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at least one of the eigenvalues E,, must be greater than

zero, since
=2 n ¥, Xalaal?=1,
dKp=A=3_n|an|2E,>1.

Since K effectively decreases continuously with increas-
ing temperature, we expect the eigenvalues to decrease
continuously as the temperature increases. Thus, if
E.,(T=0)>1, there will be a temperature T at which
E.,(T¢)=1. At this temperature Y »,(T) satisfies (B4’).
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If we take ¢ as
1Ir—e(p,q) 8x242
s =D/ 2]
pLAE(p,q) m
upr<p<eupr
=0, p<upr, peupr,

it is easily seen that ¢K¢ is proportional to Inu for
sufficiently small x. This completes the proof.

(BS)
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The autocorrelation function of the transversal magnetic moment is investigated in the presence of
dipole-dipole interaction. For that purpose an integrodifferential equation is derived which is exact in all
orders of the perturbation. The resulting equation is simplified with the aid of a linearity and Gaussian
assumption and is solved numerically. Good agreement is thereby found with the experimental situation.
In particular, it is shown that the physical nature of the oscillations found in the free-induction-decay
experiments of Lowe and Norberg can be understood as a precession around an average internal magnetic

field.

I. INTRODUCTION

N the calculations of the resonance linewidth in
paramagnetic systems with dipole-dipole inter-
action one in general makes use of the Gaussian assump-
tion for the line shape.!-? This has clearly the advantage
that the method of moments can be applied in a simple
way. On the other hand, it is experimentally demon-
strated by Lowe and Norberg? using the free-induction-
decay method, that the decay curves are of an oscil-
latory nature (in contrast to the monotonic decrease of
a Gaussian function).

The autocorrelation function ®(¢) of the transversal
magnetic moment, which essentially determines the
decay curves, has also been evaluated by Lowe and
Norberg. Their calculation is based on a power-series
expansion of the form

B()=3 "F.(0),

n=0

¢Y)

in lowest order of which the Ising and exchange parts
of the dipole-dipole interaction are assumed to commute.
Because of the mathematical complications only the
terms up to =4 have been calculated. Remarkable

* Work supported in part by the U. S. Atomic Energy Com-
mission.

T On leave from the University of Nijmegen, The Netherlands.

1], H. Van Vleck, Phys. Rev. 74, 1168 (1948).

2 B. Herzog and E. L. Hahn, Phys. Rev. 103, 148 (1956).

31. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957).

agreement is thereby found with the experimental
situation. It is, however, not clear from the theoretical
point of view whether the higher order terms can be
neglected.

The present paper is devoted to the study of the
autocorrelation function within the framework of a
formalism which has been developed previously* and
which is based on a many-particle treatment of the
spin system. From the present treatment the physical
mechanism of the oscillatory behavior in time can, at
least qualitatively, be understood.

We first shall be concerned with a derivation of an
integrodifferential equation for the autocorrelation
function with the use of a power-series expansion in
terms of the Ising part of the interaction Hamiltonian.
Subsequently, the resulting equation is simplified with
the aid of a linearity condition. Finally, it is solved
numerically and a comparison is made with experiment.

II. FORMULATION OF THE PROBLEM

In this section we briefly recall some details for
further reference. Consider for definiteness a crystal of
identical paramagnetic ions with spin % which is placed
in a large external magnetic field H. The field H is
supposed to be along the z axis. Furthermore, let us
confine ourselves to the situation that we may neglect

4]%. A. Tjon, Physica 30, 1341 (1964) (hereafter to be referred to
asI).
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the relative motions of the ions, that is the spin-lattice
relaxation time is taken to be infinite.

In the CW experiments one is interested in. the linear
response coefficient of the spin system to a small rf
magnetic field with frequency w along the x axis. This
coefficient is given by the so-called complex suscepti-
bility X(w). As is well known, X(w) is simply related in
the high-temperature limit to the autocorrelation func-
tion ®(¢) in the following way (see, for example, Refs. 5

and 6)
* dd(t
Xe)= _X°/ dt( :

where X, denotes the static susceptibility. ®(¢) is defined
according to

q’(l) = Tr{em‘Sle‘”c‘Sl}/TrSlz. (3)

For convenience we have used units in which #Z=1. In
(3) S1 represents the x component of the total spin
operator and JC is the total Hamiltonian of the system,
L.e.,

e—iwt di s

)

ge=3¢, 43",

where 3¢, designates the Zeeman energy and 3¢ de-
scribes the interaction between the spins. It can now be
shown that in case H is large the expression (3) in a good

approximation can be reduced to
®(?) = coswri®o(t), (4)

where w;, is the Larmor frequency and &,(¢) is the
reduced autocorrelation function which is defined as

@0(t)—“—TI’{S1(t)S1}/TI‘Slz, (5)

Sl(t) = em“Sle‘m“ . (6)

Here 3C; denotes the truncated Hamiltonian which
consists of only the secular part of 3¢”. We may now
write the secular part in the following form

3Cs=N13C1+A23Cs,

with

where A\;3C; and A.3Cs are the exchange and Ising parts
of the interaction Hamiltonian, respectively:

)\15{31 = Z aij]-- Sk I}

i<k

Ae3Co=2" b;%Si3Ss-

i<k

Q)

In Eq. (7), S; means the spin operator of the jth spin.

III. THE INTEGRODIFFERENTIAL EQUATION

According to the previous section the problem of
finding the susceptibility is reduced to the determination
of the reduced autocorrelation function ®,(¢). For that

8 A. Abragam, The Principles of Nuclear Magnetism (Clarendon

Press, Oxford, England, 1961).
6 R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
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purpose, the method employed in I will be generalized
to all orders of the perturbation. The extension is in
principle needed because the perturbation, given in this
case by A\q3Cs, is not small.

Our starting point is the following power-series ex-
pansion for Eq. (6), which is obtained on iterating the
equations of motion in the interaction representation

o ¢ in t2
Si(t)= > (—i)\z)ﬂ/ dtn/ Dby / dh
n=0 0 0 o

XKn(t_ tl,t_t% et ;t_tn) ) (8)

where K, is given by the »th commutator

Kn(Tl,TZ, e ;Tn) = [SI;GCZI(TI)’C‘Cz,(T2): te ,3@2’(1’,‘)]1; )
9)

with

3(:2'(7{) —_ emscx r.'gc‘ze—i)q{lcu.' .

We next introduce a complete orthonormal set of states

|@) which are eigenfunctions simultaneously of 3¢;

and Si:

3C1|a)=E(a)|a),

S1|a)=S(a)|e).

An operator 4 may in general be decomposed into

A=A3+Ax4, (10)
so that

(a|dd|a)=(a| 4| a)ban .

The operators Aq and A,q are called the diagonal and
nondiagonal parts of 4, respectively. Furthermore, we
shall also need the simple diagonal part of the mth
commutator, defined according to

[B; 3C2',3C2', - + +,3C2  Jmisa
= [[[' i [B)GC2I:IndGC2,]nd' i ]ndGCZI:ld ) (11)

where Bis an arbitrary operator which is diagonal in the
representation |a). Thus the simple diagonal part is
called that portion of the mth commutator which is
obtained by retaining the nondiagonal part only of
each commutator except the last one of which one
should keep the diagonal part. In view of the definitions
(10) and (11), we may write for the diagonal part of (9).

{Ka(rs," * *,70) a=[51;3¢2 (71), " - ,3C2"(70) Juisa
+2n[[S1;+ « - 3C2 (Tay) Jnuisa = +3C2  (74) Jn—nsed
+ 2 [[0S1;0 -+ +3C (7n1) Jnsisa® + +3Co (Tnrbna) Jnaisa = -
X3 (1) Tyt -+ (12)

The above separation amounts to decomposing each
term of Eq. (8) into parts which asymptotically for
large ¢ behave like ¥, where % is the number of simple
diagonal parts in the corresponding terms on the right-
hand side of Eq. (12).
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On substituting (12) into (8) we find for the diagonal
part of Si(f), after an obvious rearrangement of terms,

{Sl(l)}d=51+2(—i)\2)nf dt,,f nd)jn_l. . / d

X[{S1(t1)}as3C (t—t1),- - - ;30 (t—1n) Jnsea.

Differentiation of Eq. (13) with respect to  and a change
of integration variables yield, instead of Eq. (13),

d t t1 tn—2
ZS10)a= 5 (—ing)? / an f dta- - f dins
di " 0 0 0

X [{S1(t—11) }a;3C5 (1), - * ,3Co ({n-1),5C" (0) Jmssa - (14)

At this point it is convenient to introduce the Hilbert
space £ of linear operators which are diagonal in the
representation |a). Similarly, as in I, we may define in
this new Hilbert space the linear operators f, in the
following way:

fn(ll, ce ,tn—l)A = [A; 5C2’(l1)7 ce ,3(32’(1”_1_),5(32’(0)]“;“ ’
(15)

13)

where 4 isin £. With this the result (14) can be written
in a very compact form. We have

d ¢ 1
_t{SI(t)}d_,/; f(T){'Sl(t—'T)}ddT: ( 6)
with

f(T)=Z (—"L)\2)"/ dTl/ drg- -

T™n—38
X/ dTn—an(T,le e ,Tﬂ—'z) . (17)
0

In addition to Eq. (16) we also have the initial condition
{S51(0)}a=S.

For completeness, although it will not be needed here,
we also give the solution to the nondiagonal part of
S1(2). It is expressed in terms of the diagonal part of
S1(¢) according to

{Sl(t)}nd=§ (—i)\2)"/: aZtI/(:l diz- - -/otn_l dty

XL - - [L{S1(t—1t) }a;3C' (t2) Ina
X3Co' (£2) Jna * + Jna3Ce’ (£n) Jna

In order to discuss the solution of Eq. (16) in detail
this equation should be simplified considerably. For
that purpose we make use of a linearity assumption.
It can be formulated as

FES1(t—7)}a=a(r){S1(t—7)}a,

(18)

(19)
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where a(7) is a ¢ number. a(7) can easily be found on
multiplying Eq. (19) by S: and taking the trace at
t=r7. So we find

a(r)=Tr{S1f(7)S1}/TrS:2. (20)

With the aid of Eq. (16) together with the linearity
condition (19) we obtain the following simple equation
for @o(l)

a®4(t)
dt

=/ dr a(1)®(t—1), (21)

with the initial condition
<I>0 (0) =1.

The nature of the approximation (19) can be seen on
examining Eq. (21) in the following two cases. Firstly,
we may study the weak-coupling limit, i.e., As— O,
t—o so that A\%— constant. This has been done in
detail in I. As a solution to Eq. (21) we find a pure ex-
ponential decay,

@0(0 =¢ 7t N
with

Y= )\22'/-‘ dTTI‘{ [Sl ;3(32’(1),3(22]231}/Tr512 .
0

The second case we may consider is the strong-
coupling limit, i.e., A\; — 0. The operators (15) are then
independent of their arguments. If we furthermore
restrict ourselves to sufficiently small ¢, we find that
Eq. (21) reduces to

d®(t)
dt

(22)

t
= —wo2/ @0(7‘) dT,
0

where wy? is the second moment of the reduced auto-
correlation function ®,(¢). It is given by

w02= —)\22TI‘{ [51,302:]2}/Tr512. (23)
The solution of (22) is simply given by
®(t) = coswot. (24)

On the other hand, ®,(¢) can also be calculated exactly in
this case. One obtains

q’ﬂ,exact=Hl COS(bjkt/z) ’
k

where the prime means that j=k. Hence, we see that
in the strong-coupling limit and for small ¢ the linearity
condition (19) simply amounts to replacing the exact
solution by one single oscillation. Physically it corre-
sponds totheapproximation that thefields the individual
spin feels from the neighboring spins are being replaced
by one average field around which the individual spin
precesses.
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In conclusion we should point out that from the above
considerations it is obvious that the solution of Eq. (21)
in general may exhibit oscillations in the decay. This
effect has also been found for continuum systems in the
study of the generalized master equation of Van Hove.”

IV. COMPARISON WITH THE EXPERIMENTAL
SITUATION

Let us now consider the general solution of Eq. (21).
It can readily be obtained in a closed form utilizing
Laplace transformations. So we find

Bo(p)=(p—a(p)™, Rep>0, (25)

where

a(p)= f dt ea(t).

As a consequence, we can in view of Egs. (2) and (4)
immediately write down for the susceptibility

X(w)=X,[1— %iw{"i)o(i(w-—wl,))—l-&)o('i(w-l—wL))}] . (26)

The measurements of the magnetic-resonance line
shapes have been carried out on CaF; crystals.®:® They
have the main advantage that there is only pure
dipole-dipole interaction present. Hence, we have

@7

where 7;; denotes the distance between the jth and kth
spin and 6;; the angle between r; and the z axis,
Furthermore, v is the gryomagnetic ratio. In order to
make a definite comparison with the experiments, we,

—3aj="bjx="3v*(1—3 cos0;x)/7i1®,

7L. Van Hove and E. Verboven, Physica 27, 418 (1961).
8 C. R. Bruce, Phys. Rev. 107, 43 (1957).
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for simplicity, make the more or less standard type of
Gaussian assumption; that is, a(¢) is taken to be of the

form
a(t)=—Ae 37", (28)

The coefficients 4 and B can then in principle be com-
puted from the first two even moments of ®o(¢). The
moments M, of ®,(¢), which are defined as (the odd
moments vanish)

d2n

= (= %(x)) ,

t=0

dt2n

can easily be computed from Eq. (21). On differentiating
Eq. (21) repeatedly and taking t=0 we find the recur-
rence relation

M= 2 (—1)kaCED) (0) M 2(nt),

k=1

(29)

where

wo0=(at)

at

In particular, we obtain from Eq. (29) in view of Eq.
(28)

My=A4,

Me=A2+24B. (30)

The function ®o(f) may of course be determined by
merely taking the inverse Laplace transform of Eq. (25).
Instead, however, we have directly solved Eq. (21)
numerically. The coefficients 4 and B can be obtained
from Eq. (30), since M and M4 can be computed ex-
plicitly. These moments have in fact been evaluated in
the classical paper of Van Vleck.! Hence, the solution
of Eq. (21) is uniquely determined in terms of known
microscopic quantities, and there are therefore no arbi-
trary parameters involved in Eq. (21). In comparing
Eq. (21) with experiment we have adopted the following
procedure. ®,(¢) was determined from Egs. (21) and
(28), thereby using the theoretical values of 4 and B
which are obtained from Van Vleck’s results. Sub-
sequently 4 and B were varied somewhat around their
theoretical values in order to find the best fit to the
experiments. The results are shown in Fig. 1 and Table I.
The round circles in Fig. 1 denote some of the experi-

TaBLE I. The relevant quantities belonging to the several
curves of Fig. 1. In the last two columns the results of Van
Vleck® are given for the two moments.

Direction 42 B: M3} Mg Mid» Mg
of H @ G (@G (® (&) (@)
[100] - 11.6 7.6 3.41 4.18 3.6 4.31
[110] 4.5 3.7 2.12 2.68 2.24 2.73
[111] 21 17 145 18 153 188

s See Ref. 8.
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mental points found from the free-induction-decay and
CW experiments. The full curves represent our results.
The corresponding values for 4 and B are given in
Table I together with the second and fourth moments
computed with the aid of Eq. (30). We have also, for
convenience, included the results of the explicit cal-
culations of the two moments by Van Vleck. We see
that the agreement is gratifying, especially if we also
take the experimentally found values for the moments
into consideration (see Ref. 8 for these data).

In conclusion we have also examined the influence of
the exchange part of the interaction on the first node
71 in ®¢(f). This is shown in Fig. 2. Qualitatively, it
agrees with what one should expect. For B=0 the loca-
tion of the first node is simply given by

Ti=m/2412, (31)

When B gets larger, so does 71, so that for very strong ex-
change interaction one will obtain a pure damping
without oscillations. Experimentally one finds approxi-
mately, for the position of the first zero,

T1,expt= 2/M21l2;

which is approximately equal to the result calculated
above [Eq. (31)] with B=0.

V. DISCUSSION

The reduced autocorrelation function has been
studied with a technique which essentially takes care
of the divergences in time. In doing so we have been
able to derive an integrodifferential equation which is
valid to all orders of the perturbation.

In order to make a comparison with experiment we
had to make a linearity and Gaussian assumption.
Needless to say, in general one should be careful in
making the Gaussian hypothesis for «(f). The main
reason for using this is that the coefficients in the
Gaussian function can be simply determined with the
aid of the method of moments. A test for the validity
of the Gaussian hypothesis is to compute explicitly the
fourth moment of the function «(f). Because of the
mathematical complexities we have not done this.
However, since the exchange term in the interaction is
of the same order of magnitude as the Ising term, one
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should expect that the fourth moment of Eq. (20) will
not differ significantly from that of the Gaussian func-
tion. From the above considerations it is obvious that
one need not expect a perfect agreement with experi-
ment. It is found that the agreement is reasonable in
spite of these rather crude approximations.

Since the kernel of Eq. (21) reduces in the weak-
coupling limit to the lowest order term in \,, one may
tentatively examine the question in how far the lowest
order approximation is also valid in the general case.
The kernel in this approximation becomes

at)=—N? Tr{[S1;3¢5(£),3¢2 151} /TrSe2.  (32)

In order to study the above expression we assume it for
simplicity to be of a Gaussian form. As a result we
obtain

a(t)=—Ape B (33)
with

Ao= <V2> ’

Bo=(»%)/2(s%).
Here (»2) and (»*) are the first two even moments of
Eq. (32). They are given by
(%) =ne? Tr{[S1;3C,3¢2]S1}/TrS12= M,
@ =2 Tr{[S1; 32,31 ]2} /TrS;2.
Hence, we have Ao=4. Explicit calculation of (»%)

for CaF;, however, shows that the ratio By/B is given
by about 0.5.



