiP& crystal,
which could be determined by the inelastic scattering of neutrons.

I. INTRODUCTION

ECENTLY Vinogradov' (see also Ref. 2) dealt
with the theory of dielectric losses at microwave

frequencies in ionic crystals with a nonideal lattice and,
for example, for SrTi03, he qualitatively explained the
frequency dependence of the losses. ' In the present
paper we shall deal with the opposite case, i.e., the in-
huence of defects on the real part of the dielectric con-
stant at low frequencies far enough from resonance.
This problem is particularly interesting in ferroelectric
substances in which, as is described comprehensively

U. S. Uinogradov, in Proceedings of the International Conference
on Lattice Dynamics, CoPenhagen, 1W3 (Pergamon Press, Inc. ,
New York, 1964).' B. D. Silverman, Phys. Rev. 125, 1921 (1962).

~ G. Rupprecht and R. 0. Bell, Phys. Rev. 125, 1915 (1962).

in Ref. 4, crystal lattice defects (particularly different
mixtures of impurity ions) greatly influence the static
dielectric constant. This inRuence can usually be ex-
pressed by a change only in the Curie temperature T~
while the character of the temperature dependence of
the dielectric constant remains practically unchanged.
For this reason, it is enough for our purposes to start,
out from the Hamiltonian similar to the one in Ref. 1,
in which the potential energy contains terms up to the
second power in the components of the ionic displace-
ments from their equilibrium positions in the defect
lattice.

Various impurities inQuence the Curie temperature
T& of the same material in a very diBerent way. Thus,

'F. Iona and G. Shirane, Ferroelectric Crystals (Pergamon
Press, Ltd. , London, 1962).



for example, when substituting Sr or Pb ions for Ba ions
in BaTi03, T~ decreases or increases, respectively, the
change of Tg reaching several hundred degrees Kelvin
(at 100% substitution). On the other hand the change
of Tg when Caions are substituted for Ba ions isneg-
ligible. ' The impurities present in the crystal lead also to
changes in the lattice parameters. At the same time it is
well known that with BaTioa the Curie temperature can
be decreased by hydrostatic pressure, revealing thus
that Tg depends on the lattice constant. So the question
arises whether the changes in Tg connected with the
presence of impurities cannot be explained simply as a
consequence of the change in the lattice constant. The
case mentioned above shows, however, that this conclu-
sion is not valid generally. The presence of Sr or Pb ions
in BaTi03 leads to a decrease in the lattice constant.
While Sr ions, in agreement with an inhuence of the
hydrostatic pressure, decrease Tg, Pb ions, on the other
hand, increase it.4 It can be shown by similar considera-
tion that one cannot 6nd the direct connection between
the changes of Tg and values of polarizability or radii
of impurity ions.

Thus, to explain a change in the Curie temperature
caused by defects, it is undoubtedly necessary to ap-
proach the more detailed characteristics of the defect
on the basis of the interaction between the ions in the
crystal, which is the aim of this paper. As has been
stated, the polarizability of impurity ions is not a deci-
sive factor governing the change in Curie temperature
and we shall therefore regard crystal ions as nonpolariza-
ble, which greatly simplihes our calculations. In the
6rst part of this paper the method of time-dependent
Green's functions' is used to derive a general expression
for the susceptibility of an ionic crystal with defects.
In the second part the result is specialized for the case
of isovalent substitutional impurities in ferroelectric
substances.

II. SUSCEPTIBILITY OF IONIC CRYSTAL
VfITH DEFECTS

%e shall start with the Hamiltonian constructed
similarly to the one in the paper by Vinogradov. ' We
shall, however, take into account the efFect of the homo-
geneous deformation of the crystal. The inQuence of
defects upon anharmonic coeKcients will be neglected
and therefore anharmoruc terms in the expansion of the
potential energy (in the displacements of the ions from
their equilibrium positions in the defect crystal) will not
be considered explicitly. In the first approximation, we
shaB express their contribution by the temperature de-
pendence of harmonic coefficients of the ideal crystal
and by its thermal expansion. In this way of course we
cannot obtain the changes in the character of the tem-
perature dependence of the dielectric constant. Par-
ticularly, we cannot obtain the slight change in the

' D. N. Zubsrev, Usp. Fiz. Nsuh 71, 71 (1960) /English trsosl. :
Soviet Phys. —Usp. 3, 320 (1960)g.

Curie constant of a defect ferroelectric crystal. This
effect, however, is of less interest in comparison with
the change of Curie temperature.

As follows from the Appendix, the Hamiltonian II
equals

H=const+Q 4)(yj)ut(yj)a(yj)

+(zk&)'" Z ro '"(oj)4c«w( ——0j)N.s~(0j)

The creation and annihilation phonon operators satisfy
the commutation relation

L~(yj),o'(y'j')3= ~ '4r"
AB the operators A dined as

~(yi )=~(yi)+o'( —yj) =~'(—»)
commute among themselves.

In the model of nonpolarizable ions the operator of
the zth component of the dipole moment of the crystal
M is

tV =P e(lk)N. (lk) =(-,'k)' 'Q C.(yj)A(yj), (2)
1k 7J

where e(lk) is the charge of the kth ion in the 1th unit
cell and

G-(yj) =P'~(yj) j '"
Xg. ~~,-'I'~.(k

~ yj)P& e(lk)e'-'*&». (S)

The interaction energy of the crystal with the external
homogeneous electric field E=E„s-'"' is

Z~g= —Q ME .

Then, as is known from Ref. 5, the susceptibility
x s(~) is given by the expression

7tap(re) = —(2z/A'sk)Gg(co),

where s is the volume of the unit cell and where Gs(ro) is
the e Fourier component of the retarded Green's func-
tion Gs(t t') de6ned by the r—elation

Gir(t —t )= Gir(co)e '"t'—"dre

M (t) is the Heisenberg operator for the nth com-
ponent of the dipole moment„O~(t —t') = 1 for t) t' and
0(t—t') =0 for t(t'. The symbol & }odenotes the statis-
cal mean value for E=o. We now introduce the re-
tarded Green's function G,y» (t t'} by the relation-

Gt'"'(t —t') = —se(t—t')&L~(yj t),~(Yi',t') j&s (6)
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We then get from (4) using (2), (5), and (6)

x«s(~)= —(~/») 2 C-(yj)c~(y'i')G;"'(~). (&)
yy', 8'

The following equations can easily be derived for the
function G,y»'(t t')—from the equations of motion for
Heisenberg operators using the commutation relations
for the operators a and A:

iaG;; »'{~ ~')/—ai= —~(yj)~0(~ ~')(—f~{yj,&)
—~t(—yj, &),~(y'j', ~')7)0

(g)a'G"—»'(t —i')/at'=20)(yj)&(i t')&,,—'&„, &+~-{yj) Z 52B(—yj y"j")+&(D')4' ~ r-7G' '""'(~ ~')—
y/I jl 1

Using the Fourier transforms we obtain from (8) and (N):

p g. .„„G,„,,,-, („) -)„(yj)g,,,g„,, (9) x-s(~)=(») ' Z C-(yj)Cs{y'j')
I/ 'lI yy sN

v)here

~- »'=»(yj)B(—yj, y'j ')+L~'{yi) ~'3& '~»—'
%C shall now rcgRrd thc pMr of lnd1ces p J as OIle index
and denote the inverse matrix to Jby JI=—J '. The solu-

tion of the system of equations for G;,'» (~) then has
the form

G))'"'(~)= ~'~—{y'j')&))'"' '(~)

Note that, orang to the simple form of the Hamil-
tonian (1) (without anharmonic terms), we were able
to And an exact expression for the Fourier transforms of
the retarded Green's functions defining X ))(co). The
final expression for X„s(co) is obtained from relations P)

X (y'j')&,; '- '{ ). {ll)
In the model of nonpolarizable ions formula. (11) ex-
p1esscs the susceptibility of thc crystRl with dcfccts of R
different type (e.g. , substitutional ions of equal or dif-
ferent valence) in a homogeneous electric field.

The formula derived is exact but is of no practical
sigru6cance since it assumes the solution generally of a
system of 3As equations (s=number of ions in unit
cell). We shall deal below only with the case of isovalent
defects, when to express X s(a&) it is enough to know only
the I'ourier transform of the retarded one-phonon
Green's function G800(co). In this case, as follows from
relations (2) and (3), only the optic modes (Oj) inter-
act directly with the external electric 6eld and deter-
mine the induced polarization. Let us therefore 6nd an
approximative expression for G "so(a&).

From Eq. (9) we obtain for G;)00(a&)

L(o2—(u'(0 j)—2o)(0j)B(0j,Oj)7G;,00=(M(0j)/z)L1+2~ p B(Qj,y'g)G;, p'07.
(y'i') &(oi)

(12)

In the first approximation we neglect the real scattering of the phonon (0j) on defects, i.e., we put all B(Qj,y' j')
equal to zero for (y' j') N (0j) and from relation (12) we obtain

~(Oj)
i i )G . .00(io)—

z (o'(0j)+2(a(0j)B(0j,0j)—a)'

The in6uence of defects thus appears in this approximation only as a change in energy of the phonon. From (9)
we now And an equation for t";.,y'0 in the form

'—~'{y'j')—Z~(y'j') B(—y'j', y' j')7G,',r'
=»{y'i ')B(—yj'', Oi )G)P'+»{yi'')

(y"i")~(~j),(y'i')
B( y~ y

Ij )G,„.r "0 (14)

In the next approximation we take into consideration only the scattering on defects of the phonon (Oj), which
jntcracts directly with the external 6eld, and neglect the scattering of the other phonons, which jn our case only
indirectly influence the dielectric properties. Thus only the coefficients B(—y' j', Oj) will be nonzero. Using (14)
and {12),we obtain

. (15)

The determination of the poles of expression (15) in this case represents a very complicated problem and in general

~(Oj)~{y'j')
I
B(oj,y'j') ('

&')G "so(a))= —m
—'a)(0j) co'(0j)+2o)(0j)B(0j0j)—o) —4

(r'i')w(oi) aP(y'j')+2&v(y'j')B( y'j', y'j') &2— —
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we can say that in this approximation we obtain a further change in energy of the phonon (Oj) and its finite life-
time. Note that the energy shift is due to the virtual scattering of phonons, whereas their finite lifetime arises from
real scattering.

By rewriting (10) it can easily be shown that the exact solution of G;iae(co) has the form

~(Oj)
g . .00(~)—

- '(Oj)+2 (Oj)B(Oj,Oj)- '+ 2 &; 'J; '()/J, ,"()
(y ~') g(0~)

where J;,' y' denotes the complement of the element J;;Oy' of the matrix J.
When calculating x e(ru) we shall content ourselves below with approximative expression (15) and rewrite it in

the form (note that co has a small positive imaginary part)

where

j. ra(0j)
(2 )G . .00(~)—

~ ~'(Oj)+»(0j)LB(Oj,Oj) —vi(~)j—~'+i~(Oj) vi(~)
(16)

vi(~) =
(y'i') 8(0j)

~(y'j')
I B(Oi »'i ')

I

'
P +P

"'~(y'j') "'~(y'i')+~ '"~(y'i')

vg((o) = 2m
(y'j') ~(oj)

~(y'j')
I B(oj,y'j ') I'

(~("'~(y'j')+~)- ~("'~(y'j') —~)}
"'~(y'j')

(16')

and

"'~'(y'j') =~'(y'i')+2~(y'i ')B( y'j ' y'j ').—

III. INFLUENCE OF ISOVALENT IMPURITIES
ON CURIE TEMPERATURE

The calculation of & e(&o), of course, requires a knowl-

edge of the forces between the ions in an ideal as well

as a nonideal crysta]. In this paper we shall not deal with

the numerical calculations but shall conhne ourselves to
a qualitative discussion of the result in the special case
of crystal defects, i.e., at the substitution of some ions

by impurity ions of the same valency. In such a case,
as follows from definition (3), only the coefficients

C (0j) are nonzero, while j relates to the optic modes

of the phonon spectrum. We shall consider only one
transverse optic branch (denoted by the index j), which

is possible with crystals of the NaC1 type and par-
ticularly with ferroelectric crystals in the paraelectric
phase where the dielectric properties are determined
mainly by one optic transverse mode with an anoma-
lously low frequency in the neighborhood of the Curie
temperature. At the same time it is known4 that, for
example in BaTi03 single crystals at the substitution of
Ba ions by isovalent Sr or Pb ions, or Ti ions by Sn
ions etc. (or similar substitution in PbTiai), the magni-
tude of the Curie temperature changes considerably
without essentially changing the character of the tem-
perature dependence of the dielectric constant, that is
the Curie-Weiss law is valid with practically the same
Curie constant.

Since the paraelectric phase of BaTi03 has cubic sym-
metry, we get in the above special case of crystal defects
the following expression for the scalar quantity y(ie)
using relations (7) and (16)

where

1 M. (Oj)
x(~0) =x (co) =-

a ~'(Oj )+2a)(0j)[B(0j,0j) v i(co)] —au'+i(o(—0j)vp(~)

3E~(0j)= La&(0j)/iVg' "C~(0j)=P mi 'i'el e,(k
~ Og) .

After substituting for B(0j,0j) from definition (A5) and using the fact that for centrosymmetrical crystals the
coeNcients p(0j,0j',0j")vanish, we finally obtain for the static susceptibility y

=1 m. '(Oj)
x=

~ ~'(Oj)+~4(Oj, Oj)+Z 4 &-w( ——oj Oj)&-e—»(oj)vi(o)
(17)



Thc static dielectric constant e, of fcrroelectric crys-
tals satis6cs thc Culie-%ciss 1Rw Rt temperatures higher
than the Curie temperature Tq

e,=C/{T To—) .
As is known, ' this law is the consequence of the tempera-
ture dependence of the frequency of the "fcrroelcctric"
mode oi(0j):

~'(0j) =v{T—Tc)

S1IMlarly Rs ln pRpcI's * such a tclrlpcI Rturc de-
pendence would be obtained if the anharmonic terms in
the potential-energy expansion (in ionic displacements)
were accounted for explicitly. Entirely neglecting the
changes of anharmonic coefFicients due to defects (as
well as other terms of the same order), 7 and T„will
obviously have the same values as in an ideal crystal.
Note that in this temperature dependence the contribu-
tion from the thermal expansion is already included; in
the following u p will denote deformations due to ex-
ternal forces or defects only. According to (17) the Curie
constant C of an ideal crystal in our model equals

C=4sM '(0j)/ys

and e, of a nonideal crystal can thus, also using (17),
be written in the form

e.=C/(T —To'), where To'= To+ aTc

+2 0-s(——oj, 0j)~-s—2~(0j)vi(0) } (18)

LNote that the last term in (18) does not in reality de-
pend on the temperature-dependent frequency oi(0j)
as follows from {16')and {A&).]

It, is thus seen that the inhuence of defects on &, of
a ferroelectric crystal in the paraelectric phase in our
model and in approximation (15) is apparent only as a
change in Curie temperature T~ of ATg. In our approxi-
mation as it follows from (18) the shift of To is due to
the change in the harmonic forces betw een ions when im-.

purities are present. In fact only changes in short-range
forces occur because the impurity ions are considered
to be isovalcnt and nonpolarizablc. Roughly speaking,
at X'~ the short-range restoring forces and the long-
range Coulomb forces in the ferroelectric mode are
nearly cancelled. Then a slight change in the short-
range forces caused by defects leads to the shift of T~.
In the erst approximation this shift is expressed through
the 6rst two terms in (18). The second one is in fact

6 . Cochran, Advan. Phys. 9, 387 (1960).A. S. Barker and M,
Tinkhsin, Phys. Rev. 125, 1527 (1962).R. A. Cowley, Phys. Rev.
Letters 9, 159 I'.1962).

7 R, A. Covvley, Advan. Phys. 12, 421 (1963).B. D. Silvermag.
arIQ R. I. Joseph, Phys. Rev. 129, 2062 (1963). R. p. Co~ley,
Phil. Mag. 11, 673 (1965).

8 M. A. Krivoglaz, Zh. Eksperim. i Teor. Piz. 40, 567 (1961)
/English transl Soviet Phys —JETP 13 397 (1961)j

present only when the defects cause the homogeneous
deformation (or when the external pressure is applied).
Such a situation arises in the case of perovskites with
various isovalcnt impurities as has already been stated.
However, thanks to thc fli'st term ln (18) thc cllaiigc iil
the lattice constant is not a decisive factor controlling
the shift of Tg as is established experimentally. No
change in the Curie constant is obtained as the inRucncc
of defects upon anharmonic coefFicients was not con-
sidered. For the same reason neither is the inhuence of
pressure upon Tc expressed in formula (18) by linear
terms ln s„p changed.

Using relatioils (A6) ATc can be rewritteii in thc
form (the first two terms in (18)j

1 e.(k
~
0j)e.(k'l 0j)

B,Tc=——
(~„~„')»s

where I denotes the relative change of the lattice
constant.

Let us now study the dependence of ATg on the num-
ber of randomly distributed defects e in a crystal. Since,
for the type of defects considered, only the short-range
forces between the ions change, it is obvious that the
first term in (19) is nonzero only for those values of
1' which denote the lattice positions in the immediate
neighborhood of the defect at the position l. At such a
concentration of defects when the range of iQAucncc of
the diRerent defects is smaller than the average dis-
tance between them, we obtain e equal terms when
summing over l. In such a case the first term in (19)
will be proportional to I/.7 i.e., the concentration of
defects. As the linear concentration dependence of I is
experimentally established, the shift of Tq will be pro-
poI'tlonRl to thc conccntlatlon of dcfccts. Similar coIl-
siderations show that even the last term in expression
(18), expressing the Curie temperature shift in the next
approximation, is proportional to the concentration of
defects lf wc neglect coI'rcspondlng chRQgcs ln IlormR1
frequencies. Since we consider the changes in the short-
range forces only, it is clear from the above that a linear
concentration dependence of the shift of the Curie point
can be expected up to relatively high concentrations
of substituted isovalent ions. Such a dependence was
observed for example in systems such as (Ba,Sr)TiOs,
Ba(Ti,Sn)O„(Pb, Ca)TiOs, (Pb, Sr)TiOs (Ref. 4) at
least up to 30 mole jo of admixture. On the other
hand, in (Pb,Ba)TiOs and Ba(Ti,Zr) Os systems, ' devia-
tions from the linear dependence of hTg on the con-
centration appear even at low concentrations and it
might bc necessary for their qualitative explanation to
take into consideration changes of long-range forces
caused by the diferent polarizability of the impurity
ions. Thc calculation of the Cul lc tcmpcl atuI'c shift
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ATc using Eq. (I8) requires a detailed knowledge of
the force constants between the ions and is therefore
not a very hopeful method at present. In principle, how-
ever, it should explain the different signs of ATg, e.g. ,
in HaTiO&, when Ba ions are substituted by Sr and Pb
ions, the negligible shift of Tq when Ba ions are sub-
stituted by Ca ions, etc. Considerations of this kind
will be the subject of a later paper.

As a consequence of changes in the phonon spectrum,
the influence of defects is apparent even on inelastic
scattering of neutrons through a defect crystal. (These
questions are discussed in detail in Ref. 8.) This problem
is particularly interesting in ferroelectric materials
with an anomalously low frequency of the ferroelectric
mode, where a considerable relative change in this fre-
quency is expected as a result of defects. It must be
stressed that, strictly speaking, it is only in the first
approximation (13) that we can interpret the Curie
temperature shift as a change in frequency of the ferro-
electric mode and on the basis of this estimate its rela-
tive change hco(0 j)/ro(0 j). Using the temperature
dependence ro'(Oj) =y(T Tc), we —obtain

Are(0j)/ro(0 j)= [1 ATc/(—T Tc)]'" 1— —

From the requirement that the temperature T corre-
spond to the paraelectric phase of an ideal and a non-
ideal crystal, we obtain the condition

T—T~&0, T—T~& ~To

For example, for a concentration of 30 mole'~ Sr in
BaTi03,4 hTg~ —100'K, and at a temperature 20'K
higher than Tq of pure BaTi03, it will hold that

Dro(0j)/&o(0j) 1.4. On the other hand, when substi-
tuting Ba ions for Sr ions in SrTiOs thefrequencyoo(0j)
will decrease; for example, at a concentration of
10 mole'P Ba we have' ATc 40'K and at a tempera-
ture T=90'K, Aoo(0 j)/oo(0 j)= —0.4. Such changes
could easily be measured.
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APPENDIX

As in Ref. 1, let us write the potential energy U of a
crystal in the form

where p is the potential energy of the ideal crystal and
Sd its change caused by the presence of defects. The
quantity U is expanded only into terms quadratic in
the displacements u(lk) of the ions from the positions
X(lk) defined as

X(lk) =Xo(lk)+ v(lk)+d(lk) .
X'(lk) denotes the position vector of the kth ion in the
1th unit cell of the ideal lattice at T=O'K and v(lk)
its change due to defects. d(lk) expresses the deforma-
tion due to the thermal expansion or (for example)
hydrostatic pressure and we shall write it in the form

d (lk) =P u p[Xpo(lk)+vp(lk)7.

d(&+54)
U= const++.ii ffX (Ik) x

d'(~+5~)
u (lk)+-,' P u. (lk)up(l'k') .

» BX„(lk)BXp(1'k') x
P1'k'

Now let us expand the derivatives in points X in a Taylor series in powers of d about X'+v and then in powers of
v about X'. Using the conditions

d(4+54)

BX '(lk) xone

=0 (A2)

which determine the displacements v due to defects and by confining ourselves to the first terms of this expansion,
we obtain (see Ref. 9)

d(d+&~) = g y.p(lk, l'k')dp(1'k'),
BX.(lk) x pi's'

d'(&+he)

aX (lk)aXp(l'k') x
= rk p(Ik, I'k')+ brti p(lk, l'k')+ Q y pr(lk, l'k', I"k")[v,(1"k")+d,(1"k")j,

~$p pprr

(A3)

where all second-order terms in bp, v, and I p are neglected.

' M. Born and K. Hnang, Dynarnsoaf Theory of Crystaf Laukes (Oxford University Press, London, 1954).
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By neglecting the changes in mass connected with the crystal defects which do not inQuence the static dielectric
constant, the kinetic energy T is

T=-', Q mpu, '(lk).
1k

Expressing I (Ik) by means of the creation and annihilation photon operators as

k
~-(ik) =

I I 2 ~ '"(yj)~.(k I
yj)~'""*'"L~(yj)+o'(—yj)j

&ZVm, ]
the Hamiltonian of the nonideal crystal will have the form

(A4)

kiV) ~I2

a=const+& &~(yj)a'(yj)a(yj)+
~

p ~ '"(Oj)p~.p~(
——Oj)~.s&(0j)+— Z &(yj,yj'')~(yj)&(y'j').

2 i -w 2n;~'~'

Note that in our approximation the terms linear in 3 do not inhuence the expression for the susceptibility. Using

(AI), (A3), and (A4) we obtain for B(yj,y'j '),

&(yj,y'j')=2L~(yi)~(y'i')3 '"f«(yi»'&')+& '" ~ ~(y+y'+y")
y/rotc

&&0(n,y'i', y"i")~(y"j")+~(y+y')2 0&-u&(——yj, y'j')N«s), (A~)

where

q(yj)=&—»' P mj, 'I'v (Ik)t, ~(k~yj)e ' '&'*"&,
elk

«(yj,y'j')= & ' 2 «-p(Ik, I'k')( ') "'.(klyj) «(k'ly'j') p2 Ly (I)+y' *(I')],

y(yj, y'j', y"j ")= P y p„(0k,l'k', I"k")(mpmI, .mp-)-'~'
ek

P1%'
(ldll

Xe (k~ yj)ep(k'(y'j')e, (k"
~

y"j")exp2mi[y' x(l')+ y" x(1")j,
y( p)(——yj, y' j') = Q + „„(Ik0k,I'k')Xp'(Ik)(mgmu) '~'e„(k

f yj)e„(k'/ y' j') expL2miy' x(l')j.

(A6)

It can easily be shown that

&(yi,y'i') = J3(yj'', yj) =&*(—yj, —y'j').


