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Spin-Lattice Coupling of a Kramers Doublet: Co'+ in MgO
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The spin-lattice coupling constants for the Con+ ion as an impurity in MgO have been measured by using
a uniaxial-strain technique. The coupling tensor. elements applicable to the change of g factor with strain
are Fn = —69/(unit strain), F~r =32/(unit strain), and F44= 10/(unit strain). The coupling tensor relevant
to the change of hyperfine splitting with strain is related to that for the g factor by a multiplying factor of
1.74X10 "ergs. The point-charge model has been used to evaluate the same coupling constants and the
theoretical results agree in sign with the experimental results but are larger in magnitude, by about a factor
of 9. It is also pointed out that for several ions of the iron group the point-charge model gives remarkably-
good values for the spin-lattice coupling constants, agreeing in both sign and magnitude with experiment.

DTTRODUCTION

RAMERS doublets are less strongly coupled to
the lattice than are the levels of ions with effective

spin greater than ~~, and their coupling to the lattice
has not been studied in detail. Co'+, even though its
actual spin is —,', has an eBective spin of —,

' in the oc-
tahedral cubic Geld of MgO, With its low-lying excited
states one would expect the spin-lattice coupling to be
large for a Kramers salt and experimentally it is known
as a fast-relaxing ion. With this in mind Co'+ has been
studied both experimentally and theoretically, using
the point-charge model. The results are compared with
similar studies on several other iron-group ions.

Spin-lattice coupling coefEcients or magnetoelastic
coupling coefficients of a number of iron-group ions have
been measured in recent years both by ultrasonic-
attenuation methods'' and by utilization of static
uniaxial stress in paramagnetic-resonance' ' exper-
iments. The agreement of the constants determined by
the two methods allows one to choose the more con-
venient measurement technique. In this case the shift
of resonant-6eld position produced by application of a
steady uniaxial stress has been used to determine the
spin-lattice coupling coeKcients of Co2+ in MgO. This
method determines absolute sign as well as magnitude
and, in addition, is generally less demanding of crystal
tolerances than the ultrasonic method.

SPIN-HAMILTONIAN FORMALISM FOR
SPIN-LATTICE COUPLING IN

KRAMERS DOUBLETS

It is most convenient to express the spin-lattice
coupling results in spin-Hamiltonian form. In analogy
to the usual spin Hamiltonian used for the Kramers
doublet ground state of Co'+ the perturbation due to
the applied stress is represented by

H'=pH sg S+I sT S, (1)

where Sg and ST are tensors which depend linearly on
the strain introduced into the lattice. These tensors

' N. S. Shiren, Bull. Am. Phys. Soc. 7, 29 (1962).' E. B.Tucker, Phys. Rev. Letters 6, 183 (1961).
' G. D. Watkins and E.Feher, Bull. Am. Phys. Soc. 7, 29 (1962).
4 E. R. Feher, Phys. Rev. 136, A145 (1964).

may in turn be expressed as the product of a fourth-rank
coupling tensor and the strain tensor. It is most
convenient to express this relationship in matrix form
using Voigt notation.

Bg;=F;,e;, 8T;=Z;;e, (2)

In addition to the simplification introduced by this
notation it should be noted that the matrix strains (e;)
are the actual or engineering strains rather than the
tensor values, in which the shear strains are just half the
actual strain.

In the case of non-Kramers iron-group ions, where the
quadrupole spin selection rules govern the eGects of
strain, the perturbation takes the form

H'=S SD S.
The coupling matrix, related to the strain via the

equation 8D;=G;,e,, is simplified, beyond the limita-
tions imposed by the symmetry of the lattice site, by
the fact that the trace of Eq. (3) is not an observable.
That is, the addition of the quantity S '+S„'+S.'

S(S+1) shifts the ground-state levels uniformly and
is not effective in changing the paramagnetic spectrum.
The usual choice is to set the trace of Eq. (3) equal to
zero. The result of this procedure in a cubic system is
to require that Gts= —(-', )Gtt, leaving only two in-
dependent coupling coefBcients G~1 and G44. There is
no such simplifying condition for the Ii;; and the Z;;
coupling constants, and hence one expects. the three
independent matrix elements, F~1, F~~, and F44 allowed

by symmetry, to exist.

EXPERIMENTAL RESULTS

The three independent terms of the coupling matrices
require a measurement of six values of bg and BT using
different stress and magnetic field directions relative
to the crystal axes. The shift of resonant field bH, is
given by the expression

gp5H =p8g„H, —5T,,I,—-,'p(3T,.)'/gpH j
XP(I+1)-I:3 (4)

neglecting second-order terms such as (oH) (bg).
Although a term equivalent to the last one on the right
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is necessary to account for the paramagnetic spectrum,
the accuracy of our experimental results is such that
we can neglect it in the stress experiment analysis. The
field shift is taken to be positive if the resonance Geld
increases when stress is applied.

The shift of resonance 6eld is determined by noting
the Geld shift due to application of stress using as the
spectrometer signal the absorption derivative. This
allows very sensitive detection of 6eld shifts even for
relatively broad lines. Any frequency shift due to
detuning caused by the stress should be taken into
account as added terms in Eq. (4). In practice the
corrections required for this purpose were minimal if
the crystal was carefully positioned in the apparatus.
A change in line shape, in particular the development of
asymmetry, with stress would have caused difhculty
in this type of measurement but insofar as we could
determine the shape did not change.

The shifts observed were in some cases rather small
and it was found to be desirable to measure 6eld
diGerences, for a given hyperdne transition, for the
stress o6 and on conditions by successive measurements
rather than to scan the eight hyperfine lines first in

one condition and then in the other. For one thing this
minimized the trouble with phase changes due to the
change in liquid-helium level in the cryostat, which
were bothersome even though the waveguide was
packed with polyfoam.

The paramagnetic g tensor is symmetric and therefore
is diagonal in the coordinate system normally used for
the g tensor. The application of stress to the crystal
changes the crystal syrnrnetry, and the g tensor by the
addition of the bg's. The new g tensor must also be
symmetric and hence a rotation of the coordinate sys-
tem will again diagonalize it. Experimentally, with
the use of uniaxial static stress, the dc magnetic 6eld
is oriented along one of the principal axes of the stress
modified g tensor and the bg» for that direction deter-
mined. This bg value may be related to the nondiagonal
tensor referred to the original g coordinate system and
the values of the tensor elements in the original system
determined. For the cubic system three measurements
of bg for diferent directions of stress and magnetic
Geld relative to the crystal axes are sufhcient to deter-
mine the various values of bg. The necessary measure-
ments are then those tabulated below

Stress
axis

(100j
L100$

L110)

H
axles

$100], (] stress

L010$, J stress

[110], (~
stress

3g (2~12~12+~11+11)X

~g (~12~11+~12~12+~1612)X,

3C {(2) (~11+~12)(~11+~12)++12512+2F44S44)X.

The equations at the right result from expressing the
strains of Eq. (2) in terms of the stresses by use of the
elastic constants —e;=S;,X,. The equations for the
3T's in terms of the Z's are identical. The three exper-
imental determinations of bg and 87 resulting from the
determination of bH in the three circumstances given
above for both the lowest (I.=+2) and the highest
(I,= ——,') hyperfine lines and use of Eq. (5) provide
sufhcient data to solve for the E's and E's. There are
two reasons for using these extreme transitions for the
calculation of constants. Since the 6eld separation. is
greatest for them the accuracy of the experimental
results should be greater than for any other pair and,
in addition, if there were a contribution from the
quadratic term of Eq. (4) it would be smallest for the
+ ~7 transitions.

The experimental results are presented in Fig. 1 as
values of bH produced by a compressional, i.e., negative,
stress. The shift of resonant 6eld is largest for the
lowest of I=+2 level and the decrease of shift at higher
fields is due to the hyperfine interaction term more than
compensating for the increase of the erst term due to
the larger value of H. The linearity of the data is the
justification for neglecting the quadratic term of Eq.
(4). The hII determination for both the lowest and the

TABLE I. Experimental data for a stress of 6.34&& 10 dyn/em'.

Stress
axis

Field
axis

BTjbg
(erg)

$100) $100j
$100j L010j
$110) L110$

0.02025
—0.00980

0.00330

357 X10~
—1.672X10~0

0 573X10~0

1.76X 10—,&8

1.-71X10-'8
1.74X10 '

~ W. Low, Phys. Rev. 109, 256 (1958).

highest line for the same conditions of stress and Geld
orientation then determine the dg and BT values.
These are given in Table I. The values of hg and bT
represent the result of experiments on MgO crystals
containing several percent Co and which are pink in
color. The results from one crystal to another vary
sufficiently that the values of 8g and 57 vary by about
+10% and the values of the matrix coeflicients
particularly J'"44, and Z44 vary by about double this
amount. This presumably is due to the inhomogeneity
of the crystal and certainly one of the possible sources
of error is the assumption that the bulk constants
assumed for the crystals are the correct ones.

The values of the constants of the spin Hamiltonian
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magnitude from that of Mn~+, i.e., it is weak. On
substituting values of the constants, characteristic of
MgO, into Eq. (7) (p= 3.58 g/cm', 8=6.6& 10' cm/sec,
s=10" cps, T=4'K) a value for Tr of approximately
60 sec results using the F and Z components character-
istic of transverse waves, i.e., F44 and Z44.

Experimentally Co'+ is known as a fast-relaxing ion
and T~ values tend to be in the vicinity of a millisecond.
It is then very apparent that the relaxation as normally
observed is not taking place through the "direct"
process.

)Q-

"~P
25-

20-

4P

COMPARISON TO THEORY BASED ON
THE POINT-CHARGE MODEL

Speclic calculations of the spin-lattice coupllQg
coe%cients of Co'+ in MgO have not been published
but the general problem of treating the spin Hamil-
tonian for Co'+ has been considered in detail by
Abragam and Pryce' and much of their discussion is
applicable to our problem. The experimental work and
the specialization of the spin Hamiltonian to the cubic
Geld as carried out by Low' is relevant and will be
referred to in the development. The case of Col+ in
lanthanum zinc double nitrate has been treated by
Culvahouse et al."and values of the 8g tensor obtained
in the approximation that the field is cubic but no
admixture of the upper levels due to the cubic 6eld
need be considered. As will be seen, this assumption
may not be carried over to the MgO host lattice.
Pryce» has also calculated some of the coupling
coefFicients for Co'+ in MgO.

Theoretical values of the coupling constants are
quite readily calculated by utilizing the formahsm
introduced by Van Vleck" in colisidering the matrix
elements due to the normal modes of distortion of the
octahedron sur rounding a pal amagnetic lIDpurlty.
Because of the importance of the spin-orbit coupling
in splitting the orbitally degenerate ground state, the
orbit-lattice interaction is considered as a perturbation
on the levels of the spin Hamiltonian in a fashion
discussed by Orbach. '~

In order to construct the appropriate eigenfunctions
for the usual treatment of the cobalt ground. state the
following eigenfunctions, those of Abragam and Pryce, 9

are chosen for the I'4(Tt) level in the cubic Geld formed
from the 'Il level of the free cobalt ion (see Fig. 3)

S *=Vlf (V's)As COS3S —(V's)At COS9 },
s.=v2f —(V's)it s»in3s —(v's)it st »ns }, (8)

z=it'ss
y

8 P. W. E. Smith, 14th Annual Report of the Eaton Electronics
Research Laboratory, Meoill University, Montreal, Canada,
p. 3'l, 1963 (unpublished).

'A. Abragam and M. H. L. Pryce, Proc. Phys. Soc. A206,1'0 (1N1).
'0 J.W Culvahouse, Vf. P. Unruh, and D. K. Brice, Phys. Rev.

129, 2430 (1963)."M. H. L. Pryce (private communication)."J.H. Van Vleck, J. Chem. Phys. 7, 'l2 (1939)."R.Orbach, Proc. Phys. Soc. 77, 821 (1961).

foal"- -i/) "5/P -% ) )

I

0-

and for the I' s(Ts) level

P =@2{—(V's)g'ss COS3y —(V s)it'st COSq'}

~i s=~f—(v's)A»i»~+ (V's)At sing},
IPg=V2ii'ss cos2p,

and for I', (A,)

where
X=V2it'ss sln2y ~

ipse= (V'-', )f sscos'8 —-', cos8},
g'st= (21/2)'I' f (5/4) cos'8—st sin8},
ass= s(V 105) cos8 slI1'8,

fss=ii(V 70) Sin 8.

In the usual fashion, the eigenfunctions of I+1),
I
—1), and I0) to be used in the treatment of I's as an

eGective spin= 1 state are de6ned as

Similar combinations are also used for the I'5 orbital
triplet.

The cubic 6eld admixes some of the 4I' level into F4,
and in fact the result of combining Eqs. (8) and (9)
with this admixture is vrave functions for I'4 as follows:

I
—1)=sf —(v's)A. -t—(v's)A. +s}—«t,-t

I+1&=ef —(v's)its, +t—(v'ss)A, -s}—«t.+t, (1oa)
I o)= sA, s-«t. s

FREE CU81C L.S.

m=-' '/p

r, /p 0

FIG. 3. Energy levels of Co~+ as split by a cubic 6eld and the
spin-orbit interaction. The expanded levels at the right are
labeled with their symmetry properties and their eigenvalues —the
value of X is negative.
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after substituting for the siny and cosy and assuming
the Condon-Shortley convention for signs. The function
ice, i represents p»e—& or I.=3, 3II,= —1. The angular
momentum of the triplet is given by n—= —(-', e' r—'),
which for small v is just —o.=—-', . The wave functions
for I'q, which are required later for perturbation calcula-
tions, are

The spin Hamiltoruan appropriate to the treatment
of the Mn'+ spectra is given by

3:=MPH. S+WS.I (14)

similar in form to Eq. (1), and in which the constants
are g=4.278 and 2=194.229X10—"erg. Theoretical
evaluation of these constants is straightforward from
the treatment of Abragam and Pryce, 9 but the proce-
dure is worth summarizing for future reference.

There are both orbital and spin contributions to the
g value in 6rst order and an orbital contribution, due
to admixture of the I'q level by the spin-orbit interaction,
in second order. The results is

I+»= (v'-'. )~. .—(v'-'. )~...,
0)= (1/v2) (p, ,+p2 &), (10b)

I
—1&=+(v's)A. +i—(v'8)A, -~.

It should be noted that these are reversed from those of
F4 so that 6m=0 transitions (or mixing) will occur
be~ween Ir4+1& and Ir,—1).

The wave functions of the 4I' level are taken to be
the p functions (also with F4 symmetry)

g=2&!I&.+2S.I!&
1st order:

gsi ——10/3,

ggy= 30!
I +1)= ——,'v3 single'i',

I0)= (g-,') cose,

I
—

1&=-,'&3 since-'&.

The spin-orbit coupling splits the threefold or
degeneracy of F4 into levels of symmetry I'6, I'8, and
I'7+1'8 with effective spina of ~~, $, and ~~. The treatment'
assumes a representation in which both k„ the orbital
angular momentum +1 or 0 in the triplet, and 5, are
diagonal, sets up secular equations for each value of
m, =l,+S„and then solves these equations for the
eigenvalues. These are as indicated on Fig. 3. The
eigenfunctions appropriate to the three levels into
which I'4 is split are given by

where the I'4 to I'5 splitting 6 is taken as 8470 cm—', '
and e is the actual angular momentum given above.
The value of the hyperfine constant A is given by

4yPk
(-; II..+(PI.(I,+1)—u)S,

r3

-l~LL.(~ S)+(~ S)I-.jl-:&,1
I+l~.)=—1-1,—:&—I0, !&+ I1,!).

(10c) 2nd order:

»'&-:IL.ll.&&r.l~ sll& 2l'&;:l~ sll'.&&r.l~. lx&

g1,2=
bital

1
I
—-'1'6& =—I1 —-'&—

I
o —-'&+

I+Vs&= —(5)"'I0,5&+(s)"'l1 2&

I+21'8&= (x)"'I —1, k&+(1/15)"'I o, +k&

-2(2/15) i~2I 1, --,'&.

I
—lf'.&= (-:)P'l1, —l&+ (1/15)

—2(2/15) I
—1„&.

l-ll.)=-(l) ~ Io, -l&+(!) ~ I-1, -l&.
I+-'f'~, .&= I 1,—:).

I+sf'r, s&= (s)'"
I 08&+ (s)'"

I 1,2&.

I+21'~,8&
= (—'0)"'I —1, +4&+(s)'"l0, 2)

+(i'o)"'I 1, —k&

I
—kf'~, 8&= (~0)"'ll, —2&+(s)'" I o, —2)

+(h)"'I —» l&.

I
—V~ 8&= (0"'Io —4&+(s)"'I—1 —2&.

I
—Y»)= I

—» —l&.

(2l+1)—4S

S(2l—1)(21+3)(2L—1)
l=2, 5= ~3.

The 5, term, with coeScient k, is included to allow
an admixture of configurations containing unpaired s
electrons and is necessary to account for the hyper6ne
structure. The contribution of the d electrons, given
by the terms in $, is very small, leaving the s electron
part the only important one other than the orbital
factor represented. by I.,

It is necessary, in general, to make allowance for
electron transfer to neighboring ions. This has been
treated by Stevens&4 and by Tinkham" and for our
purposes the situation may be handled by assuming
that, in place of the wave functions of Eq. (8) we have
a mixture of the d electron wave function on the Co'+
with some wave function centered. on the neighbors

(13)
+(P+'geneighbors) ~

For the cases referred to above, the 0's are p and s
functions. Calculation of the orbital angular-momentum

'4 K.%.H. Stevens, Proc. Roy. Soc. (London} A219, 542 (1953).
"M. Tinkhmn, Proc. Roy. Soc. (London) A236, 535 (1956).
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TABLE II. Normal-mode matrix elements for transitions between levels of the same symmetry. .

+1
0

—1

4p 4p

'&r4 —4&r4

4J'r4 —4&r4

4I"r~—4~r~

v3uQI
-b(Q.+'Q.)—3aQ2 —iV2bQ4

a= (2/5) pI+ (25/132) p2
u'= (3/5) pI

9+21 25+21
P1+ P2

70 378
u"' =0—(175/396)p2

p1= ee,ffCI(~0'/R')

—b(QS—iQ6)
—243uQ3

b(Q+'Q)
b

b = (1/v2) L(1/5) pg+ (5/11)p4j
/i' =—(6/%25) pg

tt'21) '~' ( 6 5

E2 j (35 126 j
5'"= (1/"/2) Eu~+ (5/33) pol

pp = eoegiCp(rp /R')

CI
(3/7)

—1

+21
(3/7)

C2
—(11/7)

0
3

+21
—(11/7)

—3uQg+AfbQ4
b(Qs —Q6)

AaQ3

matrix elements in the ground-state results in

&o.'IL I o -'&=k&o -IL I o -&, (19)

that is, the delocalization of the electron decreases the
orbital momentum. and k is referred to as the orbital
reduction factor. k is related to 37 and p in a way which
will depend on the choice of wave functions in Kq.
(18),but in general N will be smaller than k.

Calculation of the orbital angular-momentum
matrix elements between I"4 and I'& which are required
both for g12 and for the equivalent part of A are not
so simple, and the usual assumption is to take 'A', the
effective value of X, as equal to Xl437l,X. From the
experimental value of the splitting between the two
lower r4 levels (305 cm ')" and the first-order theory
which gives the splitting as -', oP' we And that ) '=135
cm—' (X=—180 cm—' for free ion) and hence that (Nr4)'-
=0.81. The resultant value of g is then

g = 10/3+ ps k4p —15) '/2d, (20)

and that for A is

2 &+o IH (I+2S) lro&&rol VQ'I+o&bg=—
H

+-,' v, , r, r, I I,+2S +-'
+ Ql && I (

"P.Cossee, Mol. Phys. 3, 125 {1960).
'7 y=nuclear moment/Ik. gN= nuclear moment in nuclear

magnetons/I.

A =N'Pggr, ', kg, + (1/63) (1—1—5r-')]
A =N'I'Pn (15/2) ()j.'/6)——(5/3)k

+ (1/63) (1—15r')], (21)
I'=2yPh/&ro&=2gNPPir/&ro& ''

Further reference will be made to the above equations
in the discussion of the comparison of the experimental
results to the theory.

We now turn to the problem of calculating the
spin-lattice coupling constants. The lowest order change
in g due to the lattice strain, either static or dynamic,
is from second-order perturbation theory and is of
the form

where the Q s refer to the normal mode distortion of
the octahedron as treated by Van Vleck."

The normal distortions are de6ned as

I',Q,=E(e„+e»+. e„)/+6,
Qp ——E(e„—e„„),r,
Qp ——R (e„+e»—2e„)(1/K3),

'Q4 ——R(e.„),
rp~ Q,=E(e„),

.Q,=Z(e„.),

(23)

where the e; s are the "engineering" lattice strains and
E the lattice spacing. The brackets indicate to which
irreducible representation of the cubic group the
distortions belong (labeled according to Bethe's
nomenclature).

It should be noted that the definitions of Q4 and Qp
are reversed from that needed in order to agree with
Voigt notation.

The V; coefficients which multiply the Q's of Eq.
(22) are given by"

Vp=go(A (xp' —yp')+B(xp4 —ypp)+
Vo= 2 o&A (*o'+yo' —2so')+fl (xo'+yo' —2so') )

x (1/~3)+",
V =Qo(C(xoyo)+E(xo'yo+xoy, '))+
Vp ——

Q p{C (xpsp)+E (xp'sp+xpsp') )+
Vp= Zo(C(yoso)+&(yo'so+yoso'))+

where the summations are over the d electrons, and the
constants A, 8, C, and E are given by

/'18 75rp') 1/SeXe, ii
A =-,"xe.nl-

EZ4 Zp/'
(25)

6 15rop
C=exe nl ——+

I/4 Ep l
35eXeen

with e,fg being the effective charge of the neighboring
lons.

In order to determine the eGect of the strains on the
spectrum the matrix elements of the coordinate
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TABLE III. Normal-mode matrix elements for transitions between levels of diBerent symmetries.

4~r4 —4~r,

4~r, —4&r4

+1
0

—1

uQ2 —A2bQ4

b(Q.-'Q.)
v3uQS

2+15 25+15
pl p2

10 352

9 20
ev= (v'35) pi —pB ~——

70 21 )
pl= Be ifC1(f0/+ )

F4
0

—b (Q&+iQ6)
—2uQ2

b(QB BQB)

b

(15)'~'(1 2

/

—»—»
(2 j E,15 33

t'35 '~'(6 1
I

—»+—»
&35 14

ps= ee ffC2(~o'j~')

v3uQ3
—b(Qs+iQ6)

uQ2 —iVZbQ4

3

7

+21

C2

11

7

combinations appearing in Eq. (24) must be evaluated.
These are given in the Appendix. The total e8ect of
the strains is obtained by combining these matrix
elements and the above constants with the results
shown in Tables II and III. Some of these values have
been tabulated by Van Vleck»2 but the cross terms such
as 'Pp4 to 'Fp4 which are necessary for our purpose
have been added.

The C& and C2 constants are those required to convert
the one-electron matrix elements such as given in the
Appendix to those appropriate to Co'+, the former
applicable to second-degree terms and the latter to
those of fourth degree.

The determination of g to second order utilizing
Eq. (22) and to third order, from equations of the type

2(-',r, [LJ-,'r, &(-,'r, [) L sJ(r,)(r, [ v,(),t-', r,&

~X-'o.X'

corresponding to the second-order g correction, involv-

ing both upper levels of j."4 as well as Fs as intermediate
states, is straightforward. The necessary matrix
elements of L and L S are readily obtained from the
eigenfunctions of Eqs. (11), (12), (13),and (10a), (10b),
and (10c).

The degenerate ground-state treatment means that
the normal labels used on g factors, in which the i and j
of g;; refer to orbital angular-momentum operators of
the spin-orbit and the Zeeman energies, are not applic-
able. We can however assign the bg contributions to the
appropriate coupling constant by noting that the
octahedral symmetry of the MgO lattice allows us to
write the 8g in the following form

By determining the effects of various normal distortions
in either bgfi or bg~ the values of the F's are obtained
as follows: We write the total bg=bg(L2)+bg(L3)
+bg(S2) indicating the orbital or spin contribution and
the order of perturbation required. From Eq. (27)

bgB F12e1+F12e2+F11eB

Sgg =F4485.
(28)

Utilizing the fact that the Q's are equal to eR, the
strain multiplied by the interionic distance in the
crystal, we have

bgB
——(1/QB) LbgB (L2)+bgB (L3)+bgB ($2)$

X (e&+eB—2eB)R, (29)

bg = (1/Q )Lbg (L2)+bg (L3)+bgB(S2)JeBR,

and hence

FBB———2FBB
———(2/QB) LbgB (L2)+bgB (L3)

+bgB(S2)jR, (30)

F44 ——(1/QB) LbgB(L2)+bgB(L3)+bgB(S2)]R.

QB does not contribute to gB nor does QB to the order
with which we are concerned. This results in the same
sort of relation between the F coupling constants as is
found to the G coupling constants applicable to the
ions with spin greater than -,'.

A calculation of g3 and gs will then determine the
theoretical values of the coupling constants FI~, F~2,
and I"44. The former is quite straightforward and the
result is given by Lsee Eq. (22)j

4&+@Ls+2SI ~+Bra&&+Bra[ l BQB ~ +B&
8g3=

~].1 ~12
~12 ~11
~12 ~125g=

0 0
.0 0

Fg2 0 0 0 ey

F~2 0 0 0 e2

P~g 0 0 0
0 F44 0 0 e4

0 0 P44 0 eg

0 0 0 ~44. .&6 ~

(27)

4(2+kn)= —
QB (4'a 2eru" +r'a'), —

vSs

(31)

=bgB(S2)+bgB(L2).

Now gs can be calculated either by using the H,
X (L,+2S,) in combination with QB or H, (L,+2S,)
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with Qs. the first resulting in the spin Hamiltonian
expression II,g„S„corresponding to a sort of gtl, and
the second resulting in the form II,g„S, a g~ term
capable of inducing transitions between the lowest &~
lcvcls. Thcsc give thc same numerical result, but since
thc 6rst method results in a single term rather than the
two required in the second calculation, we use the
former with the result

«+ll~.+».l+', ~.)(+l~. l ~.Q.I-!)
egg=

=Qs(242/3) L(2+an)/6) (e'b —2erb"+r'b')

=bg, (SZ)+bg, (L,2).

The value of 6 is given by ~0.) '. It is essential that the
admixture of 'I' be considered, as cross terms will

contribute a major portion of the theoretical value.
The uppermost of the 4' levels (1'+1's) does not con-

tribute in second order.
The second-order contribution to the g factor of Eq.

(20) amounts to about 1-,'%, and the third-order
correction to bg should be of about the same importance.
There is a contribution from Qs, involving the compres-
sional strains, to the bgff. The third-order expressions
are complicated again by the fact that the spin-lattice
coupling mixes the 4F and the 4I' portions in I'4. The
result is

Xp/3) (+5)(2+% )(a've' av —)+X(15/4) /3" (e'a 2«—a"+ 'a')
Qs

resulting from I.,+25„7L S, and Q, , from +s to +—,'with various intermediate states.
The eRect of Qe on bg„ is, in third order,

(7 (+30)y'/l2) (2+kn) (e'b'v —erbv) —(9V2'Y/8) e'(e'b —2erb"+r'b')
e

l-,'nvlhp, p,
(34)

COMPARISON OF THEORY AND
EXPEMMEÃT

The numerical evaluation of the results quoted in
Eqs. (31), (32), (33), and (34) is now required to
obtain the values of the coupling constant»», ~u,
and F44. The major necessity is the determination of
the various a and b values defjned in Tables II and III.

Rather than use a calculated value of the cubic-Geld
splitting we will make use of Van Vleck's" expression
for the cubic-Acid splitting parameter based on the
porn. t-charge model

D~= —le Xe.«(&~)/&')

and evaluate the right-hand side from the experimental
value of the quantity Dg. This is quite permissible
since the a's and b's arc derived from a point-charge
model. The value of 960 cm ' obtained by Low' results
ln

eXe,44((r4)/Es) = —5760 cm '.
There remains a factor of (rs')E'/(rs') to be evaluated.
This has been calculated from the wave functions
given by Watson" with a resulting value of 5.39 from
the values (rs') = 1.251 a.u., (re4) =3.655 a.u. , and
@=2.1 /=3. 79 a,.u. (1 a.u. =0.529X10-s cm) (see
Table V).

'8R. E. Watson, Solid State and Molecular Theory Group,
Massachusetts Institute of Technology Technical Report No. j.2,
1959 (unpubhshed).

The values of the a and b constants are then

a= —5150 cm—'/R,
a'=+18 660 cm '/8
a"=+14830 cm '/R
a'"= —4000 cm—'/E,
a'v= —12 800 crn—'/R,
av +41 820 cm '/E,

b=+620 cm '/R,
b'= —26 350 cm '/E,
b"= 15 540 —cm '/R,
b"'= —8440 cm '/E, .

(37)

b'v= —3890 cm '/E,
bv=+18 300 cm—'/R.

e'a 2era"+ r'a'—= 11 620 cm '—/&,
e'b —2erb"+r'b'=+7870 cm '/~,

e'a'v —erav= —20 650 cm '/E,
esblv erbv= —7360 cm 1/g. ,

(38)

These constants depend almost directly on the value of
tile latlo (rs )R /(re ) and dcclcasc as 'tllls ratio ls
decreased.

The evaluation of the combinations of constants
occurring in Eqs. (31) through (34) rests in part on
the values of the constants & and ~. These have been
evaluated by Lows as &=0.980 and v=0.204 from
measurements on the optical spectra of Co'+ in MgO.
The sign of r used in Eq. (10a) is the result of the sign
of the cubic-6eld parameter and the negative sign is
consistent with the ordering of the other levels. The
values' of ~nX'= 305 cm ' and Az4 z,=84/0 cm ' are
used in the final evaluation of Eqs. (31) and (32).
Then we have
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and the resulting values of the coupling constants are

Pll= 2P12= 2(285+35.5)= 642/u111t stra}n
F44= 83+5=88/urut strain.

In the above the first figure is the second-order contribu-
tion and the second the third-order part. It is note-
worthy that the 4J I,—4E'I, terms add so that the
admixture of the 4E level into the ground state results in
a substantial increase in the calculated coupling
constants. If the admixture of this level into the
ground F4 level is neglected the values would be in
somewhat better agreement with the experimental
results. In any case the signs do agree but the theoretical
values are approximately nine times the experimental
ones.

The change of hyperfine constant with stress is, as
can be seen by reference to Eq. (17),primarily a second-
order calculation involving orbital and spin operators.
Neglecting the d-electron contribution the result is

4'& (+2 I
~ &~ —I+21'8)(+21'21~2QSI 2)

bA„= —I-,'ax'I

+ (reverse ordering) . (39)

The third-order part of gL, can easily be included and
the result is

bA„= N2P (a—a) (62' 26ru"+r2—e')
vBI23nX'I

—Eq. (33) . (40)

In keeping with previous assumptions" the value is
taken to be reduced by the normalization factor E'.
This is justified by the argument that it is only the
wave function in the vicinity of the nucleus, that is the
d-electron part, which is effective in the hyper6ne
interaction. The actual contribution from the d electrons
themselves is small and has been neglected, leaving the
orbital contribution as well as the s-electron admixture.

Evaluating the various terms of Eq. (40) results in
the expression

N'PQ3{ (n z) (88 3)+—9 0(n . z)+6. 1}— (41).

YAaI,E IV. Coupling constants.

Cra+¹2+

Co2+

Expel lInent

Gii G44

+0.6 +4.2&

+57 +36~
PIl P12
-69 32 10

Theory
Gpi G44

+1.64 +2.81
+46.6 +90.V

P11 P12 P44
—642 321 88

Normal-
lzatlon
factor

E2

0.72"
0.77O

a G. Watkins and Eisa Feher, Bull. Am. Phys. Soc. 'F, 29 (1962).
~ W. Low, Phys. Rev. 105, 801 (1957).
e W. Low, Phys. Rev. 109, 24V (1958).
~ W. Low, Phys. Rev. I09, 256 (1958).

EVALUATION OF PHENOMENOLOGICAL
SPIN-HAMILTONIAN CONSTANTS

The spin-Hamiltonian representation of the Co'+
paramagnetic-resonance spectrum represented by Eqs.
(20) and (21) involves a number of constants. Some of
these are determined by the paramagnetic-resonance
results but two of them, I' and I{:,cannot be individually
determined by the paramagnetic hyper6ne constant A.
Low's work' has determined the value of n to be j..398
(we will use 1.40) and the value of k as 0.89. Taking
the experimental value for the ratio 8A/bg as 1.'74X 10-"
erg and using these values of n and. k, Eqs. (43) and (21)
(using the experimental A value of 97.7X10 cm ')
may be solved for Ã'P and z with the result

Ã'8=5.95&j0—"erg=0.030 cm—',
~=0.445.

These di6er substantially from the values of S'I'
=0.0225 cm ' and I~:=0.325 which are satisfactory for

Tmr E V. Mean second and fourth porters of the d electron
radii for iron-group ionsP

slightly and is given by

25.6(a—z)+0.68

25.6(ka+2)+0.68

Certainly to within the accuracy of the experimental
results this represents a constant ratio for the 5A/5g
I'atlos.

for the BA„.The corresponding expression for bg„ is
Ion Tie+
(rpP} 1.893
(rp4) 7.069

vp+

1.644
5.446

Cr&+

1.447
4.297

Mne+
1.286
3.446

Fee+
1.150
2.790

Nis+
0.9583
1.971

Qa{88.3(2+ka)+9.0(2+km)+ 6.1) Fem+

1.393
4.495

Mn'+
1.548
5.512

Ion Ti~+

(rp&} 2,44V

(rp4) 13.1V

Cu~+

1.028
2.498

Cop+

1.251
3.655

Ni'+
1.130
3.003

v~+

2.0VO

9.604
giving a ratio of

Cu+
1.256
4.238

¹i+
1.401
5.264

Co+
1.576
6.637

Fe+
1.774
8.385

Mn+
2.026

10.87

Ion Ti+ V+
(rp'} 3.508 2.819

(43) (ro~} 21.62 20.22
l}A„9'/.3 (n —z)+6.1

—=Ã2I'bg„973(kn+2)+. 61.
a The values in this table were calculated from the wave functions of

Ref. 1V by Miss Elise Kreiger of the G. E. Research and Development
The salTle, l atlo for the SS colTlponents divers Only Center. The values are in atomic units.
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the hydrated cobalt salts. ' Previous attempts to
compare the experimental A value with one obtained
using combinations of /PI' and z have ignored the
second-order orbital contribution which in itself reduces
the value of ~ required L

—15/(2A) =0.130j. Even so
the values of the constants appropriate to the hydrated
salts have not been very satisfactory for the case of
Co'+ in Mgo.

This use of the experimental value of the 8A/bg
value along with the value of A from the paramagnetic-
resonance spectrum enables us to evaluate the constants
S'I' and lf. assuming that the values of k and o. as
previously determined are satisfactory. Since the value
bA/bg is evaluated in a single experimental run the
uncertainties of absolute calibration are absent and
only the relative effects under the same experimental
condition are relevant. The conclusion from the above
is that if the hyperhne constant A is to be represented
by an expression such as Eq. (21) the proper constants
to be used are those given by Eq. (44).

GENERAL DISCUSSION OF THE COMPARISON
OF SPIN-LATTICE COUPLING CONSTANTS

AS DERIVED FROM POINT-CHARGE
MODEL AND EXPERIMENTAL

RESULTS

In Table IV we have listed the experimental
results for the spin-lattice coupling constants of a
number of the iron-group ions and the theoretical
values based on the same point-charge model which we
have used above for cobalt. The ions Ni'+ and Cr + may
be treated directly from Van Vleck's" results as has
been recognized by Shiren2' and our values are almost
identical to his except that an error in the signs of the
G»'s has been corrected. The values of (rp') and (rpP)

for a number of ions is given in Table V. It is evident
that the agreement between the experimental and
theoretical results is remarkably good considering the
crude model which has been used.

~ J. H. Van Vleck, Phys. Rev. 57, 426 (1940).
~

¹ S. Shiren, I'roceeChngs of the XIth Colloque Ampere,
Eindhoeen, I96Z (North-Holland Publishing Company, Amster-
dam, 1963), p. 114.

The omission of the effect of overlap and covalent
effects is particularly troublesome. For the three ions
in Table IV the last column lists the value of the
delocalization correction by giving the normalization
factors 37'. There is some correlation with the strong-
Geld picture of the electron orbitals in that Cr'+ with
its three i orbitals shows no hyperhne structure due to
its neighbors, but the value of the spin-orbit coupling
constant is reduced from that for the free ion. It is
interesting to note that Ni'+ with its two e orbitals
shows quite good agreement between theory and
experiment while Co'+ with two e and one t orbital and
approximately the same orbital reduction does not
agree nearly as well. Considering the difficulty in
drawing conclusions from the overlap and covalent
effects"" no attempt has been made to evaluate the
effect of these considerations on the spin-lattice
coupling.
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APPENDIX

The single-electron matrix elements between states
as indicated are given in Table VI. Conversion to the
Co'+ matrix elements requires that the values be
multiplied by C& for second-order terms and C2 for
fourth-order terms. C~ and C2 are given in Tables II
and III of the main text. Some of these values are
identical to those given in Ref. 9 except that the values
there quoted are for charge density and hence differ
ln sign.

"S. Sugano and R. G. Shulman, Phys. Rev. 130, 517 (1963).
"R. E. Watson and A. J. Freeman, Phys. Rev. 134, A1526

(1964).


