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Thermal Properties of Spin-Wave Impurity States
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The eGect of dilute magnetic impurities on the thermal properties of an ideal simple cubic spin-$ Heisen-
berg ferromagnet has been investigated using the thermal-Green s-function procedure with a simple random-
phase decoupling scheme. It is shown that for a small ratio e of impurity-host to host-host exchange, low-lying
"s-type" virtual spin-wave states result which cause a large density of states to occur at low energies. These
low-energy states lead to an accumulation of spin disorder at and near the impurity site. Consequently the
impurity magnetization decreases far more rapidly than that of the host. This effect is accompanied by a
large increase in the low-temperature spin-wave speci6c heat. Analytic solutions to the Green s-function
equations are calculated for temperatures near 0 and near T„the Curie temperature. Self-consistent numeri-
cal solutions are presented for both the magnetization and the spin-wave specilc heat as a function of
temperature. For small e the impurity magnetization is approximated by the Brillouin function

mr=etc tanh(tseP+6J'(Sg')/hT),

where J is host-impurity exchange and (S&') is the thermal average for the impurity nearest-neighbor
spins. (S&') is found to be depressed from the bulk value by an amount which increases with temperature
and is about 0.84 of the bulk value as T -+ T,.

I. IHTRODUCTION
' 'N a previous paper, ' WCI, the effect of dilute im-
~ - purities on the spin-wave spectrum of an ideal
Heisenberg ferromagnet was investigated. It was shown
that localized spin-wave states above the spin-wave
band as well as virtual states within the band could be
formed',:for reasonable ratios e of impurity exchange to
host exchange. In WCI the dependence of the impurity-
state energy and lifetime on the impurity spin and
exchange were calculated at low temperatures where
simple spin-wave theory is valid. Different kinds of
impurity states were classi6ed according to their trans-
formation properties. For the simple cubi.c structure
s-, P- and d-like states result for nearest-neighbor
(N.N.) coupling. The low-lying virtual s-like states are
of particular importance to the thermodynamic be-
havior of the impure ferromagnet since these states
give rise to a large density of states at low energies
where the host density of states is very small. Con-
sequently, a large spin disorder can accumulate in the
vicinity of the impurity resulting in a. local decrease in
magnetization. Such an effect has been noted experi-
mentally by Jaccarino, et at.,' who proposed that the
virtual spin-'wave state could be described by the simple
molecular-Geld model. A theoretical justification of this
proposal has been discussed by Callen et a/. ' They have
reported the qualitative results of a thermal Green's
function calculation of the magnetization of a spin
impurity in a ferromagnetic host. Using a picture based
on spin-wave scattering, the effect of different impurity-
host exchanges and spin on the spectral weight function
is discussed. The results of the magnetization calculation
in the present paper are qualitatively in agreement with

T. Wolfram and J. Callaway, Phys. Rev. 130, 2207 (1963).' V. Jaccarino, L. R. Walker, and G. K. Wertheim, Phys. Rev.
Letters 13, 752 (1964).

'H. Callen, D. Hone, and A. Heeger, Phys. Letters 17, 233
(1965).

these ideas. One can also expect a large increase in the
spin-wave specilc heat at low temperatures. Both of
these effects can be quite dramatic when the impurity
exchange is substantially weaker than that between host
spins. Localized modes split off above the top of the
spin-wave band are of far less importance to the thermo-
dynamic properties since large thermal energies are
required to excite these states and since they cause only
a negligible perturbation on the host density of states.
In this paper we derive the effects of virtual spin-wave
impurity states on the thermal behavior of the Heisen-
berg ferromagnet in some detail. Calculations show that
the magnetization at and near an impurity site for a
spin--,'system can deviate drastically from the bulk
magnetization when e(0.5. Larger impurity spins can
be expected to display this behavior for larger e values.
Calculations also show that the total bulk spin-wave
speci6c heat can be increased signidcantly. For example,
with a 1% solution of a weakly coupled impurity
(e 0.25) the specific heat of the impure ferromagnet
can exceed that of the pure ferromagnet by 12%%uq at
temperatures on the order of one tenth of the Curie
point. In this case the speciac heat departs radically
from the usual low temperature expansion, O,P"
+PTst' . For weak exchange the impurity magnet-
ization is very closely approximated by a Brillouin
function for spin —',, tanh (6J'(St*)/kT), where I' is the
impurity exchange with the host and (St') is the thermal
average of the spin of the impurity N.N. The departure
of the N.N. spins from host behavior increases with
temperature and near the Curie temperature can
amount to as much as 16% depression.

In Sec. II we formulate the problem of the thermal
behavior of a spin--', Heisenberg ferromagnet, having
a spin--,' impurity whose exchange with the host
differs from the host-host exchange, in terms of the
two-time Green's function. The Green's function pro-
cedure itself is not discussed in this paper. (The reader
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is referred to one of the many excellent review papers4
on the topic. ) A set of three simultaneous integral
equations are derived using a simple random-phase
decoupling scheme. These equations determine the
spectral intensity function (and consequently all the
thermodynamic properties) of the impurity spin, its
nearest neighbors and the more distant neighbor spins.
These equations are derived for N.N. coupling with the
assumption (which is heuristically substantiated) that
the thermal expectation value for the spins of the
second neighbors are not significantly affected by the
presence of the impurity.

In Sec. III the weakly coupled impurity is discussed.
The reduced spectral function for the impurity is
obtained and found to become sharper as the tempera-
ture increases. Asymptotic solutions of the set of equa-
tions are obtained for temperatures near the Curie
point T,. These results indicate that the ratio o.

~ of
the thermal average of the impurity N.N. spin to the
host thermal average deviates at most about 16% from
unity. For small e the ratio 0-0 of the impurity spin to
the host spin is shown to tend to 26oy as T—+T,.
Approximate solutions are derived for low temperatures.
It is shown that the magnetization and specific heat of
the weakly coupled impurity contains an exponential
term in addition to the usual Tsf' term. Numerical
results for the entire temperature domain are pre-
sented. Both magnetization and specific heat calcu-
lations are presented.

Section IV contains a discussion of the experimental
results obtained by Jaccarino el at.s for Mn in Fe. It
is suggested that the thermal properties of the spin-
wave impurity states of rare-earth ions in transition
ferromagnets could be conveniently studied making
use of the Mossbauer eGect.

In Appendix A the normalization of the reduced
spectral functions is discussed. It is shown that the
decoupling and approximations used in the derivation
of the integral equations for the thermal behavior of
the system does not destroy the normalization of the
spectral function. Appendix B contains a highly
simpli6ed derivation of the low-temperature behavior
of the impurity magnetization and internal energy.

II. GREEN'S FUNCTIONS FOR THE IMPURE
FERRO MAGNET

In this section we develop a set of self-consistent
Green's function equations which describe the tem-
perature dependence of the magnetization of the
impurity and its nearest neighbors and the unperturbed
more distant spins.

Ke consider a ferromagnetic lattice of E spins
described by the Heisenberg exchange Hamiltonian X',

30P= lIsH Q Sg —', Q J(f, f—s)Sr, Sr,", (—2.1)
f fIf2cg

4 See, for example, D. N. Zubarev, Usp. Fix. Nauk. 71, 71 (1960}
[English transl. : Soviet Phys. —Usp. 3, 320 (1960)].

~J=J'(f) J(f)—. (2.2)

Throughout this paper we shall make the simplifying
assumptions that we are dealing with a spin--, simple-
cubic system (the impurity also has spin —,') and that
only the nearest-neighbor exchange integral is nonzero.
These assumptions greatly simplify the mathematics
without destroying the qualitative features we wish to
study. The Hamiltonian (2.2) may be written in terms
of the usual spin-deviation operators bg and byt which
destroy and create, respectively, a unit of spin disorder
at the lattice site f,
30=30p—5J Z P(1—2n, ) (1—2np)

+2 (bptbp+ bptb p) 5,
X'= $(lhsH+3J)+—(2psH+12J) Q bg"br

f
—2J Q bytbI+p 2J Q ning+—p (2.3.)

fg fg

The symbol g in (2.2) and elsewhere in this paper refers
to the 6 simple cubic nearest-neighbors vectors and
J'= J(g), DJ=DJ(g). The spin-deviation operators are
de6ned by

SI =br+4'
Srp=s(bp bq), — (2.4)

and satisfy the commutation relations

&bg„b„"5=(1—2n~, )br,r„
ey=bytby,

L fbu fbp=5Lhbrbfs 5=0)
bI'= (bgt)'= 0.

(2.5)

The temperature dependence of the magnetization is
determined by the (thermal) average number of spin
deviations (ng) for the grand canonical ensemble. This
function is conveniently obtained from the two-time
Green's function procedure. Since this method has been
reviewed by numerous authors4 we shall not include a
detailed discussion in this paper. The essential features

where Sy is the 0. component of the spin localized at
the lattice site f, J(ft—fs) is the exchange integral
(assumed )0) which describes the interactions of spins
at f~ and fs, H is the external magnetic field (parallel to
the s axis), and pn is the Bohr magneton. The con-
vention J(0)=0 is adopted so that the double sum over
f~ and fs need not be restricted. If an "impurity" spin
is substituted at the f=0 site with exchange J'(f) with
the host spins, then the spin Hamiltonian for the
perturbed system is

K=XP—Q LLJ(f)Sp Sr,
fa
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&Ny) = Jyy(pr)dp) (2.6a)

Jy,y, (pp) =hm z{Gy,y, (pp+zp)

Gyryp(pr zp)}/s" 1r (2 6b)

Gy, y, (pr) =Gy,y,"(cp) Imprr&0,

=Gyryp (rp) Imprr(0r
(2.6c)

Gy y &"')(t)= G (r, s) (err)s Aordrp (2.6d)

necessary for our calculation are simply listed below where the arrow means "replaced by."This procedure,
while crude, leads to a qualitatively good description
of the ferromagnetic state over the entire temperature
range. The procedure outlined above gives the following
Green's functions for the impure ferromagnet

rpGy, yp= (2pr) '(Syr')8yryp+2rmtr&Gyry2( )
—2JQ (S,')G. . .( )

+2J P (Sy+rr')Gyry'p(pr)+Fy, y, (rd), (2.13)

where

(fr/0), Fy y ( ) =—2AJ Q P(Sy, ')Gpy, (pr)

Gylyp ' (t)—=«by, (t); byp(0)))(, ,p)

=~i8(+t)&Lby (t) byp (0)j), (2.6e)

where the upper sign goes with r and the lower with a,
Imrp is the imaginary part of pr, 8(t) is the unit step
function,

8(t) = 1 t&0
=0 t&0

d/dt8(t) =5(t) .
(2.7)

Ay(pr) =2Gyy(pr)/(/by, byt j). (2.10)

The imaginary part of Ay(err) is a reduced spectral func-

tion whose integral is normalized to unity

dpr ImAy(pp) = 1. (2.11)

In the above LA,87 is the commutator AB BA. —
In order to determine the new Green's function which

appears on the right-hand side of (2.9), one must
calculate its time rate of change and consequently a
system of simultaneous differential equations result.
The system, in general, does not close on itself and one
must "decouple" the set by approximating higher order
Green's functions. A number of decoupling schemes

have been suggested; however, in this paper we use the

simple procedure outlined in Ref. 4, namely,

((rrzy, (t)b»(t); by, t(0)))~ (zzyr)((by, (t); by,t(0))), (2.12)

and we use units such that 4=1.The bracket (0) indi-
cates an average of the operator 0 over the grand
canonical ensemble,

(0)=—Tr{exp(—X/AT)0}/Tr{exp( —X/kT) }. (2.8)

The Green's functions Gf,f, are obtained from their
equations of motion,

i(d/dt)Gy y (t) =8(t)(I by, (t),by, (0)j)
+«i( /ltd)by, (t); by, (0))), (2.9)

i(d/dt)by ——)by, X$ .
It is also convenient to define the function Ay(pp),

&Sp )Gyryp(pp) jbyrp
(2.14)

(fr.=0) Fpyp(pr)=2~JR L&Sp'&Gpy*(pp)

—&S *)G, ,( )j.
In the absence of the impurity, (Sy*) is independent of
f since Xp is translationally invariant. This property is
destroyed by the impurity perturbation and one expects
physically that the magnetization at and near the
impurity will deviate from that of the "perfect" ferro-
magnet. More distant sites should, however, be un-
a6ected by the perturbation. Calculations to be dis-
cussed later in this paper suggest that in the case of
the strong perturbation LJ'(g) =Oj the second nearest
neighbors of the impurity deviate from host behavior
only very slightly even at the Curie temperature. We
therefore assume that (Sy) will be independent of f
whenever If I & Igl If we write &Sy'&= &S') for

I fI & IgI
then we must determine the quantities (Sp'), (S,') and
(S*).Because of symmetry (S,')—= (S&'& will be the same
for all nearest neighbors so that there are only three
functions to determine: (Sp*), (Sr*&, and (S*). The
system of Green's function equations (2.13) may be
written as the matrix equation

4J(S*)(M+AM)Gryp=prGry+(2rr) r8y, (2.15)

where the matrix 3f is de6ned by

Myy= I:12J&S"&+2ptrff7/I —4J&S"&j

and all other matrix elements are zero. hM contains
the induced perturbation in nearest-neighbor magnet-
ization as well as the direct impurity perturbation. It
also contains the eGect of nearest-neighbor deviations
on the remainder of the host. If we assume that only
the impurity and its nearest neighbors are perturbed
and that more distant neighbors are unperturbed then
AM has only a 7X7 block of nonvanishing elements

4J(S*)6M p p
= 12J'&—ESi')+ 129J(S*),

—4J(S')AMp ———2J'(BSp')—2AJ(S')
(2.16)—4J(S.)EM p

———2J'&ESi)—26J'(S')
4J(S')EMpp=2J'&AS—p)+2M(S*) r
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where (As;*)=(S,'—S*) is the deviation from host where
behavior. The source vector yf, is a column vector of
zeros except for the fp row which has value (S/p'). The
vector Gf, has components G~~, ((o) and we adopt the
convention that the erst seven rows correspond to the
impurity and its 6 neighbors in the order (1,0,0),
(—1, 0, 0), (0,1,0), (0, —1, 0), (0,0,1) and (0, 0, —1).
Equation (2.15) is easily solved to give

B«(8)=LB'(8)3(o.o.p), (o.o.o),

Bp~(8) =LB'(8)j(p.o.».o.o.o) ~

Bpp(8) =LB'(8)j(o.o.o).o,&,o) t

B»(8)=LB'(8)j(o.o.o).(p.o.o) ~

(2.23)

—4J(s*)Gf —(M f—+AM) 'y—y,/2 s
= —(I—g (8)dM) 'g (8)yg, /2m, (2.17)

where
/-4J(S*&,

8=f M=—f+3+peH/2 J(S'),

detA = 1—6gpg (8) (AM, p+ AMp, )
-26M 8goz(8) —goo(8)AMoo. (2.24)

When J'= J, (2.21) and (2.22) become identical with
(2.20). This fact is easily veriied using the identities
derived in WCI:

and
g'(8) = (f'—M)-'.

and
Boi(8)= o (8B«—1) (2.25)

The spin-wave Green's function B'(8) has been dis-
cussed in WCI and its elements are given by

with

1 exp[i» (fg—fp)]
Lg'(8) j) .x.=—Z

p 8—8q

8»=-' Z. cos(q f))

(2.18)

(2.19)

The numerical values of the matrix elements of B are
tabulated in WCI. The matrix given in (2.17) is most
easily constructed by 6rst transforming to s, p and
d-like symmetry coordinates and transforming back
after construction of the inverse. The transformation
is also given in WC I. The results are

—4J(s*)Gg—=
Grf (8)= (2s.) '(S')goo(8),

Ifl) lgl

—4J(S*)Go—:Goo(8) = (2K) (So*)(goo(8)

—26M„go, (8))/detA, (2.21)

-4J(S")G,=-G„(8)=(2 )-'(S )

Boo(8)+Bop(8)+4gpp(8) =28gox(8) . (2.26)

Equation (2.20) is just the Green's function for an
unperturbed host ferromagnet. The self-consistent
equation for the spin as a functi on of temperature is
found using (2.6) to be

1 (1—S') 1 —"Imgpp(8)d8 +' dip(8)
(2.27)

2 (S') x ~„ee'P-P) 1 —
p ee" P' —1

since the spin-wave band extends from 3 to —3 in h
space. It is also important to note that in this form the
renormaliz ation of the spin-wave energy is apparent
only in the temperature factor P. Thus in (2.27) the
spin-wave band (l 8l &3) remains 6xed and the factor
P varies with temperature. The thermal behavior of
the impurity spin is determined by (2.21) which gives

-', (1—Sp*) +' d8opp'Xp(8) X, (2.28)(S()'), (c+bR())'+ (s bXo)' eP(~o) 1—
with

X -,'g„(8)(8—aMoo)/detA

Lgoo(8) —Bop(8)j
2 1-&M„lB. (8)-g. (8)3

lLB«(8)+Bo (8)-2Bo (8)1

1-&M„l B-(8)+Bo (8)-2Bo (8)
(2.22)

c= -pL (8—3)—(8—3)«p+3po ~),
b =——', (8—3) l (8—3)—8«o+3 «x7,
p= J'/J,
o= &s *&/(s*),

,=&s, )/(s &,

P=4J(s')/k2',

X,=s.—' Imgp, (8) for Im(8))0,
R.=Rego, (8) .

(2.29)

-,'(1—S,*)

(Sx')

1
l cX~+b(RpF~+XoR~))(8—AMoo)

dh
3 (c+bRp)'+ (grip)'

p (&o—&p)

l 1 deaf po(R() Rp) j'+l s &M (Xo—Xp)j'
—',(Xo+Xp

—2Xp)
(2.30)

$1 EMpo(Ro+R—a 2Rp) l +pxhMpo(Xo+Xp 2Np) j' ee ' p——1
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l00

lo—
Fxo. i. The tran-

sition of the reduced
spectral function
from the host den-
sity towards the 8-
function behavior
with decreasing
The ordinate is
2x ImAO(g) and the
solid curve is for
5=1

This limit is most conveniently obtained from the
Green's function. From (2.21) and (2.16) we have

(Sp') /'

Go(8) =
~

3oag —(3—8)
2pr (

o'(8/op —1)~o~x
—1

o Lgoo(3 —8)+1]+(«o/3) (88oo 1—)&

For suKciently small o this gives ImA p(8) -+ bg(3 —8)—3ooq]. One must exercise some care, however, in
using this result. It is in fact qualitatively incorrect
to use this at very low temperatures because the exact
behavior of the Green's function at the bottom of the
spin-wave band (8=3) must be preserved. For very
small but Gnite o (3.1) gives approximately

(Sp*)
Go(8) =

2%

)X
2 3

(3-8)

Fquations (2.27), (2.28), and (2.30) are self-consistent,
simultaneous integral equations. In WCI it was shown
that the vanishing of c+bRp corresponds to the occur-
rence of an s-like spin-wave impurity continuum
resonance state whose width is proportional to Qp.
Similarly, the vanishing of 1—AM«(Ro —Ro) or
1—AM«(Rp+Ro —2Rp), $Eq. (2.30)], corresponds to
P and d-like resonances. It is clear that the thermal
behavior of the impurity spin is governed principally
by the s-state resonance, while the nearest-neighbor
spins have contributions from all three types of states.
However, since (Sp') is coupled to (S&*) the impurity
will have a weak dependence on the p and d resonances
as well. It should also be noted that in the case that
true localized modes occur above the top of the spin-
wave band (i.e., when any of the above mentioned
factors vanish for 8(—3) we must add additional
terms of the form fexpL4J(S')(3 —8r)/kT] —1)—' to
(2.28) and (2.30) for each localized mode with energy
81,. In this paper we are principally interested in con-
tinuum resonance states. For &&1 no localized modes
can occur. The energy and width of the various types
of spin-wave impurity states at T=O as a function of
~ and spin mismatch are discussed in WCI.

X
3oo i—(3—8)—3o'o oo g(3/op —1)+0(o')

(So*)
I~o(h) = (3.2)

1.0

I'(8) =9m o'o po gNp(8),

~(8)=3s'ooo'oo'xPRo(8) 1].
Thus the reduced spectral function is in the form of a
Breit-Wigner shape with width proportional to No(8),
the host density of states. The peak at (3—8) =3oo&
(or &o=12J'(S&)) is displaced slightly according to

III. SOLVTIOHS OF THE COUPLED
EQUATIONS

A. Weak-Coupling Limit (e«1)
0.5 1.0

The reduced spectral function for the impurity
Imago(8) gives the effective density of states per
impurity spin. It is easily seen to tend to Np(8) as
o-+ 1. In the other limit, as o~ 0, ImAp(8) approxi-
mates a Dirac 8 function with its peak near 3—b=3eo-~.

Fro. 2. The thermal behavior of the impurity spin (S0') for
a=0.25 as a function of the reduced temperature r=T/T, . The
unperturbed host thermal average (S') is also shown. The dashed
curve, a plot of the Brillouin function for spin „compares quite

. well. with the calculated impurity spin.
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Dt.'p(8) —17. Since Rp(1 the shift is to lower energy.
The 8-function approximation gives

(Sp') = tanh(6J'(Sr)/kT)
(weak coupling, s small). (33)

Equation (3.3) is valid for 6J'/kT& 1 (but is not valid
when 6J'/kT))1) and shows that the impurity mag-
netization decreases according to the Brillouin function
with an effective field equal to the impurity-exchange
field with the nearest neighbors. A similar expression
has been suggested by Jaccarino et aL,s for dilute
concentrations of Mn in ferromagnetic iron (see Sec.
IV), and the validity of this result has been stressed

by Callen et af.s The approach of ImAp(8) to the 8

function as e is decreased is shown in Fig. 1. One also
notes from (3.2) that the effective width I" is propor-
tional to 0.0 and 0& and that consequently the peak
width narrows and peak height grows as the temperature
increases. This feature persists for finite e as can be seen
in Fig. 5. The shift in the peak is also evident. In
general, the set of Eqs. (2.27), (2.28), and (2.30) can
only be solved numerically. However, asymptotic
solutions can be obtained near T=O and near the Curie
temperature. The numerical solutions of (2.27), (2.28),
and (2.30) as a function of temperature are shown in
Figs. 2, 3, and 4.

B. Solutions Near the Curie Temyerature

In this section we obtain solutions for (2.27), (2.28),
and (2.30) as T~ T.. The above equations all have
integrals of the form

I.O

0,5

0.5 ).0

FIG. 4. The thermal behavior of the impurity spin (Sp') for
p=0.1 as a function of the reduced temperature r =T/T, along
with the host spin (S*).The ratio pp= (Sp*)/(S*) is also shown.

I(P)=—ReA;(8=3)——;

+— d 8 ImA;(8) (3—8)+O(8') . (3.5)
12 +

In obtaining (3.5) we have made use of the dispersion
relation

and vanishes outside of the spin-wave band. As T —+ T„
P~0 (since Pn(S')) and it is convenient to expand
I(P) as,

d8 ImA;(8)/es&' s& —1, (3 4)

—00

d 8 ImA;(8)/(8' —8)=ReA;(8'), (3.6)
7P +oo

where ImA;(8), the reduced spectral function, is the
imaginary part of an analytic function of complex 8

I.O—

as well as the normalization condition,

d8 ImA;(8) =1. (3.7)

)The fact that (3.7) holds for the approximate A;(8)
calculated here is discussed in Appendix A.)

Using (3.5) one obtains from (2.27),

', =kTEp(3)/4J+J-/kTf(S')J+O(f(S*) j') (3.8)

0.5 for the unperturbed spins. In obtaining (3.8) we have
used the fact that J'd88cVp(8) vanishes since Np(8)
is an even function of 8. Setting (S')=0 we obtain for
the Curie temperature

T,=2J/kRp(3) (3.9)

and for small (S')

(S")=L3r(1—(rlr.))j'"
r =kT/6J.

I.O0.5
T

FIG. 3. The thermal behavior of the nearest-neighbor spins
(SI) (for a =0) as a function of v, the reduced temperature T/T, (3.10)
along vnth the host (S'). The upper curve is the ratio o ~ =(So')/
(S'). It is worth noting that the solution corresponding to
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25-

d
'

tion of about (0.16)' or 2p'% from host behaviora eviation o a ou
ds to one asnear e u

'
th Curie temperature. 0.

& clearly tends o
t. increases from zero. As one can see in ig.
deviation of 0-~ decreases as the temperature is lowered.
It therefore appears to be a good approximation to
ignore the second-neighbor deviations. Solving for 0-0

in terms of O.i gives

20-
q

i/p

o=
I

—+3
) p

(3.12)

Apts) l5-

to-

which for small e gives the result that the 0-0 approaches

in WCI) and Rp(3) =-,'. For p near 1, p=1—8, pi=1

~p(2'~ T.) =1——',b.

The exact dependence of 0.0 and 0.~ on c can bc can be obtained
from (3.11) but will not be calculated here.

C. Low-Temperature Solutions

I h' ection we investigate the solutions of 2.27nt issecionw
(2.28), and (2.30) in the limit of small temperatures.

We consi er rsW 'd first the host behavior, (2.28), as P —+ ~.
8=3 and findU

'
(2.19) we can expand Np(8) about = an

Np(h) = (427r') —'(3—8)'"+OL(3—h)'"j. (3.13)

0
0.5 I.O

(/. -s)

8 for a=0.25.5. The reduced spectral function ImA~

""' '""""""'""d'"-"'
th'h"t d-. ty of.t.ts gli htl shifted. The dashed curve is e

Ep s).

I.5 2.0

For suKciently large P only the region near 8=3
contributes to the integral

+' d b(3—8)i/'

3/2

—=
i

—
(

e'/'f(-:), (3.14)

(

-', (1—S') 1
(3.10) in e . isR f 4 '

a mistranscription see e .
A 1

'
the same procedure to (2.28) an ( .pp ying e

yields the coupled equations

Rppp'p+p (1 pp p) p p

-'(Rp —Rp)
=Ro —',(3Ro )+

1—z 1—&00

-', (Rp+Rp —2Rp)

1—-'(1—pop) (Rp+Rp —2Rp) p p

(T~ T,). (3.11)

The strongest perturbation on ththe nearest-neighbor
spins jfor ~ ocp' ( 0&p&1) occurs when the impurity-exchange

ue of~~&=0~. In this case one obtains a valuevanishes &~a= ~. n is
0. =0.84. Thus, in this case the therma gl avera e for
nearest-neighbor spins is a ou
very is and' t t host spins as the Curie temperature is

h d. One can expect that the eBect oapproac e . ne
uld be to includeneighbors on the second neighbors wou. be

and S. V. Tyablikev, The Green'sV. L. Bronch-Bruevich
Iienctzon ot' Method jn Statzstical Mechanics or - o
lishing Company, Amsterdam, 1962), p.. 185.

here is the Riemann zeta function. Equ ation 3.14)w ere is e
1 ds to the well-known result a ethat the saturationea s

es like 1—nT31', 0.= kmagnetization, M/Mp, behaves
'

e —,= k

8 ~)'/'1 (-:).
~

fider the low-temperature behavior o
the impurity magnetization. Equation . can
written as

-,'(1—So)

p'p(Sp)

+' ( /E8

p Le~i~@—1)

xi
'N, ( )

E(C+dR)P+ (vrdNp)')

The second factor tends to Xo as 8 —+3. If e is
b tall the second term is also hig y p

'
hl caked a outsma e

0 th second factor was8=3—3'.g. Inn fact as e-+ e
ite e however,h to tend to 5(3—h —3pgi). For fmi e p,

h near 3) cannot bethe behavior near the origin n
ignored as ar as ef th low-temperature limit is con-
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cerned. To get the qualitative behavior for ~&&1 one
approximates the second factor by (see Appendix B)

es+ (8)/(c+dg)s+ (z.$g s)s

=N, (8)+8(3 8 —3sa—,), (3.16)

(for large P). One then obtains

calculated from the reduced spectral function'

+'d8(3 —8) ImAe(8)—(S*) . (3.21)
eI'(~'& —1

C E

4J dT

Using (3.16) we 6nd the approximate low-temperature
specific heat for the weakly coupled impurity to be

—',(1—Sp) 1
w't'i-( :)+-

a s(S ') (2z.)"' es'e —1
(3.17)

(3e)'(J/kT')
c r=c,"4J for (4J/ItT&)1) . (3.22)

sinh'(6J'/ft T)

D. Internal Energy and Speci6c Heat
at Low Temperatures

The internal energy E of the host spins may be
calculated from the expression

Z/4J(S') = (3—8)Xp(8)d8/eel~@ —1. (3.18)

Following the procedure used in the previous sections
leads to the low-temperature result

Z 3 P sts

i(-',), e
4J 2 (2z)sts

(3.19)

and the low-temperature specific heat per host spin c,"

15 /k~"' f'(-', )
c,"-+—k( —

~

Tsts, P -+ . (3.20)
4 (4J/ (2z)sts

The spin-wave specific heat of the impurity may be

(where for large P, o.
&
—+ 1). A slightly more sophisti-

cated treatment is given in Appendix 8 which shows
that (3.17) is qualitatively correct whenever the width
1"of the resonance is small compared to 3e and FP/2((1.
&= (3'&sb) ~s=s s,= (1/V2z.)(3e)'ts, the width is small
compared to 3e whenever 3e«1. In the extreme low-
temperature limit the first term in (3.17) will dominate
and the magnetization in this limit is identical to that
of the host ferromagnet. On the other hand, for P 10
(about 0.1T,) and s 0.2, the two terms are approxi-
mately equal and for e 0.1. the exponential term is
larger by a f'actor of about 20. Thus a 1%concentration
of impurities with e 0.1 for example, could cause a
20% deviation in the bulk magnetization of temperature
on the order of 0.1T.. (Numerical calculations verify
the qualitative behavior but give diferent numerical
factors. )

The presence of a low-lying s-state virtual state does
not contribute significantly to the nearest-neighbor
low-temperature behavior because the factor (8—AMpp)
in (2.30) vanishes as the resonance 8=3—3e is ap-
proached. Consequently (St') is only very slightly
depressed from the host value at low temperatures.

Equation (3.22) is valid for the same conditions for
which (3.17) holds. The impurity term in (3.22) domi-
nates c„" very rapidly as T increases from zero. For
example for e 0.1 at T/T, 0.1 (P=10) the second
term is roughly a factor of 20 times as large as c„~. As
a result the specific heat departs radically from the
T'I' law. Numerical calculations of the exact expression
given by (3.21) show that for the e and T suggested
above, the impurity contribution is actually 50 times
larger than the host specific heat. This means that a
1% concentration of such impurities would give a 50%
increase in the spin-wave specific heat of the bulk
sample! This situation is analogous to the lattice
specific heat anomaly due to a heavy mass virtual
phonon state. ' The phonon specific heat anomaly has
been observed experimentally with Pb in Mg. '

E. Numerical Solutions

Equations (2.27), (2.28), and (2.30) were solved
numerically by an iterative procedure as a function of
temperature. The results are shown in Figs. 2, 3, and 4.
In Fig. 2 we have compared the behavior of the Bril-

6 In terms of the total crystal density of states

I= (Im/z) Tr(8'+If' —E)
one can write the crystal internal energy at temperature T as

W= where, of course, c,=SW/BTdEn(E)

In the lattice site representation, n(E) is simply related to the
diagonal elements of ((af, , at, t)) via Kq. (2.17):

I(E) =Zf (2 ImGft (E)/(Sr*)) =By ImAr (E).
For the assumed separation into bulk, nearest neighbors, and
impurity sites, one obtains, neglecting impurity mutual inter-
action,

n(E) =N{(1—7c)Ep(E)+6c ImAf, (E)+c ImAp(E) },
c being the concentration of impurity atoms. Thus, the three con-
tributions to the specilc heat can be computed separately. In the
text, we have taken nearest neighbors identical to host, giving

n =N(xp(E)+cD~p(E) —E (E)$}.
Note that the concentration-dependent term is dominated by the
impurity contribution in the neighborhood of a resonance in
ImAp(E). Further, if the resonance occurs at low energy, where
N p is small, Ec ImAp can dominate n(E).

7 G. W. Lehman and R. E. DeWames, Phys. Rev. 131, . 1008
(1963).Also Yu. Eagan and Ya. Iosilevskii, Zh. Eksperim. i Teor.
Fiz. 45, 819 (1963) english transl. :Soviet Phys. —JKTP 18, 562
(1964)3.

e G. W. Lehman et al , Bull. Am. Phys.. Soc. 9, 251 (1964).
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Fro. 6.The change in the speci6c heat due to a 1/z spin-impurity
concentration for various values of c as a function of the reduced
temperature T=T/T, (assuming additivity).

louin function for spin —',, tanh(6J'(St*)) to the calcu-
lated values for (Ss') for e=0.25. The curves are
obviously quite similar. A plot of the change in speci6c
heat due to impurities divided by the host speciGc heat
as a function of temperature is shovrn in Fig. 6 for
several values of e.

IV. DISCUSSION AND CONCLUSIONS

In the previous sections we have investigated the
eGect of an impurity spin on the spin-wave spectrum
of an ideal simple cubic spin--, Heisenberg ferromagnet.
It was shown that for a vreakened impurity-host ex-
change low-lying s-type virtual spin-wave states result
vrhich cause a large density of states to occur at lovr

energies. These low-energy states are excited at low
temperatures and lead to an accumulation of spin
disorder at and near the impurity site. Consequently,
the thermal average of the impurity spin decreases far
more rapidly than that of the host. This effect is
accompanied by a large increase in the spin wave
specific heat. In detail, a set of three simultaneous
integral equations vrere obtained by means of the two-
time Green's function procedure vrhich determines the
thermal averages (Ss*), (St') and (S*)for the impurity,
its N.N. (nearest neighbor) and the host spin. In
obtaining these equations it was assumed that the
perturbation was localized to the impurity and N.N.
spins. Asymptotic solutions vrere obtained for tem-
peratures near the Curie point. It vras shown that the
N.N. spins deviate from the unperturbed spins by
about 16% for the strongest perturbation (i.e., J'=0)
as T—& T,. The impurity magnetization was shown to
approach the Curie point according to ~~eo-~ for small e.
Approximate solutions to the equations were obtained
for small temperatures. In the limit as T~O the
impurity and N.N. spins approach the host behavior
but for small but Gnite temperatures an exponential
contribution due to the s-like virtual resonance appears.
This latter term begins to dominate the impurity
response in the temperature range where T~cT, for
small e and leads to a magnetization which follows the
Brillouin function with an effective 6eld equal to the

¹¹ exchange field. A concomitant anomaly in the
spin-wave specific heat occurs which for e 0.1 amounts
to a 50% increase in bulk spin-wave specific heat. The
magnetization of the impurity and the change in
specific heat were calculated numerically as a function
of temperature for several values of e.

In this paper the eBect of the impurity having a spin
different from that of the host has not been calculated.
It is clear, however, from WCI that an impurity spin
larger than that of the host will have an effect similar
to a decrease in e resulting in a lower virtual state
energy. This effect is also true for the Brillouin function
(see, for example, Fig. 2 of Ref. 2). Thus the e6ects we
have discussed here can be important for larger e when
the impurity spin is larger than that of the host.

We have considered only the simple cubic structure.
The qualitative low-temperature features regarding
the e8ect of the low-lying s-type states will be unaffected
by the details of the structure. This is true because the
results depend only upon the low-energy host spin-wave
density of states being proportional to b'I'. This result,
except for multiplicative factors, is the same for all
cubic structures.

Recently Jaccarino et al.s reported the results of a
nuclear-magnetic-resonance experiment on manganese
in ferromagnetic iron. They observed that the NMR
frequency of the Mn decreased with temperature much
more rapidly than the magnetization of the bulk sample.
A plot of the Brillouin function labeled v/vs given by
Jaccarino et al. is shown in Fig. 7. The experimental
data which cover the temperature range up to about
0.6T. fall on the Brillouin curve. The curve My, is for
the magnetization of the host. (1.5% Mn in ferro-
magnetic Fe.) These results were interpreted as evidence
for the existence of a low-lying virtual spin-wave state.
With the assumption that the NMR frequency is
proportional to the thermal average of the manganese
electronic spin ((Ss*) in our notation) and that the
Mn-Fe exchange was substantially weaker than the
host Fe-Fe exchange (s(1) they deduced that (Ss')
should vary according to the Brillouin function with
an effective Geld equal to the Mn-Fe exchange Geld

which they assumed proportional to the bulk mag-
netization. By appropriate choice of e and the Mn spin
they were able to Gt the experimental data quite well.
A similar interpretation has been given for Fe in Ni by
Howard et al.' The experimental data of Jaccarino
et a/. ' is qualitatively similar to the numerical results
we have obtained for e betvreen 0.25 and 0.35 for spin
~. A numerical comparison cannot be made since our
calculations are based on spin 2, whereas the Brillouin
function in Fig. 7 is for spin s. The results of our
calculations are highly suggestive of the interpretation
given by Jaccarino et at. for Mn in Fe; however, it
should be noted that this model is in disagreement with

'D. G. Howard, B. D. Dunlap, and J. G. Dash, Phys. Rev.
Letters 15, 628 (19653.
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Fro. 7. A reproduction of a 6gure given by Jaccarino et el. (Ref.
3). The HID curve is the bulk magnetization of a 1.5% Mn in Fe
sample as a function of the reduced temperature T=T/T, . The
v/vo curve is a Brillouin function which best Gtted the Jaccarino
et a/. NMR data.

the interpretation of the elastic neutron-scattering
experiments by Collins and Low' which indicate that
for Mn in Fe the Mn site has a negligible magnetic
moment.

One might expect that the Mn in Fe system would
show an increase in the spin-wave specific heat if the
present interpretation is correct. Unfortunately, even
though the change in spin-wave speci6c heat may be
large, the large lattice contribution would tend to mask
the effect.

One might expect that a dilute solution of rare-earth
ions in a transition ferromagnet would have a small e

since the f electrons are quite well shielded. The ex-
change would probably be indirect f dexchange v-ia

the conduction electrons. If the rare-earth ion was a
Mossbauer emitter one could get the local magnetization
by a study of the Zeeman splitting of the line as a
function of temperature. (This technique has been
employed by Howard ef aLo for Fe in Ni.) If one uses
a Fe host then it may be possible simultaneously to
study the nearest and next nearest-neighbor magnet-
ization from the Fe'~ Mossbauer line. The feasibility of
such a study has already been established by Stearns
and Wilson. "

APPENDIX A: NORMALIZATION OF THE
DECOUPLED SPECTRAL FUNCTIONS

In Sec. IIIB it was remarked that neither decoupling
the Green's function equations of motion nor truncating
the/perturbation matrix hM destroyed the intrinsic
normalization of the reduced spectral intensity functions
ImAp(8) and ImAt(8) defined by

ImA;(8) =lim i [G;,(8+i—e) G,;(8 ie)—j/(I b;,b—,tj)
' M. F. Collins and G. G. Low, Proc. Phys. Soc. {London) 86,

535 (&96i).
"M. B. Stearns and S. S. Wilson, Phys. Rev. Letters 13, 313

(&964).

2rr8 ReG "(8)
lim = lims~ ([b b.tj) s-+co

d 8 ImA;(8')

XP (8'/8)"= d8' ImA, (8') .

One may now readily establish that

d8'A, (8') =1

simply by examining the asymptotic form of 8G;;(8)
as obtained from the solution to the decoupled
equations:

(&o') (Boo 2~&—rior)
Gpp(8) =

2x detA

(&r*) s(8—~~op)got
Grr(8) =

2x detA

00 03

1—~rr[goo —gos]

a [goo+ go —28osg

~~[goo+goo 2gpsg

The behavior of g» for large
~
8

~
is easily derived from

(2.18):
1 3

goo= + +
8 28'

g ~ +,
28'

gosi goo= +
483

with the identity ([b;,b)j)= (S ) on'e can now directly
verify that

2m 8
lim ReG,;(8)=1,s-" (S; )

This result is most easily obtained from the analyticity
and asymptotic properties of G;;(8). First, the dis-
continuity ImA; vanishes for sufficiently large ~8~;
this forces the real part of 6;; to be continuous across
the real axis (by the symmetry principle). Further, for
large arguments, each G;; falls oG at least as fast as
1/8; therefore, one may write the dispersion relation
(for real 8)

1 "d 8' ImG;; (8')
ReG, ,(8)=—

8—8'

([b;,b;t)) -"d 8' ImA;(8 )

2x +„8—8

Multiplying both sides above by 8 and letting h tend
to in6nity leads to the relation
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which shows that the decoupling procedure preserves
the requisite normalization.

APPENDIX 3: APPROXIMATE MAGNETIZA-
TION AND INTERNAL ENERGY AT

LOW TEMPERATURES

%hen the impurity exchange is su6iciently weak
(e«1) it is possible to derive approximate expressions
for the impurity magnetization and internal energy
integrals in the region of temperature where the host
magnet1zatlon decreases as T I

~ Under these con(4tlons
the integrand

expP{3—8)—1 expP(3 —8)—1

o pe'Ep(8)
X

Lc+dEp(8) je+LwdXp(8) )'
is appreciable only for that range of 8 such that
0&3—8&3eo ~, since ImA p(8) approaches 8(8—3
+Beoq) for small e and the temperature factor can
counteract the vanishing of Imd 0 only in the neighbor-
hood of 8=3. This suggests immediately the replace-
ment of ImAp(8) by a function with the proper
behavior at 6~3, plus a function which is sharply
peaked about the resonance h=3 —387~, with width I'
equal to ~bXp(3 —Beo~). The simplest choice for such
a function is

3—3~yr
(pe«1)—

3—3e—$I'
d8/t exp@(3—8)—6-

+Pe

Thus, for the total spin deviation of the impurity one
obtains

(ep)~(2nP) Pl'i (')+ (2—/I'P)e "o sinh(-,'I'P), (Pe&1)
+("'-1)-', (O «1).

A similar set of expressions is obtained for the impurity
internal energy if one recalls that

The first term will be hnmediately recognized as (n)
for the host, which for low temperatures is given by

( )=(2 ~)-"'f (-:),

t'(x) being the Riemann zeta function. The second
term can be evaluated approximately if either Pe&1
or Pe&(1, provided only that I'/6e«1. But

I'= (Be)PI'/V2m«e for e&0.1,
so for e in this range one readily derives the asymptotic
forms:

3—3 a+$1'

(Pe& 1)— d8/(expP(3 —8)—1j
3—Sc—$F

(2 tI'P
~

—e—"esinh~—
&IP &2

ImAp(8) Xp(8)+—Le(8—3+Beo.g+-,'I')
r —I(8—3+Beo g

—pl')],

N(x) being the unit step function. For the impurity
magnetization near T=O one may now write the
approximate expression (taking o p o & 1)

d8 Np(8)

p expP(3 —8)—1

3—Se+~sF

d 8/LexpP(3 —8)—1j.
3-Se-$F

Ep= 4J(S')(3—8) ImAp(8)d8/expP{3 —8)—1

=3~(2~P)-'I'i (-',)
4J

(~l ~
+Bel —le "sinh( —I+- cosh) —

I

EIPi E2 i 2P E2 i
+Be/(e"&—1), (Pe(&1).

with the above approximations, one obtains for low
temperature and small e


