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The spin-lattice coupling constants for the Co®* ion as an impurity in MgO have been measured by using
a uniaxial-strain technique. The coupling tensor elements applicable to the change of g factor with strain
are F1=—69/(unit strain), F1,=32/(unit strain), and  F4s=10/(unit strain). The coupling tensor relevant
to the change of hyperfine splitting with strain is related to that for the g factor by a multiplying factor of
1.74X10718 ergs. The point-charge model has been used to evaluate the same coupling constants and the
theoretical results agree in sign with the experimental results but are larger in magnitude by about a factor
of 9. It is also pointed out that for several ions of the iron group the point-charge model gives remarkably
good values for the spin-lattice coupling constants, agreeing in both sign and magnitude with experiment.

INTRODUCTION

RAMERS doublets are less strongly coupled to
the lattice than are the levels of ions with effective
spin greater than %, and their coupling to the lattice
has not been studied in detail. Co*", even though its
actual spin is £, has an effective spin of % in the oc-
tahedral cubic field of MgO. With its low-lying excited
states one would expect the spin-lattice coupling to be
large for a Kramers salt and experimentally it is known
as a fast-relaxing ion. With this in mind Co?* has been
studied both experimentally and theoretically, using
the point-charge model. The results are compared with
similar studies on several other iron-group ions.
Spin-lattice coupling coefficients or magnetoelastic
coupling coefficients of a number of iron-group ions have
been measured in recent years both by ultrasonic-
attenuation methods? and by utilization of static
uniaxial stress in paramagnetic-resonance®* exper-
iments. The agreement of the constants determined by
the two methods allows one to choose the more con-
venient measurement technique. In this case the shift
of resonant-field position produced by application of a
steady uniaxial stress has been used to determine the
spin-lattice coupling coefficients of Co*t in MgO. This
method determines absolute sign as well as magnitude
and, in addition, is generally less demanding of crystal
tolerances than the ultrasonic method.

SPIN-HAMILTONIAN FORMALISM FOR
SPIN-LATTICE COUPLING IN
KRAMERS DOUBLETS

It is most convenient to express the spin-lattice
coupling results in spin-Hamiltonian form. In analogy
to the usual spin Hamiltonian used for the Kramers
doublet ground state of Co*t the perturbation due to
the applied stress is represented by

a'=gH-5g-S+1.5T-S, )

where 8¢ and 8T are tensors which depend linearly on
the strain introduced into the lattice. These tensors

1N. S. Shiren, Bull. Am. Phys. Soc. 7, 29 (1962).
2 E. B. Tucker, Phys. Rev. Letters 6, 183 (1961).
3 G. D. Watkins and E. Feher, Bull. Am. Phys. Soc. 7, 29 (1962).
4E. R. Feher, Phys. Rev. 136, A145 (1964).
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may in turn be expressed as the product of a fourth-rank
coupling tensor and the strain tensor. It is most
convenient to express this relationship in matrix form
using Voigt notation.

dgi=Fe;, OT;=Ze;. (2)

In addition to the simplification introduced by this
notation it should be noted that the matrix strains (e;)
are the actual or engineering strains rather than the
tensor values, in which the shear strains are just half the
actual strain.

In the case of non-Kramers iron-group ions, where the
quadrupole spin selection rules govern the effects of
strain, the perturbation takes the form

H'=S-3D-S. ®)

The coupling matrix, related to the strain via the
equation §D;=Gje;, is simplified, beyond the limita-
tions imposed by the symmetry of the lattice site, by
the fact that the trace of Eq. (3) is not an observable.
That is, the addition of the quantity S24S,24S.?
=.5(S+1) shifts the ground-state levels uniformly and
is not effective in changing the paramagnetic spectrum.
The usual choice is to set the trace of Eq. (3) equal to
zero. The result of this procedure in a cubic system is
to require that Gia=— ()G, leaving only two in-
dependent coupling coefficients Gi; and Gus. There is
no such simplifying condition for the F;; and the Z;;
coupling constants, and hence one expects. the three
independent matrix elements, Fy;, F1s, and Fy4 allowed
by symmetry, to exist.

EXPERIMENTAL RESULTS

The three independent terms of the coupling matrices
require a measurement of six values of g and 67 using
different stress and magnetic field directions relative
to the crystal axes. The shift of resonant field 6H, is
given by the expression

gB6H = Bog..H . — 0T ..0.—3[ (6T ..)*/gB8H]]

XZIT+)—-17] @)
neglecting second-order terms such as (6H)(dg).
Although a term equivalent to the last one on the right
264
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is necessary to account for the paramagnetic spectrum,
the accuracy of our experimental results is such that
we can neglect it in the stress experiment analysis. The
field shift is taken to be positive if the resonance field
increases when stress is applied.

The shift of resonance field is determined by noting
the field shift due to application of stress using as the
spectrometer signal the absorption derivative. This
allows very sensitive detection of field shifts even for
relatively broad lines. Any frequency shift due to
detuning caused by the stress should be taken into
account as added terms in Eq. (4). In practice the
corrections required for this purpose were minimal if
the crystal was carefully positioned in the apparatus.
A change in line shape, in particular the development of
asymmetry, with stress would have caused difficulty
in this type of measurement but insofar as we could
determine the shape did not change.

The shifts observed were in some cases rather small
and it was found to be desirable to measure field
differences, for a given hyperfine transition, for the
stress off and on conditions by successive measurements
rather than to scan the eight hyperfine lines first in

Stress H.
axis axis
[100] [100], || stress
[100] [010], L stress
[110] [1107], | stress

The equations at the right result from expressing the
strains of Eq. (2) in terms of the stresses by use of the
elastic constants —e;=3S5;;X;. The equations for the
6T’s in terms of the Z’s are identical. The three exper-
imental determinations of §g and 6T resulting from the
determination of 8H in the three circumstances given
above for both the lowest (/,=-%) and the highest
(I.=—%) hyperfine lines and use of Eq. (5) provide
sufficient data to solve for the E’s and F’s. There are
two reasons for using these extreme transitions for the
calculation of constants. Since the field separation is
greatest for them the accuracy of the experimental
results should be greater than for any other pair and,
in addition, if there were a contribution from the
quadratic term of Eq. (4) it would be smallest for the
=+ transitions.

The experimental results are presented in Fig. 1 as
values of H produced by a compressional, i.e., negative,
stress. The shift of resonant field is largest for the
lowest of I= -7 level and the decrease of shift at higher
fields is due to the hyperfine interaction term more than
compensating for the increase of the first term due to
the larger value of H. The linearity of the data is the
justification for neglecting the quadratic term of Eq.
(4). The 6H determination for both the lowest and the
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one condition and then in the other. For one thing this
minimized the trouble with phase changes due to the
change in liquid-helium level in the cryostat, which
were bothersome even though the waveguide was
packed with polyfoam.

The paramagnetic g tensor is symmetric and therefore
is diagonal in the coordinate system normally used for
the g tensor. The application of stress to the crystal
changes the crystal symmetry, and the g tensor by the
addition of the dg’s. The new g tensor must also be
symmetric and hence a rotation of the coordinate sys-
tem will again diagonalize it. Experimentally, with
the use of uniaxial static stress, the d¢ magnetic field
is oriented along one of the principal axes of the stress
modified g tensor and the 8gy; for that direction deter-
mined. This ég value may be related to the nondiagonal
tensor referred to the original g coordinate system and
the values of the tensor elements in the original system
determined. For the cubic system three measurements
of &g for different directions of stress and magnetic
field relative to the crystal axes are sufficient to deter-
mine the various values of §g. The necessary measure-
ments are then those tabulated below

og= (2F12512+F11S11)X ’
5g= (F12511+F12512+F11512)X )
0g={(3) (F11+F12) (Su+S12)+F12S12+3FsS1} X . )

highest line for the same conditions of stress and field
orientation then determine the 6g and 6T values.
These are given in Table I. The values of g and 6T
represent the result of experiments on MgO crystals
containing several percent Co and which are pink in
color. The results from one crystal to another vary
sufficiently that the values of 6g and 8T vary by about
+109% and the values of the matrix coefficients
particularly Fus, and Zs vary by about double this
amount. This presumably is due to the inhomogeneity
of the crystal and certainly one of the possible sources
of error is the assumption that the bulk constants
assumed for the crystals are the correct ones.

The values of the constants of the spin Hamiltonian

TasLE I. Experimental data for a stress of 6.34X 108 dyn/cm?

Stress Field T 8T /8¢
axis axis o (erg) (erg)
[100]  [100] 0.02025 357 X10® 176X 1018
[1007] [010] —0.00980 —1.672X10~» 1.71x 1018
[110]  [110] 0.00330 0573100 1.74X10-18

5 W. Low, Phys. Rev. 109, 256 (1958).
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F1c. 1. Typical experimental results for the three types of
measurement used to evaluate the coupling constants. The
crystal direction indicates the stress axis and the symbol following
the H indicates the direction of the magnetic field, either perpen-
dicular or parallel to the stress. The transitions labeled with the
I, quantum numbers are not equally spaced in magnetic field
due to the second-order effects of the hyperfine coupling.

have been determined previously® and the values
assumed throughout this paper are

g=4.278
A=194.229X10"% ergs
=97.7£0.2X10~* cm™.

The values of the elastic constants used are those
determined for a temperature of —193°C with values of®

S11=3.839X10% cm?/dyn,
512= - 0855)( 10— cm2/dyn ,
S44=6.380X 10" cm?/dyn.

The stress experiments were carried out at helium
temperature in two types of apparatus. An apparatus
in which a vertical stress is applied via a long push
rod directly on the crystal allows measurement of the
field shift with stress and magnetic field at right angles
to one another. This type of experiment was used as a
calibration for the second type of measurement in the
apparatus sketched in Fig. 2. In this case the direction
of the magnetic field relative to the stress may be
varied, but there is the question of the force ratio of the
lever system (designed to be 1:1). In each crystal set
up there exists the opportunity to determine a field
shift which should be identical to that using the vertical
stress above. For both the 100 and the 110 crystals the

6 Milo A. Durand, Phys. Rev. 50, 449 (1936).
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field is oriented at right angles to the stress and along
the 100 axis. The observed field shifts in the horizontal
stress experiments are then normalized to the result
for the vertical stress (stress along 100, H, along 010)
and the appropriate multiplier for that set of exper-
iments determined. Any such normalization must take
into account the difference in magnetic field at res-
onance, as is evident from Eq. (4) since H depends on
H as well as on the strain.

The ratio of 8T to dg is within experimental error a
constant and hence the coefficients of the 3T tensor are
related to those of 3g. Since the strains are obviously
identical, the F and Z tensors must be related by the
same constant, i.e., Z;=1.74X10"® F,; ergs. The
components of the F matrix are found to be

F13=—69/ (unit strain),
F12=32/(unit strain), )
F4=10/ (unit strain).

COMPARISON TO SPIN-LATTICE RELAXATION-
TIME MEASUREMENTS

The direct spin-lattice relaxation time depends
directly on the coupling coefficients measured above.
As an order of magnitude estimate one may take the
value of T, the spin-lattice relaxation time, to be’

1 w2kT(ﬁHF¢j+%Zij)2 (7)
T, 2nh?pv®

for the lowest hyperfine transition, characterized by
I.,=1%. The spin matrix element required in the normal
formulation of the equation for 7T'; has been assumed
unity. The quantity in brackets corresponds to the
coupling constant G used for the non-Kramers ions, and
it is of interest to compare its magnitude with those of
Table IV. For the moment we will simply observe that
the effective coupling here is not too different in

I NON MAGNETIC
WIRES

FiG. 2. Schematic
of apparatus used to
apply horizontal
stress to the sample.
The fused quartz
cavity operates in
T the TEg2 mode with
! the magnetic field
| vertical at the
I

sample position.
[ -tp-— SAMPLE

SILVER COATED INDIUM PADS

FUSED QUARTZ CAVITY

"R. L. Orbach, dissertation, University of California, 1960
(unpublished).
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magnitude from that of Mn?*, i.e., it is weak. On
substituting values of the constants, characteristic of
MgO, into Eq. (7) (0=3.58 g/cm?, #=6.6X 10° cm/sec,
v=10" cps, T=4°K) a value for T'; of approximately
60 sec results using the F and Z components character-
istic of transverse waves, i.e., Fas and Zys.

Experimentally Co?t is known as a fast-relaxing ion
and 7', values tend to be in the vicinity of a millisecond.?
It is then very apparent that the relaxation as normally
observed is not taking place through the “direct”
process.

COMPARISON TO THEORY BASED ON
THE POINT-CHARGE MODEL

Specific calculations of the spin-lattice coupling
coefficients of Co** in MgO have not been published
but the general problem of treating the spin Hamil-
tonian for Co?* has been considered in detail by
Abragam and Pryce® and much of their discussion is
applicable to our problem. The experimental work and
the specialization of the spin Hamiltonian to the cubic
field as carried out by Low® is relevant and will be
referred to in the development. The case of Co?* in
lanthanum zinc double nitrate has been treated by
Culvahouse ef al.)® and values of the dg tensor obtained
in the approximation that the field is cubic but no
admixture of the upper levels due to the cubic field
need be considered. As will be seen, this assumption
may not be carried over to the MgO host lattice.
Pryce! has also calculated some of the coupling
coefficients for Co* in MgO.

Theoretical values of the coupling constants are
quite readily calculated by utilizing the formalism
introduced by Van Vleck? in considering the matrix
elements due to the normal modes of distortion of the
octahedron surrounding a paramagnetic impurity.
Because of the importance of the spin-orbit coupling
in splitting the orbitally degenerate ground state, the
orbit-lattice interaction is considered as a perturbation
on the levels of the spin Hamiltonian in a fashion
discussed by Orbach.?

In order to construct the appropriate eigenfunctions
for the usual treatment of the cobalt ground state the
following eigenfunctions, those of Abragam and Pryce,®
are chosen for the I'4(7";) level in the cubic field formed
from the *F level of the free cobalt ion (see Fig. 3)

0=:=V2{ (\/$)Wss cos3o— (/3 Wz cose},
ey =VZ{— (W/EWss sindo— (/)31 sine} ,
_ e=¥s0,

8 P. W. E. Smith, 14th Annual Report of the Eaton Electronics
Research Laboratory, McGill University, Montreal, Canada,
p- 31, 1963 (unpublished).

9 A. Abragam and M. H. L. Pryce, Proc. Phys. Soc. A206,
173 (1951).

10 J. W. Culvahouse, W. P. Unruh, and D. K. Brice, Phys. Rev.
129, 2430 (1963).

M. H. L. Pryce (private communication).

2] H. Van Vieck, J. Chem. Phys. 7, 72 (1939).

18 R. Orbach, Proc. Phys. Soc. 77, 821 (1961).

®)

SPIN-LATTICE COUPLING OF KRAMERS DOUBLET

267

30

T T
~
=

25|

20

ENERGY IN c¢m™'

L T S O L N B L B O

=2V 1%2.,2% 3/, o\
T,+Tg

FREE CUBIC L.S.

5/ ak

F16. 3. Energy levels of Co®* as split by a cubic field and the
spin-orbit interaction. The expanded levels at the right are
labeled with their symmetry properties and their eigenvalues—the
value of X is negative.

and for the I's(T;) level

Ya=V2{— (v/$Wss cos3o— (/§Ws1 cose) ,
¢9=‘/2{’_ (\/%)KI’% sin3 (\/%)11/31 sin¢} ,
Y.=V2{3s c0s2¢,

and for I's(4,)

X=V2{3, sin2¢,
where

¥s0=(v/3){§ cos?0—§ cosb} ,
Yar= (21/2)Y2{ (5/4) cos*9—§ sinf}
Ya2=1%(1/105) cosf sin?4,
Yss=3%(+/70) sin’g.
In the usual fashion, the eigenfunctions of |+1),

| —1), and |0) to be used in the treatment of I'y as an
effective spin=1 state are defined as

[+1)=—1/2)(ostie,),
] - 1>= (1/\/2) (§0x~i§0y) )
| 0) = @z.
Similar combinations are also used for the I's orbital
triplet.
The cubic field admixes some of the 4P level into T',
and in fact the result of combining Egs. (8) and (9)
with this admixture is wave functions for T'; as follows:

] - 1>= e{— (\/%)%,—1— (\/%)Klfs,ﬂ} —TT1,-1,
‘ + 1>= 5{ - (\/%)¢3.+1_ (\/%)%.—3}— TTL,+1,
[0)=eps,0— 71,0,

©

(10a)
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after substituting for the sing and cos¢ and assuming
the Condon-Shortley convention for signs. The function
¥3,—1 represents ¢¥s.e7¢ or L=3, M ,=—1. The angular
momentum of the triplet is given by —a=— (3&—172),
which for small 7 is just —a=—%. The wave functions
for I's, which are required later for perturbation calcula-
tions, are

|+1>= (\/%)‘//3,—1"' (\/%)'//3,+3 ’
[0)= (1/V2) Wo,r2t¥a,2),
[— 1=+ $Ws+1— WV EWs,-s.

It should be noted that these are reversed from those of
I'y so that Am=0 transitions (or mixing) will occur
between |T's41) and |Ts—1).

The wave functions of the 4P level are taken to be
the p functions (also with I'y symmetry)

| +1)=—1V3 sinbeie,

|0)=(v/3) cost,
| —1)=3V3 sinfe¢.

The spin-orbit coupling splits the threefold orbital
degeneracy of I'y into levels of symmetry I's, I's, and
T';4T's with effective spins of %, 3, and §. The treatment?®
assumes a representation in which both 7, the orbital
angular momentum ==1 or 0 in the triplet, and S, are
diagonal, sets up secular equations for each value of
m,=1,+S,, and then solves these equations for the
eigenvalues. These are as indicated on Fig. 3. The
eigenfunctions appropriate to the three levels into
which Ty is split are given by

(10b)

(10c)

1 1 1
1I‘=—_1§_—0% —-17%’
|+7 8) \/QI ;2) V.gl ) >+\/6| )

. . (11)
—iTy=—|1, —§)——0, = H+—|—1, ).
[—3T%) ﬁl ) vgl )+\/61 3
[+3Tg)=—(®)2]0,5)+ 3)"*|1,3).

[+3Ts= ()2 —1, $+(1/15)'2]0, +3)
—2(2/15)2[1, —3).
|=3T9= @1, —)+(1/15)42]0, -
—2(2/15)"*| -1, 3).
|—3Tg)=— ()20, =)+ @] -1, —D).
I+%P7.8>= lL%)
[+3T7,8)=(3)"2[0,3)+ (@) "2 1,5).
[+3T7,0)= (F6)2| —1, +)+(3)2(0;3
3.)1/2 1’ —1y
+ (1, —3) 13

[—3T79)= )21, =)+ (D20, —3)
+ ) =1, 3).
[—3T7,9= @120, =)+ )| -1, —3).
—§Me=|-1,—%).
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The spin Hamiltonian appropriate to the treatment
of the Mn?* spectra is given by

go=g8H-S+4S-1 (14)

similar in form to Eq. (1), and in which the constants
are g=4.278 and 4=194.229X10"% erg. Theoretical
evaluation of these constants is straightforward from
the treatment of Abragam and Pryce,® but the proce-
dure is worth summarizing for future reference.

There are both orbital and spin contributions to the
g value in first order and an orbital contribution, due
to admixture of the I's level by the spin-orbit interaction,
in second order. The results is

g§=2(3|L+2S.(3) (15)
1st order:
g,gl=10/3, (16)
gr=3%a
2nd order:
NG| L. |TsXTs| L-S[3) 2N'(3|L-S|TsXTs| L.]3)
8L2= -+
—A —A
15\ €2
T

where the I'y to I's splitting A is taken as 8470 cm™,5
and « is the actual angular momentum given above.
The value of the hyperfine constant 4 is given by

A=

h
o b L+ LA )-DS.
—3{L.(L-S)+(L-S)L.1D),

an
_ @HD-4s
E_S(Zl—l)(ZH-S) er—1)’
=2, S=3%.

The S, term, with coefficient &, is included to allow
an admixture of configurations containing unpaired s
electrons and is necessary to account for the hyperfine
structure. The contribution of the d electrons, given
by the terms in £, is very small, leaving the s electron
part the only important one other than the orbital
factor represented by L..

It is necessary, in general, to make allowance for
electron transfer to neighboring ions. This has been
treated by Stevens* and by Tinkham!® and for our
purposes the situation may be handled by assuming
that, in place of the wave functions of Eq. (8) we have
a mixture of the d electron wave function on the Co**
with some wave function centered on the neighbors

¢,=N(¢+7)0n(ﬁghburs)- (18)
For the cases referred to above, the 6’s are p and s

functions. Calculation of the orbital angular-momentum

14 K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 542 (1953).
15 M. Tinkham, Proc. Roy. Soc. (London) A236, 535 (1956).
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TasLE II. Normal-mode matrix elements for transitions between levels of the same symmetry.
+1 0 —1
+1 V3aQs —b(Qs5—3Qs) —30Q2+3VZb04
0 —b(Qs5+1Q6) —2v3aQs b(Qs—Qs)
-1 —3aQ2—1VZbQ4 b(Qs+Qs) V3aQs
a b C C
‘Fry—*Fr, a=(2/5)p1+(25/132)p2 b= (1/V2)[(1/5)p1+ (5/11)p:] G/7) —11/7)
“Pr—*Pr, a’'=(3/5)p b'=—(6/V25)p: -1 0
94/21  254/21 5 (21 1/2( 6 S ) 4 3
Da _4P au= + n — —p1——>p e .
e 0 0 a8 2 ) 35 126 V21 V21
‘Fry—*Fr; a”"'=0—(175/396)p2 b= (1/V2)[p1+(5/33)p2] @77 —11/7)

p1=eees:C1(re?/RY)

p2=eee:Ca(re*/RE)

matrix elements in the ground-state results in
(on’| L] om"y=F(¢n|L| om), (19)

that is, the delocalization of the electron decreases the
orbital momentum. and % is referred to as the orbital
reduction factor. % is related to V and 5 in a way which
will depend on the choice of wave functions in Eq.
(18), but in general N will be smaller than .

Calculation of the orbital angular-momentum
matrix elements between I'y and I's which are required
both for gz, and for the equivalent part of 4 are not
so simple, and the usual assumption is to take \’, the
effective value of A, as equal to Np Nr). From the
experimental value of the splitting between the two
lower Ty levels (305 cm™) 16 and the first-order theory
which gives the splitting as o\’ we find that =135
cm™! (\=—180 cm™! for free ion) and hence that (N r,)?
=0.81. The resultant value of g is then

g=10/34+%ka—15\/2A (20)
and that for 4 is
A=N*P[gr—3kg+(1/63)(1—1572)],

A=N?*P[%a— (15/2)(\N'/A)— (5/3)%
+(1/63)(1—1572)7], (21)

P=2vBh/(r’)=2gnBBn/(r*) 1

Further reference will be made to the above equations
in the discussion of the comparison of the experimental
results to the theory.

We now turn to the problem of calculating the
spin-lattice coupling constants. The lowest order change
in g due to the lattice strain, either static or dynamic,
is from second-order perturbation theory and is of
the form

2 ((+3|H- (L+28) |TeXTs| ViQ:| +3)
H —A
: (+3]V:Q:|TsXTs| H- (L+ZS)I+%)} @
. —A
16 P. Cossee, Mol. Phys. 3, 125 (1960).

17 y=nuclear moment/Ih gy=nuclear moment in nuclear
magnetons/J.

where the Qs refer to the normal mode distortion of
the octahedron as treated by Van Vleck.?2
The normal distortions are defined as

I'1Q1=R(essteyyte2:)/4/6,
I {Qz =R(€ss— eyy)
0= R(earte,—20.) 1/3),
Q«=R(es),
T'syQs=R(ez2),
Qs=R(ey),

where the e;;’s are the “engineering” lattice strains and
R the lattice spacing. The brackets indicate to which
irreducible representation of the cubic group the
distortions belong (labeled according to Bethe’s
nomenclature).

It should be noted that the definitions of Q4 and Qs
are reversed from that needed in order to agree with
Voigt notation.

The V; coefficients which multiply the Q’s of Eq.
(22) are given by

Vo= {4 (@—ye*)+ B (xe*—
Vs=3 o4 (x02+3’02—'

(23)

st

22¢%) 4 B (o' +y0'— 2241 }
X1/ V3)+ s

V=2 o{C(xoy0)+E (xo*yot20ye>) } + - -

Vs=2_0{C (%020)+ E (wo*20+%020*) } + - -

Ve=2_0{C (y020)+E (y*20+ y036*) } + - -

where the summations are over the d electrons, and the
constants 4, B, C, and E are given by

175€Xeeff

8 757’0
=21eX eeff<;— _,

1574 35e><eeff
C=6X3eff<"'—“+ ’ E=— ’
R 2RS

with ees being the effective charge of the neighboring
ions.

In order to determine the effect of the strains on the
spectrum the matrix elements of the coordinate

(24)

(25)
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TasLE III. Normal-mode matrix elements for transitions between levels of different symmetries.

Ty
+1 0 -1
+1 aQ2—1V2bQ4 —b(Qs+17Qs) V3aQs
T's 0 b(Qs—iQG) —20@2 ”“b(Qs-*-iQs)
-1 V3aQs b(Qs—1Qs) aQ2—iVIbQ4
a b Ci Cy
24/15  254/15 15\2/ 1 2 3 11
4Fp,—4Fr, av= o1~ 01 v=[— —o1——p2 _ _
10 352 2 15 33 7 7
9 20 35\2/ 6 1 4 3
*Frs—*Pr, aV=(+/35) —px—-—pz) V= —> —p1t—p2 — —
0 21 2 35 14 V21 V21

p1=eeesC1(re*/R%)

p2=ees:C2(7¢*/RS)

combinations appearing in Eq. (24) must be evaluated.
These are given in the Appendix. The total effect of
the strains is obtained by combining these matrix
elements and the above constants with the results
shown in Tables IT and ITI. Some of these values have
been tabulated by Van Vleck!? but the cross terms such
as *Pr, to *Fr, which are necessary for our purpose
have been added.

The C; and C; constants are those required to convert
the one-electron matrix elements such as given in the
Appendix to those appropriate to Co?*, the former
applicable to second-degree terms and the latter to
those of fourth degree.

The determination of g to second order utilizing
Eq. (22) and to third order, from equations of the type

2(3T6| L|3Ts)(3Ts|AL-S[{Ts)(T's| V.:Q:| 3Ts)
AXZaN

(26)

corresponding to the second-order g correction, involv-
ing both upper levels of I'y as well as I's as intermediate
states, is straightforward. The necessary matrix
elements of L and L-.S are readily obtained from the
eigenfunctions of Egs. (11), (12), (13), and (10a), (10b),
and (10c).

The degenerate ground-state treatment means that
the normal labels used on g factors, in which the 7 and j§
of g;; refer to orbital angular-momentum operators of
the spin-orbit and the Zeeman energies, are not applic-
able. We can however assign the g contributions to the
appropriate coupling constant by noting that the
octahedral symmetry of the MgO lattice allows us to
write the 8g in the following form

Fy1u. Fio Fiz O 0 0)le

F12 Fn F1‘2 0 0 0 (2}

_ Fy Fip Fuu 0 0 0 €3
%=10 0 0 Fu 0 0]|e = @

0 0 0 0 Fau O] |es

0 O 0 0 O Fuj les

By determining the effects of various normal distortions
in either 8g;; or 8g, the values of the F’s are obtained
as follows: We write the total 8g=0g(L2)-+8g(L3)
+8g(S2) indicating the orbital or spin contribution and
the order of perturbation required. From Eq. (27)

5g3= F1261+F1232+Flle3 ) (28)
0gs=F se5.

Utilizing the fact that the Q’s are equal to eR, the
strain multiplied by the interionic distance in the
crystal, we have

8gs= (1/Qs)[6gs(L2)-+0g5(L3)+58g5(S2)]

X (e1+es—2e3)R, (29)
dgs= (1/Qs)[0gs(L2)+0gs(L3)+3g5(52) JesR,
and hence
Fii=—2F15=—(2/Q5)[8g5(L2)+8g5(L3)
+6g:(S2)IR, (30)

F = (1/Qs)[3g5(L2)+3g5(L3)+3g5(S2) IR.

Q; does not contribute to g; nor does Q; to the order
with which we are concerned. This results in the same
sort of relation between the F coupling constants as is
found to the G coupling constants applicable to the
ions with spin greater than 3.

A calculation of g; and gz will then determine the
theoretical values of the coupling constants Fiy, Fi,
and Fis. The former is quite straightforward and the
result is given by [see Eq. (22)]

5 4(+3| LA42S.| +3TsX+3Ts| ViQs| +3)
g3= )

—A
4(2-+ka)

= U3

31
(e2a—2erad”+72%a') 1)
=0g3(S52)+0gs(L2).

Now gs can be calculated either by using the H.,
X (L,+2S,) in combination with Qs or H,(L.+2S.)
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with Qs: the first resulting in the spin Hamiltonian
expression H.g..S., corresponding to a sort of g;;, and
the second resulting in the form H,g..S., a g, term
capable of inducing transitions between the lowest &3
levels. These give the same numerical result, but since
the first method results in a single term rather than the
two required in the second calculation, we use the
former with the result

6g5=4<+% | Lo+-28 2| +3Ts)+3Ts| VsQs| — %) ’
—A
= 06(2VZ/3)[ (2+ka) /AT (% — 2erb'+12')
=0g5(52)+8gs5(L2).

(32)
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The value of A is given by $a)’. It is essential that the
admixture of *P be considered, as cross terms will
contribute a major portion of the theoretical value.
The uppermost of the 4F levels (I'"4-I'®) does not con-
tribute in second order.

The second-order contribution to the g factor of Eq.
(20) amounts to about 139, and the third-order
correction to 8g should be of about the same importance.
There is a contribution from Qs, involving the compres-
sional strains, to the §g;;. The third-order expressions
are complicated again by the fact that the spin-lattice
coupling mixes the 4F and the “P portions in I's. The
result is

M(7/3)(W/5) (2+ka) (a*Ver—aVer) +A(15/4)V3e2(2a—2era’’+1%a")

—Qs (33)

|eA’| Ary—rs

resulting from L,+25,, A\L-S, and Q3, from +3% to 431 with various intermediate states.

The effect of Q5 on 8. is, in third order,

(7(V30)N'/12) (2-+ka) (e26TV — erb V) — (9V2N'/8) €2 (e2b— 2e7b” +720')

. (34)

|%a)\' | Ar.,..rs

COMPARISON OF THEORY AND
EXPERIMENT

The numerical evaluation of the results quoted in
Eqgs. (31), (32), (33), and (34) is now required to
obtain the values of the coupling constants Fy;, Fis,
and F44. The major necessity is the determination of
the various @ and & values defined in Tables II and III.

Rather than use a calculated value of the cubic-field
splitting we will make use of Van Vleck’s!? expression
for the cubic-field splitting parameter based on the
point-charge model

Dg=—geXees: (r*)/R%) (35)

and evaluate the right-hand side from the experimental
value of the quantity Dg. This is quite permissible
since the a’s and &’s are derived from a point-charge
model. The value of 960 cm™! obtained by Low?® results
in

eX et ((r)/R5)=—5760 cm™1, (36)

There remains a factor of {r@2)R2/(r¢*) to be evaluated.
This has been calculated from the wave functions
given by Watson!® with a resulting value of 5.39 from
the values (r¢=1.251 a.u., {r¢®)=3.655 a.u., and
R=21 A=379 au. (1 au.=0.529X10-% cm) (see
Table V).

18R. E. Watson, Solid State and Molecular Theory Group,
Massachusetts Institute of Technology Technical Report No. 12,
1959 (unpublished).

The values of the ¢ and b constants are then

a=—>5150 cm /R,
a’'=+418 660 cm™/R,
@' =+14 830 cm~/R, &'=—15540 cm~Y/R,

@"'=—4000 cm~Y/R,  b"'=—8440 conY/R,

o'V=—12 800 cm~'/R, b1V=—3890 cm~i/R,
aV=-41820 cm/R, bY=--18 300 cm~/R.

b=+4620 cm /R,
b’=—26350 cm™'/R,

(37

These constants depend almost directly on the value of
the ratio (r»R?/(r¢*) and decrease as this ratio is
decreased.

The evaluation of the combinations of constants
occurring in Egs. (31) through (34) rests in part on
the values of the constants e¢ and 7. These have been
evaluated by Low® as ¢=0.980 and 7=0.204 from
measurements on the optical spectra of Co*t in MgO.
The sign of 7 used in Eq. (10a) is the result of the sign
of the cubic-field parameter and the negative sign is
consistent with the ordering of the other levels. The
values® of $a\'=305 cm™ and Ar,_r;=8470 cm™! are
used in the final evaluation of Egs. (31) and (32).
Then we have

€a—2era’+7%'=—11 620 cm™Y/R,

&b—2erd""+ 72" = +7870 cm™/R,
€a'V—eraV=—20 650 cm™'/R,
bV — erbV=—"7360 cm™!/R,

(38)
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and the resulting values of the coupling constants are

Fr=—2F1,= —2(285+35.5) = — 642/unit strain
F44=83+5=_88/unit strain.

In the above the first figure is the second-order contribu-
tion and the second the third-order part. It is note-
worthy that the *Fr,—*Pr, terms add so that the
admixture of the 4P level into the ground state resultsin
a substantial increase in the calculated coupling
constants. If the admixture of this level into the
ground I'y level is neglected the values would be in
somewhat better agreement with the experimental
results. In any case the signs do agree but the theoretical
values are approximately nine times the experimental
ones.

The change of hyperfine constant with stress is, as
can be seen by reference to Eq. (17), primarily a second-
order calculation involving orbital and spin operators.
Neglecting the d-electron contribution the result is

ad _4’Yﬁh (+3| L.—«S:| +35Ts)(+5Ts| VoQs| 3)
T — [ga¥'|

+ (reverse ordering) {.  (39)

The third-order part of gz can easily be included and
the result is

40;
04.,,=N?P{ (a—x)———(e?a—2era" +7%’)
V3|gen|

—Eq. 33)}. (40)

In keeping with previous assumptions!® the value is
taken to be reduced by the normalization factor N2
This is justified by the argument that it is only the
wave function in the vicinity of the nucleus, that is the
d-electron part, which is effective in the hyperfine
interaction. The actual contribution from the d electrons
themselves is small and has been neglected, leaving the
orbital contribution as well as the s-electron admixture.

Evaluating the various terms of Eq. (40) results in
the expression

N2PQs{ (a—x) (88.3)+9.0(a—x)+6.1}  (41)

for the 84 ,.. The corresponding expression for 8g.. is

0:{88.3(2+ka)+9.0(2+ka)+6.1} (42)
giving a ratio of
04, 97.3(a—x)+6.1
_ __Ll__} L W)
3gs 97.3(ka+2)+6.1

The same ratio for the xz components differs only
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TascLe IV. Coupling constants.

Normal-
izati
Experiment Theory lf:ctg?
ion Gn Gy Gu (em N2
Cr3t +0.6 +4.22 +1.64 +2.81 0.72v
Niz+ +57 +36 +46.6 +90.7 0.77¢
Fu Fia Fy Fu Fi2  Fy
Co?t —69 32 10 —642 321 88 0.854

a G, Watkins and Elsa Feher, Bull. Am. Phys. Soc. 7, 29 (1962).
bW, Low, Phys. Rev. 105, 801 (1957).
¢ W. Low, Phys. Rev. 109, 247 (1958).
d'W, Low, Phys. Rev. 109, 256 (1958).

slightly and is given by
04 2. 25.6(ac—x)+0.68
7 125.6(kat2)+0.68)

Certainly to within the accuracy of the experimental
results this represents a constant ratio for the 64/dg
ratios.

(43a)
0gzz

EVALUATION OF PHENOMENOLOGICAL
SPIN-HAMILTONIAN CONSTANTS

The spin-Hamiltonian representation of the Co*t
paramagnetic-resonance spectrum represented by Egs.
(20) and (21) involves a number of constants. Some of
these are determined by the paramagnetic-resonance
results but two of them, P and &, cannot be individually
determined by the paramagnetic hyperfine constant 4.
Low’s work?® has determined the value of « to be 1.398
(we will use 1.40) and the value of & as 0.89. Taking
the experimental value for the ratio 64 /8g as 1.74 X 10718
erg and using these values of @ and &, Eqgs. (43) and (21)
(using the experimental 4 value of 97.7X10~* cm™)
may be solved for N?P and « with the result

N2P=35.95X10"18 erg=0.030 cm™,

44
k=0.445. (44)

These differ substantially from the values of N%P
=0.0225 cm™! and «=0.325 which are satisfactory for

TaBLE V. Mean second and fourth powers of the d electron
radii for iron-group ions.?

Ton Tid+ Vet Cr3t  Mn3*t  Fest Nist

(7o) 1.893 1.644  1.447 1.286 1.150 0.9583

(rot) 7.069 5.446  4.297 3.446 2.790 1.971

Ion Tiz* Va+ Mn2+ Fe?*  Co**  Ni?+ Cuz+
(7o2) 2.447 2.070 1.548 1393 1.251 1.130 1.028
{rot) 13.17 9.604 5.512 4495 3.655 3.003 2.498
Ion Ti+ v+ Mnt Fet Co* Ni+ Cut
(ro2) 3.508 2.819 2,026 1.774 1576 1.401 1.256
{rot) 31.62 20.72 10.87 8.385 6.637 5.264 4.238

a The values in_this table were calculated from the wave functions of
Ref. 17 by Miss Elise Kreiger of the G. E. Research and Development
Center. The values are in atomic units.
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se/tr ZMS01/6 0 0 M1/ (S6/M9) 0 0 rs1e/(Te/M) — 0 - i

0 se/ye— MS0T/6—  ZAOTT/(SE/M9) 0 oro1z/(Se/M)  aasTe/ (e /M) — 0 rs1e/(1T /M) 0 | "I|ds

0 0 e/t 0 ro1z/(Se/NM) — 0 0 arste/(1T/M) 0 1+

0 0 s18/(se/M8T)— ee/t— 2r99/0T— 0 0 zroge/ (ST — 0 -

0 0 0 0 ee/y Pr99/01  Zpr0ge/(ST/NT) 0 woge/SIAMD— 0 | o
S1e/(SE/M8T) — 0 0 0 0 ee/t— _ 0 zroee/(S1/MD) 0 1+
c1¢/(12/M9CT) 0 0 0 0 0ze/(S1/M¢0) 011/82 _ roee/er— 0 - o

0 s1e/(1e/NMes) — 0 0 0 0 0 Ss/8z— woze/Ti+ 0 |

0 0 s18/(12/M97) ozz/(s1/MeT)+ 0 0 0 0 011/82 1+

1— 0 1+ - 0 1+ 1- 0 1+

A I Al
dy 4]
: (euoSelp Mo[aq) %,z--2:% pue (3A0qe pue [euoSeip) ;2g—f % 101

78 Ty 0 0 r/SEN 0 0 r1T/NI— 0 -

0 89T — rMTy— rseN— 0 r/seN /1T N— 0 /1T 0 | "I|ds

0 0 78 0 r/seN9— 0 0 /1M 0 1+

0 0 Se/N8T 0 pr/se— 0 0 pre/STNML— 0 -

0 0 0 0 0 or/se pe/STNL 0 pe/ST M~ 0 | &1
se/MgT+ 0 0 0 0 0 0 wre/STMA- 0 1+ o
12/M81 0 0 0 0 ST/M8T 95+ /L 0 -

0 12/M9g— 0 0 0 0 0 AR oL+ 0 |

0 0 12/M81 ST/V8T 0 0 0 0 9s+ 1+

- 0 1+ - 0 1+ 1— 0 1+

Al ol A
dy Hy

: ({euoSerp Mo[aq) zx pue (3A0qe PuUB [BUOSBIP) 27— -7% 104

*S)UOWIALO XLIJBWI UOI}ORI-9[SUIS “TA TTAV],
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the hydrated cobalt salts.® Previous attempts to
compare the experimental 4 value with one obtained
using combinations of N?P and « have ignored the
second-order orbital contribution which in itself reduces
the value of « required [—15/(2A)=0.130]. Even so
the values of the constants appropriate to the hydrated
salts have not been very satisfactory for the case of
Co?* in MgO.

This use of the experimental value of the 54/dg
value along with the value of 4 from the paramagnetic-
resonance spectrum enables us to evaluate the constants
N?P and k assuming that the values of 2 and « as
previously determined are satisfactory. Since the value
8A/8g is evaluated in a single experimental run the
uncertainties of absolute calibration are absent and
only the relative effects under the same experimental
condition are relevant. The conclusion from the above
is that if the hyperfine constant 4 is to be represented
by an expression such as Eq. (21) the proper constants
to be used are those given by Eq. (44).

GENERAL DISCUSSION OF THE COMPARISON
OF SPIN-LATTICE COUPLING CONSTANTS
AS DERIVED FROM POINT-CHARGE
MODEL AND EXPERIMENTAL
RESULTS

In Table IV we have listed the experimental
results for the spin-lattice coupling constants of a
number of the iron-group ions and the theoretical
values based on the same point-charge model which we
have used above for cobalt. The ions Ni* and Cr** may
be treated directly from Van Vleck’s' results as has
been recognized by Shiren? and our values are almost
identical to his except that an error in the signs of the
Gi1’s has been corrected. The values of (r¢?) and (r¢%)
for a number of ions is given in Table V. It is evident
that the agreement between the experimental and
theoretical results is remarkably good considering the
crude model which has been used.

1 J, H. Van Vleck, Phys. Rev. 57, 426 (1940).

2 N. S. Shiren, Proceedings of the XIth Collogue Ampere,
Eindhoven, 1962 (North-Holland Publishing Company, Amster-
dam, 1963), p. 114.
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The omission of the effect of overlap and covalent
effects is particularly troublesome. For the three ions
in Table IV the last column lists the value of the
delocalization correction by giving the normalization
factors V2. There is some correlation with the strong-
field picture of the electron orbitals in that Cr¥+ with
its three ¢ orbitals shows no hyperfine structure due to
its neighbors, but the value of the spin-orbit coupling
constant is reduced from that for the free ion. It is
interesting to note that Ni*t with its two e orbitals
shows quite good agreement between theory and
experiment while Co?* with two e and one ¢ orbital and
approximately the same orbital reduction does not
agree nearly as well. Considering the difficulty in
drawing conclusions from the overlap and covalent
effects?? no attempt has been made to evaluate the
effect of these considerations on the spin-lattice
coupling.
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APPENDIX

The single-electron matrix elements between states
as indicated are given in Table VI. Conversion to the
Co?* matrix elements requires that the values be
multiplied by C; for second-order terms and C, for
fourth-order terms. C; and C, are given in Tables II
and III of the main text. Some of these values are
identical to those given in Ref. 9 except that the values
there quoted are for charge density and hence differ
in sign.

21 S, Sugano and R. G. Shulman, Phys. Rev. 130, 517 (1963).

2R, E. Watson and A. J. Freeman, Phys. Rev. 134, A1526
(1964).



