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tion of the calculated ratio (g„z„o&,/g»Ls&osHsso4&s ~ gsso)
from the experimental ratio is 1.1%%uq.) The values of the
nuclear magnetic moments, 1.097~0.11and 0.682~0.07
agree with the values of Halford' (1.079&0.06, and
0.671&0.04) and with those of Unsworthss (1.0644
+0.0040 and 0.6534&0.0040).

4.3. Additional Comments

The measured ratios of the magnetic dipole moments
of the two isotopes is essentially determined by the ratio
of the two transition frequencies k=0 —+ k=0 because
of the small line width of these transitions (1 Mc/sec).
This provides a simple method of determining the ratio
of the magnetic dipole moments of two isotopes. (The
ratio is independent of the salt in which the measure-

ment is made and independent of the temperature of the
salt from 4' to 14'K for Nd'+. )

Further investigation of Nd'+ in La(CsHsSO4) s.9HsO
is required to elucidate the nature of the anomalous
behavior at zero magnetic field. ENDOR studies at
zero magnetic field and at high magnetic field should be
undertaken.
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Longitudinal Plasma Oscillations near Electron Cyclotron Harmonics
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A theory is developed for longitudinal plasma oscillations (normal modes) which are excited in a warm
plasma column at microwave frequencies in the presence of a strong magnetic 6eld. The oscillations manifest
themselves as a set of absorption peaks near the harmonics of the electron cyclotron frequency. Good agree-
ment is found between the observed positions of the peaks and a model calculation. The important property
of the oscillations is that they are con6ned to a region near the axis of the plasma column, and are "quan-
tized" by the shape of the electron density distribution.

I. INTRODUCTION

A CAREFULLY obtained microwave absorption
spectrum of a plasma column in the presence of a

longitudinal magnetic field exhibits considerable struc-
ture near the electron cyclotron harmonics (Fig. 1).The
structure contains many lines (denoted a, b, c, d. . . in
Fig. 1) at magnetic fields somewhat larger than the
cyclotron harmonic fields B=nuo/en, superimposed on
a background absorption which is only a weak function
of magnetic Geld. Here e is an integer and co the micro-
wave frequency. The structure is most prominent near
the second harmonic, but it has been clearly discerned,
albeit with diminishing amplitude, near the third,
fourth and fifth harmonics. To observe such absorption
either microwave cavities or waveguides can be used,
but the modes must be such that the electric Geld of the
wave is polarized at right angles to the static magnetic
field, that is, the electromagnetic field must have, at
least in part, the polarization of an extraordinary wave.
It is well known' that such a wave, when it propagates

*Present address: Faculty of Engineering Science, Osaka
University, Toyonaka, Osaka-Fu, Japan.' W. P. Allis, S. J. Buchsbaum, and A. Bers, W'resin Aniso-
trojic Plasmas (MIT Press, Cambridge, Massachusetts, 1963),
p. 30.

nearly at right angles in a cold plasma, possesses a
(hybrid) resonance at ~'=o&„'+~b', where a&~ and &os are
the electron plasma and cyclotron frequencies, respec-
tively. Indeed, the background absorption in Fig. 1
results from the -absorption caused by the hybrid
resonance. '

The line spectrum was Grst observed in emission by
Mitani, Kubo and Tanaka, ' and probably even earlier

by Ishii. ' It has since been studied in absorption by us, '
by Crawford, Kino, and Weiss, by Harp, ' and by
Schmitt, Meltz, and Freyheit. ~ Schmitt reports as many
as 30 lines near the second harmonic which he observed
in an afterglow plasma using strip-line techniques

s S. J. Buchsbsum, Bull. Am. Phys. Soc. 7, 151 (1962); G.
Beke6, J. D. Coccoli, E. B. Hooper, and S. J. Buchsbaum, Phys.
Rev. Letters 9, 6 (1962).

3 K Mitani, H. Kubo, and S. Tanaka, J. Phys. Soc. Japan 19,
211 (1964).

S. Ishii (private communication).
~ S.J.Buchsbaum and A. Hasegawa, Phys. Rev. Letters 12, 685

(1964).
F. W. Crawford, G. S. Kino, and H. H. Weiss, Phys. Rev.

Letters U, 229 (1964). R. S. Harp, Appl. Phys. Letters 6, 51
(1965).

~ H. J. Schmitt, G. Meltz, and P. J. Freyheit, Phys. Rev. &39,
A1432 (1965).
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Fro. 1. Microwave absorption (in relative units) in a plasma
column as a function of magnetic 6eld with current I as a param-
eter. The curves for diferent I's are displaced for display purposes.
The plasma is the positive column (diameter=0. 8 cm, p=0.4
Torr) of a hot-cathode discharge in helium.

J. V. Parker, J. C. Nickel, and R. W. Gould, Phys. Fluids 7,
1489 (1964).This paper contains extensive references to past work
on Tonks-Dattner resonances.

9 I. B.Bernstein, Phys. Rev. 109, 10 (1958).

similar to those employed in the study of Tonks-
Dattner resonance. '

In a preliminary publication' we put forth a model
which accounted very well for the observed spectrum.
We attributed the observed absorption lines to the
excitation of longitudinal electron plasma oscillations
within narrow pass-bands near each cyclotronic
harmonic. For a given frequency and plasma density,
the width of the bands in magnetic Geld decreases as the
harmonic number increases and is also a function of
plasma frequency and electron temperature. Such pass-
bands were discussed by Bernstein, ' for propagation of
electrostatic plasma oscillations across a magnetic Geld
in a uniform, inGnite plasma. We showed, however, that
as in the case of the so-called Tonks-Dattners resonance,
radial density gradients in a plasma column of Gnite
transverse dimensions play a profound role in deter-
mining the absorption or emission spectrum. There
exists an important difference, however, in the role of
density gradients in the two cases. In the absence of a
magnetic field, the oscillations are essentially governed
by the Bohm and Gross dispersion relation, co'=or~'

+ksss, where e is the electron thermal speed. Thus, they
can be excited only at frequencies that are larger than
the local plasma frequency ~~. Consequently, in a
plasma column of a Gnite radius, whose density de-
creases from the axis towards the walls, the Tonks-

Dattner oscillations are confined to a narrow annular
region near the wall of the column, where the plasma
frequency is below the oscillation frequency. As shown
most impressively by Parker, Nickel, and Gould' and by
others, " the actual frequency spectrum depends
strongly on the properties of the sheath. In the presence
of a magnetic Geld, Bernstein's uniform-plasma dis-
persion relation shows that within the above-mentioned
pass bands the oscillations can be excited at frequencies
that are lower than a certain critical frequency which is
an increasing function of the local plasma frequency.
This property of the oscillations conGnes them to the
region near the axis of the plasma column and has the
welcome consequence that the observed (and also
calculated) spectra are relatively insensitive to condi-
tions in the sheath.

In the preliminary publication' we merely sum-
marized the theory underlying the model and presented
the results of a calculation for planar geometry. In the
present paper we discuss the theory in greater detail
and also extend the calculation to cylindrical (that is,
experimental) geometries. We shall be forced to make
a number of simplifying assumptions and yet we shall
Gnd excellent agreement between theory and experi-
ment. Since this happy result does not necessarily
justify all the assumptions, we shall attempt to provide
the justiGcation as we go along either on physical or
mathematical grounds. The most important simplifi-
cation that we shall make is that the observed spectrum
is the result of purely longitudinal oscillations. That is,
we shall use only Poisson's equation to describe the
electromagnetic Geld, rather than the full set of Maxwell
equations, and we shall disregard the fact that in the
experiment nearly transverse electromagnetic waves are
used to observe the phenomena under discussion here.
It is clear that the electromagnetic and electrostatic
waves must couple somewhere in the plasma. There is
general agreement that the coupling occurs in that part
of the plasma column where the conditions for the
hybrid resonance &os=~ss+ar„s(r) are satisfied. But the
exact nature of the coupling remains obscure although
it is the subject of considerable present study. "Thus
we shall not be able to say anything about the strength
of the observed spectrum relative to the background
absorption. Only the positions of the lines will be
accurately described.

In Sec. II we derive the differential equation for the
electrostatic potential C (r,t) from linearized Boltzmann
and Poisson equations. We then discuss the solution of
this equation for planar and cylindrical geometries and
compare the solution with experiment.

~ A. Dattner, Ericsson Tech. 8, 1 (1963);F.W. Crawford, Phys.
Letters 5, 244 (1963); A. M. Messiaen and P. E. Vandeplass,
Physica 28, 537 (1963);F. C. Hoh, Phys. Rev. 133,A1016 (1964).

T.H. Stix, Bull. Am. Phys. Soc. 10, 230 (1965);J.M. Dawson
and A. F. Kuckes, ibQ. 10, 231 (1965); T. H. Stix, Phys. Rev.
Letters 15, 878 (1965).
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H. THEORY

Consider a plasma in the presence of a static uniform
magnetic 6cld 80 ollcDtcd along thc 8 axis of R CRI'tcslan
(or a cylindrical) coordinate system. The plasma is
assumed to be uniform along s', but nonuniform at right
angles to s. As mentioned in the Introduction, we con-
sider the oscillations to be purely longitudinal so that
the electric field E associated with the oscillations is
derivable from a scalar potential 4; E=—VC. %C
assume that the unperturbed electron distribution
function fp(r, v) has the form

fp(r, v) =g(*a)fp(v), (1)

where 0&g(a,y) & 1. This choice for fp(r, v) is adequate
whenever the electron density gradients are very much
steeper than the temperature gradients. Ultimately, we
shall take fp(v) to be a Maxwellian at a temperature T
(measured in electron volts). We assume that the axial
wavelength of the oscillations is in6nite, that is, we set
BC/Bs=—0. The assumption is justificd only when

!~—Ikpp!&)k, ,v so that cyclotron damping and other
cBccts which result from 6Dltc RxlR1 wavclcDgth arc
negligible. "Here kg is the axial wavenumber and e the
thermal speed. This condition is satis6ed over most,
but not all, of the range of a typical experiment. Indeed,
the disappearance in Fig. 1 of the line spectrum as the
plasma frequency increases, when the lines crowd closer
together and are very near the magnetic 6eld given by
2~~——cv, may well be the result of cyclotron damping of
the oscillations.

Our basic equations are then the linearized Boltz-
mann and Poisson equations,

Bf, Bf,~j ppf 1+v'&f1 El' —+—Eo'
m Bv Bv)

e Bf1——(vX&p) =0, (2)
ns Bv

neglect in Eq. (2) the term involving the static electric
Geld Ep. Since we consider a plasma with Gnite density
gradients, Ep docs Ilo't VR111811. Indeed, R Gill'tc Ep 18

required lf 'tllc dlstrlbutlon glvcll by Eq. (1) 18 'to bc R

solution of the zeroth-order Boltzmann equation. Yet
we show in the Appendix that for the problem at hand
the neglect of the term in question is justi6cd provided
r, !VE!/rV((1 where r, is the electron cyclotron
radius. " The inequality is clearly satis6ed near the
axis of a plasma column, but may fail in thc sheath
where there are strong density gradients. However, as
we mentioned earlier, we shall 6nd that the oscillations
are trapped in the region near the axis and are RGected
only weakly by what happens in the sheath. Thus,
Eq. (2) reduces to

esp( Bf, Bf,)
J&f1+v &fl 'I v—

v
m k Bv. Bv„i

4 Bfp BC Bfp
+ ! (4)

m Bx Bv. By Bv„)

It has been shown by Hasegawa" that Eq. (4) may be
integrated formally by treating B/Bx and B/By as
operators. The result is

00 00 00 00

fr= Z—Z--Z
2@0 k~00 f,—00 m 00 ~~00

)(I ($ )I ($ )jp($ )J' ($ )( 1)les(a+1+m+m)%'

( e'~ e se )BCx!
(a+I+k+1 a+i+k+1) Ba

( e&~ e 'e BC Bfp
+ji + (5)(a+i+i+1 a+i+k+1 By BN

4'='tRI1 Vg/Vs ) e =pe+Vs

frd V
~

E=—V4)
Rnd thc J Rnd I arc Bcsscl functloQs Rnd modi6ed
Bessel functions of the Grst kind. Note that B/Ba and
B/By now appear as arguments of Bessel functions and
have physical meaning only when the functions can be
expanded as power series in b and b„, which then
operate on 4. Since! b!~r,/X, where r, is the cyclotron
radius and X the "wavelength" of the oscillation. , the
power series expansion is valid only when r,/X(1. We
shall show on a posteriori basis that this is indeed so.

V=e.B/Bx—+8„B/By

In Eq. (2) we assumed a harmonic time dependence of
all linearized quantities as exp( jolt) and have neglected
collisions. They can be reintroduced phenomenologically
by 1'cplaclllg (j(a) with (v+ j(0), wllcl'c v 18 tile elcctloIl
coHision frequency for momentum transfer. In the
experiment, collisions are responsible for the observed
RbsorptloD. Thc Qcglcct of colllsloDs ls thus Rnothcl
reason why we shall be able to describe only the posi-
tion, but not the strength, of the observed peaks.

%c shall Qow make a more stringent assumption and

» Very recent work PG. A. Pearson and S. J. Buchsbaum, Bull.
Am. Phys. Soc. (to be pubhshed) j has shown that the neglect of
the term E0 8fI/Bv leads to errors in eigenfrequencies of the order
(A,V'E/E)', where ) is the wavelength of the oscillations I Eq.
(I8)j. Such errors are indeed small under most experimental
conditions. However, the neglect of Eo may lead to large errors in
the eigenfunctions.

~4 A. Hasegawa, Phys. Fluids S, 761 (1965).

~ Y. H. Stix, The Theory of P/usmc 8'aces (McGraw-Hill Book
Company, inc. , New York, 1962), p. j.59.

(3)
a= —&v/(o p, fl,= (e/co p) B/BX, —b„=j (e/cp p) B/By,
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Since our aim is to solve Eqs. (3) and (4) for a
bounded system (a plasma column of finite radius, or a
plasma slab), a discussion of boundary conditions is in
order. The conditions on the potential 4 are the ordinary
boundary conditions of electrostatics, but what are the
boundary conditions on the distribution function f(r) P

This is a difficult problem whose solution is known only
for very simple geometries. "We shirk it here and re-
place the boundary condition on f by the macroscopic
condition that the normal component of the conduction
current vanish at the boundary of the plasma. This is
not too drastic an approximation partly because the
oscillations are trapped near the axis of the column and
only "tunnel" out to the walls, and partly because of
the neglect of Ep, Eq. (5) is incomplete near the walls.

The distribution function fi is now substituted in
Eq. (3) and the integration over the velocity space
performed. Integration over 4 reduced the number of
infinite sums to three, and the expansion of Bessel
functions is now a straightforward but tedious task. As
is well known from the solution of similar problems in
uniform plasmas, to obtain the dispersion equation
adequate for phenomena up to the second harmonic
(that is, for happ/~) 2) it is sufhcient to retain in the
expansion only terms linear in the temperature, up to
third-harmonic terms quadratic in temperature, and
so on. An examination of the power series expansion of
Bessel functions reveals that only the terms for which

l~l+ l~l+ l~l+ l~+~—~I &3

are at most linear in T. Retaining only such terms
yields the following differential equation for C:
V'C = (h&+Xi2V2)(V. (gVC)),

8 84 8 BC)
+i (@+7 'V') —

g
—

g I, (6)
By Bx Bx By)

where

hi=PP2iP /(PP —
Cdti ), h2= (MP/(0) hi,

3pp p (eT/rip) 3piyp 7iin

7

(4pp 22 pp2) (pp2 pi 2) (4 2 ~2) (~2 ~ 2)

X22 ——2 (pp 2/pp) Zip. (7)

Here, M „p2——¹e2/20pp
¹

being the electron density on
the axis, that, is where g (x,y) = 1;X&2——kT/esca„p2 is the
Debye length squared on the axis.

Note that for T=O, Eq. (6) properly reduces to

Equation (6) is a fourth-order differential equation.
For a uniform plasma, that is, when g(x,y) =const, it
reduces to

V2(V2+~2)C =0

which separates into

(10)

where

PC =0,
(V+")C=0

~2= (8 —1)/) '.

(11a)

(11b)

As discussed by Parker, Nickel, and Gould, ' Eq. (11a)
gives the charge-free solution, that is, it gives transverse
waves of infinite wavelength in the quasistatic approx-
imation, while Eq. (11b) describes the longitudinal

(plasma) waves. In a uniform plasma they are un-

coupled as the separation indicates. In a nonuniform
plasma the longitudinal and transverse waves are
coupled by the density gradients, and the coupling is
strong because the scale of the density gradients is
smaller than the "inhnite" wavelength of the transverse
waves. In reality, the wavelength of the transverse
waves is Gnite when they are described by the full set
of Maxwell equations, so that the nature of the coupling
will be different, especially near the hybrid resonance,
cop= pp22(r)+co 22, where the wavelength of the transverse
waves can become very short. Unfortunately, as men-

tioned in the Introduction, the exact nature of the true
coupling remains to be worked out.

The second term on the right-hand side of Eq. (6)
contains terms of the form (Bg/Bx) (BC /By) and

(Bg/By) (BC/Bx). These are different from zero only for
"two-dimensional" oscillations, that is, oscillations
whose electric 6elds have components at right angles
as well as parallel to density gradients. Such is the case
when the oscillations are excited in a waveguide, for
example. We have not yet examined this more general
case in sufhcient detail to discuss it in the present paper.
Instead, we limit ourselves here to the "one-dimen-
sional" case in which the electric field components exist
only parallel to the density gradients. Such is the case
when the oscillations are excited by means of an axially
symmetric mode of cylindrical cavity (the TEp»-mode,
for example). Such a mode was used to obtain the data
in Fig. 1.

We take, therefore, g to be only a function of one
coordinate, say x, and set 8/By=—0 in Eq. (6). This
equation then reduces to

where

V. (s VC)=0,

1—Byg jEgg 0
s=— —j82g 1—bjg 0

0 0 1—((u p'/oP)g

(12)

We shall discuss Eq. (12) for both planar and cylindrical
geometries.

is the "cold-plasma" dielectric tensor.

'5 G. H. Reuter and K. H. Sondheimer, Proc. Roy. Soc. (London)
A195, 336 (1949) P. M. Platzman and S. I. Buchsbaum, Phys.
Rev. &32, 2 (1963).

A. Planar Geometry

To avoid the difhculties which arise from matching
boundary conditions and to gain a clearer insight into



LONGITUDINAL PLASMA OSCILLATIONS 307

the nature of the oscillations, we consider erst an
"infinite slab, " that is, we assume that g(z) does not

(40) g
—GP) (Gd g ~07yo M )vanish except at infinity. We take for g(x) the function ~

~2 ~~2 )
g(x) = (1+yz'/d') ', (13) = (23+1)'3yi0~0'Xii'/d' (19b)

e.=D, (x/x) ~D „(x/z),

where

X=P id/2y'I'g'12

(15)

3~ 0 d g /Q(~ (gb&)(~b& (0&)ji/4 (16)

This form is particularly convenient because it allows
Eq. (12) to be solved exactly. Integrating Eq. (12) once
and defining a weighted electric field S.—=gdC/dx yields

d'Q/dz'+ (1/gP) (h,—1—~zi/di) @=0 (14)

Equation (14) has the form of a Schrodinger equation
for a simple harmonic oscillator. Its solutions are well
known and are given in terms of the parabolic cylinder
functions, " [~ '/(~' —~i')0 —1 '"

)=d
2y(21+1)

(20)

so that, indeed, )«d.
It is instructive to compare Eq. (19) with the cor-

responding dispersion relation for a uniform plasma.
Expanding Bernstein's dispersion relation

It is worthwhile to point out that precisely the same
relation would result if the WEB method were used to
quantize the "phase" in Eq. (14) between the two
turning points, xi ——+[0'(hi—1)/yj'". This is not
surprising since the WEB solution is known to be exact
for the simple harmonic oscillator.

Using Eq. (19) in (16) the "wavelength" X becomes

and

~=M [(&i—1)d/v'"&ij —1)

t (ay') ~ 2ii'exp( —p)I„(ii)

&~~'~"=' ~[(~'/M~') —I'3
(21)

(4' ~2 (02)if'/g 2 i /2

=1
2

3rCO&o (M —M g )
(4M' —M ) (coy +co —QF) = 3M' K9 i/ (22)

The function D„(x/X) is an. oscillatory function for
small x, that is, where the "kinetic" energy (8,—1)/gp
exceeds the "potential" energy. At large x it exhibits a
tunneling-like behavior. It has i+1 zeros which are
spaced by approximately X. Thus the quantity X can be
considered to be the "wavelength" of the oscillation.
Since, under experimental conditions d)&) ~, we 6nd
that d)'A&X~. We can now check whether or not the
expansion parameter (r,/X) is smaller than unity. We
6nd from Eq. (15)

where pier, an, =d ii= 2ir/X, with X the wavelength of the
oscillation. The essential difference between Eqs. (22)
and (19b) is that the term (cdi,'+~„'—~') appears
squared in Eq. (19b). The difference is partly removed
if the "proper" X is used in Eq. (22), for example, that
given by Eq. (20).

Equation (19b) is plotted as the dashed curves in

Fig. 2 for yT/d~=3 eV/cm2. The subscripts + and—

O.BB,
y /g (g&/d)i/2[(4y/3) (F02/&&2 1)(4 ~2/&&2) jl/4 (1g)

in power of temperature and retaining only terms linear
(~i'+~&o' ~') 1. —(1'I) in T yields

The square bracket in Eq. (17) is of order unity, except
when co =2co&, so that we have to rely on X& being very
much smaller than the scale size of the density gradient
d, for (r,/X) to be smaller than unity. For our experi-
mental conditions X~=4X10 3 cm and d=0.5 cm, so
that (r,/X) =—,', .

The function D„ is square integrable only when v is
an integer (or zero) and this condition leads to the
dispersion relation of the oscillation. Thus v=/ where
l= 0, 1, 2, 3, ~ yields the following dispersion relation'~
for the oscillations:

0.62—

0.58—
CU

0.54—

0.50—

t

0.7
I

0.8

V =0
l

0.9
I

1.0

(hi —1)d/y'I'X = (2)+1), (19a)

~6 E. T. Whittaker and G. ¹ Watson, Modern Analysis
(Cambridge University Press, New York, 1962), p. 337.

'7 We use the term "dispersion relation" even though the fre-
quency does not depend explicitly on wave number.

FIG. 2. Calculated resonant frequencies of the odd (—) and (+)
solutions in a plasma slab. The solid lines are the solution of Eq.
(19b) for an ininite slab; the dashed lines are for a 6nite slab and
are obtained from Eq. (23).
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refer to even and odd solutions about x=o. It can be
seen from Eq. (19b), that the ratio (~q/a&) is a function
of two parameters, (co„o'/cu') and (yT/d'). The first of
these can usually be measured experimentally from the
onset of the "cold-plasma" background absorption, or
by other means. The second parameter is not generally
amenable to precise measurement and is best 6tted.

The solid curves in Fig. 2 are for a 6nite slab of
thickness 2d, that is, we took g(x) to have the form
given by Eq. (13) only for I&I &d and to be sero f«
I@I )d. The proper boundary condition for both the
current and potential is

D„(d/X) +D,(d/X) =0

0.64—

0.56—

0.52—

0.50—

0.7
I

0,8 1.0

which constitutes the dispersion relation. As can be seen
from Fig. 2, the solution for 6nite slab is nearly identical
to that for the infinite plasma when (co„o2+roa') is near
oP. Then the turning points x& are near the axis of the
slab and are far from the walls at &d, so that the boun-

dary conditions at the walls do not matter. As a „02/co'

is increased, however, the turning points move closer
to the walls of the slab, and the inhuence of the boun-

dary condition begins to be felt.

B. Cy1indric8, 1 Geometry

In cylindrical coordinates Eq. (14) is

d'(R 1 d(R r' 'Atm)

+—8,—1—7——I(@=0,
dr' r dr d' r'I

where (R=g(r)de/dr and ht and Xt are defined in Eq.
(7). Again we took g(r)= (1+yr'/d')-' to facilitate
solving Eq. (24). Equation (24) can be put in the form
of a Whittaker equation. "If we set r'=y and (R=G/gy
We Obtalll

d'G/dy'+ (1/41 t') L(bt—1)/y —~/d'ja =o.

Since the Whittaker function 8'~, is a solution of"

(
d' 1 k a' —m')—-+—+ Iws, =&

ds' 4 s s'

the solution of Eq. (24) is

6t=r 'W„,gy(r'/2X'),

where p= (St—1)d/4y'19. t, and X is as given in Eq.
(16). Proceeding as for the planar geometry it can be
shown that the dispersion relation for an "izdinite"
cylinder Li.e., when we allow g(r) to be (1+pr'/d') ' for
all rj is precisely that for the "infinite" plane slab

except that the term (21+1) in Eq. (19) is to be re-

placed by 2(3+1).For a finite cylinder, we again take
g(r)=L1+pr'/dm]-' for r&d and g(r)=0 for r)d. To
obtain the dispersion relation it is simpler to integrate
Eq. (24) on the computer and seek on it the family of

~s E. T. Whittakar and G. N. Watson, 3Adern dactyls (Cam-
bridge University Press, New York, 1962), p. 347,

2~ro
Qp 2

I'xo. 3. Resonant frequencies in a cylindrical plasma. The solid
curves are from Eq. (24). The points are experimental and cor-
respond to absorption peaks in Pig. i.

values of cog/a& and of ~~0'/aP (for a given y2' and d) for
which (R(d) vanishes, than it is to evaluate the Whit-
taker functions subject to the boundary conditions. In
Fig. 3 are shown the results of such computation where
we attempted to Gt the experimental results of Fig. 1.
The solid curves in Fig. 3 are calculated for yT= 6 eV
and d=0.4 cm and the points are experimental. ' Here
pT w'as varied until the vertical spacing between the
two lowest solid curves was equal to the experimentally
observed spacing at some value of ~~oa/cv'. That is, two
and only two of the experimental points are 6tted. The
rest fall where they may.

As yT is increased, the "infinite" column dispersion
relation predicts, and computations for a 6nite cylinder
bear out the prediction, that the separation between the
resonance peaks should increase approximately as the
square root of the temperature, It was not possible to
measure the electron temperature directly in our
experiment, but on decreasing the working pressure in
the discharge (which should lead to a high T) the
separation between the resonance peaks was indeed
observed to increase.

%e presented a theoretical model which in spite of
the many approximations and assumptions appe8, ls to
account very well for the observed structure in micro-
wave absorption near the second cyclotron harmonic.
The theory can be extended to the third and higher
harmonics by retaining successively higher order terms
in temperature in the inlnite series expansion of Eq.
(5). This was done by Azevedo'9 and will be published
elsewhere.
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APPEN'DIX

In the linearized Boltzmann equation

Bfr e ( Bfo r7 fr & rlfr
+v Vfr+

l

E—r yms +—(vXR) =0,
8t mI av av m Bv

we wish to neglect the term containing the static 6eld
Kp. In a positive column of an active discharge, Ep has
both axial and radial components. The axial component
is required to maintain the plasma, but we ignore it in
Eq. (2) because it does not play a role in our problem.
The component of interest is the radial electric field
E„p which accompanies the steady-state di8usion to the
w'alls of the column. For our purposes it is sufhcient to
assume that the diffusion to the insulating walls is
ambipolar. Then E« is given by"

(1+I+I-I3')(I++P )&-
where p~ and D~ are the ion (or electron) mobilities and

diBusion coefficients, respectively. Under conditions of
the present experiment, @+8(&'I,p, B»1and p+p 8'& i.
Then (A1) reduces to

r
VE, , S,

1+IJ+P I3—

where T and T+ are the electron and ion temperatures
(in eV), respectively. In deriving (A2) we used the
Einstein relation, D+/p~= T+. Consequently, in order
that the term Es (Bfr/Bv) be negligible compared to,
say, (v&&Ss) (&fr/Bv), we must have

(A3)

where r, is the electron Larmor radius. In the present
experiments, the neutral gas pressure is relatively high

(0.1-0.5 Torr) so that IJ+p 8'~1, and the inequality
(A3) becomes

D. R. Whitehouse and H. B. VVollman, phys. Fluid fj, 1470 The lower the pressure of the neutral gas, the easier it
(1963) becomes to satisfy the inequality (A3).
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Fesr MOSSbauer EfFeCt in NiCkel OXide*
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The Fe'~ mossbauer effect in antiferromagnetic NiO, used as a source, has been studied over a wide range
of temperatures below as well as above its Noel temperature (523'K). The aftereBects of decay produce only
ferrous and ferric states, which have been identiGed by their characteristic hyperGne Gelds and isomer shifts.
These observations are similar to those reported on CoO. The temperature dependence of the hyperGne Geld
at the nuclei of Fe'+ and Fe'+ ions, although almost identical, deviates from the sublattice magnetization of
NiO as well as from the Brillouin function for the Ni~+ state (S=1).The spectrum at liquid-nitrogen
temperature indicated the presence of an electric Geld gradient at the ferrous nucleus. The intensity of the
ferrous peak is highly temperature-dependent, decreasing with an increase in temperature Gnally vanishing
above about 466'K. This dependence has been qualitatively explained in terms of the electron-capture
mechanism. It has been concluded that the temperature dependence of the capture cross section of the
ferric ion is mainly responsible for the observed behavior.

I. INTRODUCTION

~ 'ICKEL OXIDE is an antiferromagnetic sub-
stance with a Neel temperature of $23 K.

y
and

is one of the most extensively studied monoxides of the
iron group. It has a crystal structure characterized by
an fcc lattice of the positive ions. Below the Neel tem-
perature, the lattice contracts along one of its body
diagonals, the corner angle becoming s/2+6. The cube

edges contract by an amount ba/a. The new geometry
is rhombohedral. ' The interaction of individual mag-
netic ions with the crystalline electric field from the
distorted oxygen octahedra quenches the orbital angular
momentum of the Ni'+ ions. Hence, in this substance
the anisotropy energy responsible for the observed
magnetic ordering (of the second kind) is mainly
dipolar in origin. '4 Further, the exchange forces con-

*Work done under the auspices of the National Bureau of
Standards, Washington, D. C.'T. Nagamiya, K. Yoshida, and R. Kubo, Advan. Phys. 4, 6
(1955).

~ V. Shimomura and Z. Nisiyama, Mem. Inst. Sci. Ind. Res. ,
Osaka Univ. 6, 30 (1948).' J. Kaplan, J. Chem. Phys. 22, 1709 (1954).' F. Kei1er and W. O' Sullivan, Phys. Rev. 108, 637 (1957l.


