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at least one of the eigenvalues E„,must be greater than
zero, since

If we take Q as

Since E electively decreases continuously with increas-
ing temperature, we expect the eigenvalues to decrease
continuously as the temperature increases. Thus, if
E~(T=O)) 1, there will be a temperature Ts at which

E„e(Ts)= 1.At this temperature f„e(Te) satis6es (84').

=0, p&lspr, p&elsps,

ppp&p&elspe

(35)

it is easily seen that pEp is proportional to Inls for
suKciently small p, . This completes the proof.
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The autocorrelation function of the transversal magnetic moment is investigated in the presence of
dipole-dipole interaction. For that purpose an integrodifferential equation is derived which is exact in all
orders of the perturbation. The resulting equation is simplified with the aid of a linearity and Gaussian
assumption and is solved numerically. Good agreement is thereby found with the experimental situation.
In particular, it is shown that the physical nature of the oscillations found in the free-induction-decay
experiments of Lowe and Norberg can be understood as a precession around an average internal magnetic
field.

I. INTRODUCTION

''N the calculations of the resonance linewidth in
& ~ paramagnetic systems with dipole-dipole inter-
action one in general makes use of the Gaussian assump-
tion for the line shape. "This has clearly the advantage
that the method of moments can be applied in a simple
way. On the other hand, it is experimentally demon-
strated by Lowe and Norberg' using the free-induction-
decay method, that the decay curves are of an oscil-
latory nature (in contrast to the monotonic decrease of
a Gaussian function).

The autocorrelation function C (t) of the transversal
magnetic moment, which essentially determines the
decay curves, has also been evaluated by Lowe and
Norberg. Their calculation is based on a power-series
expansion of the form

C(l)= P l"P.(l),
n-0

in lowest order of which the Ising and exchange parts
of the dipole-dipole interaction are assumed to commute.
Because of the mathematical complications only the
terms up to n=4 have been calculated. Remarkable

*Work supported in part by the U. S. Atomic Energy Com-
mission.
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agreement is thereby found with the experimental
situation. It is, however, not clear from the theoretical
point of view whether the higher order terms can be
neglected.

The present paper is devoted to the study of the
autocorrelation function within the framework of a
formalism which has been developed previously4 and
which is based on a many-particle treatment of the
spin system. From the present treatment the physical
mechanism of the oscillatory behavior in time can, at
least qualitatively, be understood.

%e 6rst shall be concerned with a derivation of an
integrodi6erential equation for the autocorrelation
function with the use of a power-series expansion in
terms of the Ising part of the interaction Hamiltonian.
Subsequently, the resulting equation is simpli6ed with
the aid of a linearity condition. Finally, it is solved
numerically and a comparison is made with experiment.

II. FORMULATION OF THE PROBLEM

In this section we briefly recall some details for
further reference. Consider for de6niteness a crystal of
identical paramagnetic ions with spin 2 which is placed
in a large external magnetic 6eld H. The 6eld H is
supposed to be along the s axis. Furthermore, let us
con6ne ourselves to the situation that we may neglect

J.A. Tjon, Physics 30, 1341 (1964) (hereafter to be referred to
as I).
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the relative motions of the ions, that is the spin-lattice
relaxation time is taken to be in6nite.

In the CW experiments one is interested in. the linear
response coeKcient of the spin system to a small rf
magnetic 6eld with frequency co along the x axis. This
coe5cient is given by the so-called complex suscepti-
bility X(&a). As is well known, X(a&) is simply related in
the high-temperature limit to the autocorrelation func-
tion C(t) in the following way (see, for example, Refs. 5
and 6)

purpose, the method employed in I will be generalized
to all orders of the perturbation. The extension is in
principle needed because the perturbation, given in this
case by X2X2, is not small.

Our starting point is the following power-series ex-
pansion for Eq. (6), which is obtained on iterating the
equations of motion in the interaction representation

S,(t) = P ( 2—4). dt„
n=O

X((a) = —X2
"d4(t)

-e '"'dt Xaa(t —t„t—t.. .t—t„), (g)

where X, denotes the static susceptibility. C(t) is defined
according to

@(t)=Tr{d'~isla 'nisi}/Trs]2 (3)

where E„is given by the eth commutator

E„(ri,r2, ,r )= fsi.,X2'(ri), X2'(r2), ,X2'(r )]„,
(9)

(r.)—ei4X&riX e
—il&KiriFor convenience we have used units in which 5= 1. In

(3) Sl represents the x component of the total spin
operator and K is the total Hamiltonian of the system,

We next introduce a complete orthonormal set of states
in) which are eigenfunctions simultaneously of Xl
and S~.'i.e.,

A=Ad+And,

.X Xz+X Xlin) =Z(n) in),
where X, designates the Zeeman energy and X," de- s I )=s()I ).
scribes the interaction between the spins. It can now be
shown that in case 8 is large the expression(3) in a good An oPerator A may in general be decomPosed into

approximation can be reduced to

4(t) =cosQ)pter'2(t) ~ (4) so that

where co' is the Larmor frequency and 4'2(t) is the
reduced autocorrelation function which is dined. as

with
@2(t)=Tr{Sl(t)Sl}/TrSl',

S(t) ~iXztSd—iXit

(5)

In Eq. (7), S, means the spin operator of the jth spin.

III. THE INTEGRODIFFERENTIAL EQUATION

Accordirig' to the previous section the problem of
ending the susceptibility is reduced to the determination
of the reduced autocorrelation function C,(t). For that

' A. Abragam, The Princip/es of Eucleur 3fageetism (Clarendon
Press, Oxford, England, 1961).

' R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

Here BC& denotes the truncated Hamiltonian which
consists of only the secular part of K". We may now
write the secular part in the following form

X,=kiXi+X2X2,

where X~K~ and X2K~ are the exchange and Ising parts
of the interaction Hamiltonian, respectively:

)lxl ——Q a;2S; S2,
j&k

X2X2=+ b;ls;2S22.
q&k

(niAain')=(n[A [n)B ...
The operators A~ and A q are called the diagonal and
nondiagonal parts of A, respectively. Furthermore, we
shall also need the simple diagonal part of the mth
commutator, dered according to

[~jX2zX2z' 'zX2)ta;sd
= PLL f~P4']naX2'). d. ]naX2']a, (11)

where 8 is an arbitrary operator which is diagonal in the'

representation in). Thus the simple diagonal part is
called that portion of the mth commutator which is
obtained by retaining the nondiagonal part only of
each commutator except the last one of which one
should keep the diagonal part. In view of the de6nitions
(10) and (11),we may write for the diagonal part of (9).

{~n(rig' ' zrn)}a= [SljX2 (rl)z' ' 'zX2 ('ra)]nsd

+En&LPlj' ' X2 (rnt)]nl;sd' ' 'X2 (ra)]n—nnsd

+ P ([P'lj' 'X2 (rny)]as&isa'''X2(ray+as)]ns;sd''
%$2%/

XX2'(r„)], „, „,,d+ ~ ~ . (12)

The above separation amounts to decomposing each
term of Eq. (8) into parts which asymptotically for
large t behave like t~, where k is the number of s™pie
diagonal parts in the corresponding terms on the right-
hand side of Eq. (12).
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Fxo. 1. The free-
induction decays as
a function of time
for several crystal
orientations. The cir-
cles are some of the
experimental points
and the full curves
represent our results.

In conclusion we should point out that from the above
considerations it is obvious ths, t the solution of Eq. (21)
in general may exhibit oscillations in the decay. This
CGect has also been found for continuum systems in the
study of the generalized master equation of Van Hove. '

&(p)= Ct e "'n(t).

As a consequence, we can in view of Eqs. (2) and {4)
immediately ~rite down for the susceptibility

X(oo) =XoI 1——',i(o(C~o(i(oo —oor))+C'o(i(oo+(o1))) $. (26)

The measurements of the magnetic-resonance line

shapes have been carried out on CaFg crystals. ' ' They
have the main advantage that there is only pure
dipole-dipole interaction present. Hence, we have

3a; o b; g = ,*7'—(1 3——cos'e;o)—/rto',— (2't)

where r;~ denotes the distance between the jth and kth
spin and 8;p the angle between r;g and the s axis.
Furthermore, y is the gryomagnetic ratio. In order to
make a de6nite comparison with the experiments, we,

7 L. Van Hove and E. Qerboven, Physica 27, 418 (1961).
8 C. R. Bruce, Phys. Rev. 107, 43 (1957).

IV. COMPAMSON WITH THE EXPEMMENTAI
SITUATION

Let us now consider the general solution of Eq. (21).
It can readily be obtained in a closed form utilizing
Laplace transformations. So we find

. (p)=(p-~(p))-', R p&0, (»)
where

4 II(p) = Ct e &'eo(t),

~o.= (—1)" C'o(t)
I

dt'" & 1-O

can easily be computed from Eq. (21).On differentiating
Eq. (21) repeatedly and taking t=0 we find the recur-
rence relation

3IIo = P (—1) n& &(0)Mo(

where
(d"

n'"'(o) =
I n(t) I

Idt- ), ,
In particular, we obtain from Eq. (29) in view of Eq.
(28)

3f2=A,
3Eo=A '+2A B. (30)

The function Co(t) may of course be determined by
merely taking the inverse Laplace transform of Eq. (25).
Instead, however, we have directly solved Eq. (21)
numerically. The coeKcients A and 8 can be obtained
from Eq. (30), since 3Eo and M'o can be computed ex-
plicitly. These moments have in fact been evaluated in
the classical paper of Van Vleck. ' Hence, the solution
of Eq. (21) is uniquely determined in terms of known
microscopic quantities, and there are therefore no arbi-
trary parameters involved in Eq. (21). In comparing
Eq. (21) with experiment we have adopted the following
procedure. Co(t) was determined from Eqs. (21) and
(28), thereby using the theoretical values of A and 8
which are obtained from Van Vleck's results. Sub-
sequently A and 8 were varied somewhat around their
theoretical values in order to 6nd the best 6t to the
experiments. The results are shown in Fig. 1 and Table I.
The round circles in Fig. 1 denote some of the experi-

TABLE I. The relevant quantities belonging to the several
curves of Fig. 1. In the last tyro columns the results of Pan
Vleck' are given for the taro moments.

Direction
of 8
(100)
L1103

A2 Bg 3f2&

(G') (0') (6)

11.6 7.6 3.41 4.18 3.6 4.31
4.5 3.7 2.12 2.68 2.24 2.73
2.1 1.7 1.45 1.83 1.53 1.88

a See Ref. 8.

for simplicity, make the more or less standard type of
Gaussian assumption; that is, n(t) is taken to be of the
form

n(t)= —Ae s".
The coeScients A and 8 can then in principle be com-
puted from the first two even moments of Co(t). The
moments M of Co(t), which are defined as (the odd
moments vaIllsl1)
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mental points found from the free-induction-decay and
CW experiments. The full curves represent our results.
The corresponding values for A and 8 are given in
Table I together with the second and fourth moments
computed with the aid of Eq. (30). We have also, for
convenience, included the results of the explicit cal-
culations of the two moments by Van Vleck. We see
that the agreement is gratifying, especially if we also
take the experimentally found values for the moments
into consideration (see Ref. 8 for these data).

In conclusion we have also examined the influence of
the exchange part of the interaction on the erst node

in 4p(t). This is shown in Pig. 2. Quahtatively it
agrees with what one should expect. For 8=0 the loca-
tion of the 6rst node is simply given by

Fzc. 2. The de-
pendence on B of
the location of the
the Grst zero in the
autocorrelation func-
tion for a 6xed A.
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v. DrscUssroN

The reduced autocorrelation function has been
studied with a technique which essentially takes care
of the divergences in time. In doing so we have been
able to derive an integrodiBerential equation which is
valid to all orders of the perturbation.

In order to make a comparison with experiment we
had to make a linearity and Gaussian assumption.
Needless to say, in general one should be careful in
making the Gaussian hypothesis for n(t). The main
reason for using this is that the coeKcients in the
Gaussian function can be simply determined with the
aid of the method of moments. A test for the validity
of the Gaussian hypothesis is to compute explicitly the
fourth moment of the function n(t) Because of .the
mathematical complexities we have not done this.
However, since the exchange term in the interaction is
of the same order of magnitude as the Ising term, one

When 8gets larger, so does xi, so that for very strong ex-
change interaction one will obtain a pure damping
without oscillations. Experimentally one inds approxi-
mately, for the position of the erst zero,

rg pxpf, 2/Np

which is approximately equal to the result calculated
above (Eq. (31)j with B=O.

n(t) = Ape— (33)
with

Ap ——(v'),
~o= (")/2(")

Here (p') and (v4) are the 6rst two even moments of
Eq. (32). They are given by

(~')=4' Tr(LSg,Xp,Xp)Sg}/TrSg' ——Mp,

(u4) = lj.g9.pP Tr(LSgi Xp,Xgf'}/TrSP.

Hence, we have Ap=A. Explicit calculation of (v')
for CaFp, however, shows that the ratio Bp/8 is given
by about 0.5.

should expect that the fourth moment of Eq. (20) will
not di6er significantly from that of the Gaussian func-
tion. From the above considerations it is obvious that
one need not expect a perfect agreement with experi-
ment. It is found that the agreement is reasonable in
spite of these rather crude approximations.

Since the kernel of Eq. (21) reduces in the weak-
coupling limit to the lowest order term in A2, one may
tentatively examine the question in how far the lowest
order approximation is also valid in the general case.
The kernel in this approximation becomes

n(t) = —Xp' Tr()Si,Xp'(t),Xp)S|}/TrSP. (32)

In order to study the above expression we assume it for
simplicity to be of a Gaussian form. As a result we
obtain


