Absorption Spectrum of the Oxygen Molecule in the 55–65-Gc/sec Region*

BURNELL G. WEST[†] AND MASATAKA MIZUSHIMA University of Colorado, Boulder, Colorado (Received 20 September 1965)

The theory of the rotational spectrum of the oxygen molecule developed elsewhere is revised by correcting the calculation of the effects of centrifugal distortion. Precise measurements of the center frequencies of 8 of the predicted absorption lines were made. These measurements are combined with measurement of 12 lines made elsewhere to obtain the values of 7 parameters appearing in the theory.

THEORY

HE ground-state configuration of the electronic wave function of the oxygen molecule is ${}^{3}\Sigma_{a}$. The spin of this state couples with end-over-end rotation to produce a molecular fine-structure splitting of the rotational energy levels. This splitting lies primarily in a band centered approximately at 60 Gc/sec.

The theory of the rotational spectrum of oxygen has been developed in considerable detail.¹⁻³ The first measurement of the absorption due to transitions between the levels of the triplet states was made by R. Beringer⁴ in 1946; many other groups^{3,5-10} made further and more detailed measurements. Zimmerer and Mizushima¹⁰ measured 12 of the lines to approximately 2 parts in 107, using an improved version of a spectrometer designed by Richardson.9

In the present work, the theory developed by Mizushima and Hill³ is revised by making a more careful analysis of the centrifugal distortion.

The Hamiltonian used here is

$$H = B\mathbf{N}^2 + \frac{2}{3}\lambda(3S_z^2 - \mathbf{S}^2) + \mu \mathbf{N} \cdot \mathbf{S},$$

where N and S are the angular momenta of end-over-end rotation and spin, respectively. This Hamiltonian differs slightly from that used by Mizushima and Hill, but the difference is not distinguishable in experiments of the type discussed here.

Using this Hamiltonian, we find the absorption frequencies to be11

$$\nu(N\pm) = \lambda_0 + \mu_0/2 - 8\mu_1/2 + (\lambda_1 + 5\mu_1/2)(n^2 + n + 2)$$

$$\pm \{f(n) - (2n+1)[B_0 + 2B_1(n^2 + n + 1) + B_2(3n^4 + 6n^3 + 13n^2 + 10n + 4)]$$

$$+ 2[\lambda_1/3 - \mu_1/2]\},$$

[†] Present address: Eugeron, Germeshader, 201
¹ H. A. Kramers, Z. Physik 53, 422 (1929).
² M. H. Hebb, Phys. Rev. 49, 610 (1936).
⁸ M. Mizushima and R. M. Hill, Phys. Rev. 93, 745 (1954).
⁴ R. Beringer, Phys. Rev. 70, 53 (1946).
⁵ J. H. Burkhalter, R. S. Anderson, W. V. Smith, and W. Gordy, Phys. Rev. 79, 651 (1950).
⁶ B. V. Gokhole and M. W. P. Strandberg, Phys. Rev. 84, 844 (1951).

⁷S. L. Miller and C. H. Townes, Phys. Rev. 90, 537 (1953).

⁸ M. Tinkham and M. W. P. Strandberg, Phys. Rev. 97, 937 (1955).

where

$$\lceil f(n) \rceil^2 = A^2 + n(n+1)D^2$$

in which

and

$$A = (2n+1) [(B_0 - \frac{1}{2}\mu_0) + (2B_1 - \frac{1}{2}\mu_1)(n^2 + n + 1) + B_2(3n^4 + 6n^3 + 13n^2 + 10n + 4) - \frac{3}{2}\mu_1] - [\lambda_0 + \frac{2}{3}\lambda_1(7n^2 + 7n + 4)]/(2n+1);$$

$$D = [2\lambda_0 + 2\lambda_1(n^2 + n + 1)]/(2n + 1).$$

Here, we have used $n = N \pm 1$.

The differences between these expressions and those of Mizushima and Hill³ lie in the approach used to obtain the centrifugal-distortion correction. In their computation, the quantity $(\frac{2}{3}\lambda - \mu)$ was subtracted from all diagonal elements of the matrix expression of the Hamiltonian in order to simplify it. This procedure is valid provided λ and μ do not depend on N. Since centrifugal distortion of these parameters is N-dependent, this approach is no longer valid.

RESULTS OF THE EXPERIMENT

Eight of the absorption lines were measured in this work. These 8 measurements were combined with the 12 made by Zimmerer and Mizushima¹⁰ to provide sufficient data to give a least-squares fit on the 7 parameters B_0 , B_1 , B_2 , λ_0 , λ_1 , μ_0 , and μ_1 . The values for the parameters are shown in Table I, compared to the values obtained by Zimmerer and Mizushima. The 20 lines measured are shown in Table II, where those meas-

TABLE I. Values of parameters of oxygen molecule (Mc/sec).

Parameter	This work	Zimmerer and Mizushima
B_0 B_1 B_2 λ_0 λ_1 $\frac{1}{2}\mu_0$ $\frac{1}{2}\mu_1$	$\begin{array}{c} 43\ 100.3{\pm}0.2\\ -0.092{\pm}0.001\\ (5{\pm}2){\times}10^{-6}\\ 59\ 501.397{\pm}0.015\\ 0.05845{\pm}0.00004\\ -126.352{\pm}0.0005\\ -0.000120{\pm}2{\times}10^{-6}\\ \end{array}$	$\begin{array}{r} 43\ 100.5 \\ -0.147 \\ \\ 59\ 501.332 \\ 0.05858 \\ -126.293 \\ -0.000117 \end{array}$

⁹ J. M. Richardson, J. Appl. Phys. 29, 137 (1958).

^{*} Supported in part by U. S. Army and the National Science Foundation.

[†] Present address: Edgerton, Germeshausen, and Grier, Inc.,

¹⁰ R. W. Zimmerer and M. Mizushima, Phys. Rev. 121, 152 (1961).

¹¹ B. G. West, thesis, University of Colorado, 1965 (unpublished).

		Calculated
Line	Observed frequencies	frequencies
1+	56 264.766(W)	56 264,765
3+	58 446.580(Z)	58 446.580
5+	59 590.978(Z)	59 590 976
7+	60 434 776 (Z)	60 434 773
ġĻ	61 150 570(7)	61 150 560
11+	61 800 169(W)	61 800 159
13	62 411 223(7)	62 411 225
15-	02 111.225 (2)	62 007 001
17	63 568 520(7)	62 569 524
10	64 107 777 (W)	64 107 700
21.1	04127.777(W)	64 679 014
21-	(F 004 10 (7)	04 0/8.914
23+	05 ZZ4.1Z(Z)	05 224.073
25+	65 764.744(W)	65 764.760
3-	62 486.255(Z)	62 486.251
5-	60 306.044(Z)	60 306.056
7—	59 164.215(Z)	59 164.205
9—	58 323.885(Z)	58 323.879
11—	•••	57 612.488
13—	56 968.180(W)	56 968.211
15—	56 363.393 (W)	56 363.393
17—	55 783.819(W)	55 783.800
19—	55 221.372 (W)	55 221.355
21-	54 671.145(W)	54 671.131
23-	•••	54 129,949
25-		53 595 665
27-		53 066 779
		00000000

ured in this work are followed by (W) and those measured by Zimmerer and Mizushima by (Z). The calculated frequencies using the parameter values of Table I are also shown in Table II.

The computations were done on an IBM 1620 digital computer, using a programming system developed by West¹² which overcame the inherent lack of accuracy in the Fortran system. The program made it possible to estimate the accuracy of the parameter values by a method related to computation of statistical variance.

FIG. 1. Block diagram of spectrometer.

¹² R. L. West (private communication).

Signa 5 MHz Standard 50MHz Oscillato Amplfier Doubler -IOMHz out 50MHz Amplifier Doubler -20MHz out H.P.D.A. Frequency Check Attenuator Varactor Diode Mixer + I.F. Amplfier P. D. A. -2048 Error Signal Varian X13 I.F. Amplifier P. D. A. Harmonic Mixer -20dB Error Signal OKI 60V10 Tektronix 190-B V.F.O. To Absorption Cell

FIG. 2. Frequency control system.

It is this variance which is indicated by the error brackets of the parameter values in Table I.

There is no improvement on the value of the velocity of light over the one obtained by Zimmerer and Mizushima.¹⁰ A very large discrepancy between the accepted value of the velocity of light and the one obtained from B_0 is still puzzling.

THE SPECTROMETER

The spectrometer used in this work was quite similar to that described by Zimmerer.¹⁰ Frequency control was obtained by three successive stages of multiplication of a 5-Mc frequency standard. At each stage, an oscillator was phase-locked to the appropriate harmonic of the previous stage. The first stage was a phase-locked varicap-controlled Hartley oscillator, used to drive a varactor diode for generation of harmonics up to order 200. The second stage was a Varian X-13 klystron, phase-locked¹³ to the desired harmonic generated by the varactor. The final stage was an OKI 60V10 klystron, phase-locked to the fifth, sixth, or seventh harmonic of the varian unit. A block diagram of the frequency control system is shown in Fig. 1, and a block diagram of the spectrometer is shown in Fig. 2.

ACKNOWLEDGMENT

The authors are indebted to Dr. R. W. Zimmerer of the National Bureau of Standards for valuable assistance on the experimental aspects of the problem.

TABLE II. Observed and calculated frequencies (Mc/sec).

¹³ M. Peter and M. W. P. Strandberg, Proc. Inst. Radio Engrs. 43, 869 (1955).