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Itinerant Antif erromagnetism*
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The itinerantly antiferromagnetic or spin-density-wav'e state is examined for an electron gas and a more
realistic band model. The paramagnetic electron gas, which is unstable to the formation of an antiferro-
magnetic state in the Hartree-Fock approximation, is shown to be stable when either static Fermi-Thomas
or dynamic screening is included. A mathematical model is constructed for the spin-density-wave state
below its transition temperature and its experimental consequences examined. A criterion for itinerant anti-
ferromagnetism in a band model is derived and shown to be consistent with the antiferromagnetism of Cr.
A crude model is employed to compute qualitatively the thermodynamic and electromagnetic properties of
an itinerant antiferromagnet like Cr. In particular, the speci6c heat, spin susceptibility, collective modes,
and electromagnetic absorption are evaluated.

1. INTRODUCTION

�

~OR the past few years there has been contention
about whether the ground state of a high-density

electron gas is paramagnetic or antiferromagnetic and
whether the antiferromagnetism of Cr is related to the
Hartree-Fock instability of a free-electron gas. This
paper discusses these problems.

As Overhauser~ has stressed, when the Coulomb
interactions in an electron gas are treated in the
Hartree-Fock approximation, the antiferromagnetic
(spin-density-wave) state has lower energy than the
paramagnetic state. This conclusion has also been cor-
roborated by Fukuda, Iwamoto, and Sawada. ' ' How-
ever, the interesting question of whether the screened
electron gas is unstable toward antiferromagnetism has
not been examined. '

We investigate the question in Sec. 2 by examining
the stability of spin density waves in the paramagnetic
state. We show that when Fermi-Thomas static screen-
ing is taken into account, the Overhauser instability
disappears. We also show, albeit crudely, that the more
realistic dynamically screened Coulomb potential elimi-
nates the instability. The crudeness of the latter
demonstration lies in the fact that we do not allow for
modi6cation of the dynamic screening from the random-
phase approximation.

In Sec. 3, we brieQy investigate the properties of a
hypothetical electron gas antiferromagnet assuming
that screening can be ignored. The resulting system is
shown to exhibit a small speci6c heat at low tempera-
tures and a discontinuity in the speci6c heat at the
transition temperature. The state does not exhibit
optical absorption.

In Sec. 4, the stability of a more realistic band model
is investigated. The band structure introduces many
complications. To cope with them umklapp processes in
the screened exchange interaction are neglected and a
static local screened potential is employed. A semi-
quantitative criterion for antiferromagnetism is derived.
Whether a metal is antiferromagnetic or not depends
almost exclusively on its band structure and in particu-
lar on its Fermi surface. The Bloch states and screening
length are relatively unimportant. The criterion predicts
that Cr is antiferromagnetic by the I.orner' two-band
mechanism. It seems highly unlikely that any one-band
model could ful611 this criterion.

A very crude two-band model representative of Cr is
chosen in Sec. 5 to calculate some of the thermodynamic
and electromagnetic properties of an itinerant anti-
ferromagnet. A pairing of electrons with different spins
in di8erent bands is responsible. The speci6c heat,
spin susceptibility, collective modes, and electromag-
netic absorption are shown to agree with existing experi-
ments. Some features of the crude model are dependent
on its unrealistic Fermi surface and would undoubtedly
be altered in a more realistic picture.

2. STABILITY OF THE FREE-ELECTRON GAS

In this section, we shall investigate the stability of
a paramagnetic electron gas with respect to the forma-
tion of an antiferromagnetic state. As usual, the
electrons are assumed to move in a uniform background
of positive charge. The Hamiltonian is

P=P d'r P.t (rt) [—(p'/2rrt) —rtvv]f, (rt)

+ Based in part upon a portion of the doctoral thesis submitted
by P. A. Fedders to the Physics Department of Harvard Uni-
versity, 1965. Supported in part by the National Science
Foundation.

t Present address: Palmer Physical Laboratory, Princeton
University, Princeton, ¹wJersey.' A. W. Overhauser, Phys. Rev. 128, 1437 (1962).' F. Iwamoto and K. Sawada, Phys. Rev. 126, 887 (1962).' N. Fukuda, F. Iwamoto, and K. Sawada, Phys. Rev. 135, A932
(1964); see Appendix.

4 There appears to be a widespread but erroneous notion that
the latter authors investigated this question.

Xv(r r')P;(r'tg. (rt), —(2.1)

with v(r) the Coulomb potential between electrons and
rtvv rtJ'd'r (e'/r) the interactio——n energy of the electrons

' W. M. Lomer, Proc. Phys. Soc. (London) 80, 489 (1962).
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with the uniform background. The operator 1t,(rt)
destroys an electron of spin 0. at the space-time point
(r,t). We have set 5= 1.

Since the susceptibility is a measure of the response
of the system to a spin density disturbance, we may
use it to examine spin density Quctuations and thus the
differential stability of the system. The growth of uni-
form spin density Quctuations in the paramagnetic state
indicates it is not even metastable to the ferromagnetic
state; the growth of spin density Quctuations with a
finite wave number indicates the corresponding in-
stability to antiferromagnetism. Conversely, the decay
of spin density Quctuations indicates stability to small
deviations and thus, at worst, metastability. We shall
show in this section that the paramagnetic state of an
electron gas is unstable to the formation of spin density
waves in the Hartree-Pock approximation but at least
Inetastable in a better approximation which takes
screening into account.

We examine these spin density fiuctuations by
calculating

Xg(12)= &T(M, (1)M;(2))) (2.2)

The symbol T ( ) indicates that the bracketed operators
are to be time ordered, and the angular brackets, &X),
that the expectation value Trpx is to be taken over a
thermal equilibrium ensemble p. In the paramagnetic
state X,;(12) is proportional to 5;;; we can therefore
consider any of the equal elements, say X„.

The actual nonlocal frequency-dependent suscepti-
bility is given by

X(rr', a&) =i dt e'"'([M(rj),M(r'0) j)
0

It can be obtained from (2.2) by the algorithm

1 1

X(rr', o&) =p lim lim ds ds' e~~ &' "&X(rs; r's').
5~0+ coy~Q+l4

0 0

In this expression, as usual, P=1/keT, s=it/P is an
imaginary dimensionless time, and a&„=tv/ ip, where-
' is an even integer. The notation is discussed further
in Appendix A.

For a system of interacting particles which move
about through space, no equation can be derived
directly for X. Instead one Gnds an integral equation
for what we may call the "fractional susceptibility" or
the correlation function for electron-hole scattering L,

L (11',22')

= a&2'(2 0' '(1')~ e "A(1)Z 0'~'(2')&T~'V 5(2))).

(2.3)

whose arguments, e, stand for space-time coordinates
(r„,t„) of the magnetization density (p, is the electron
moment)

M'(1) =u Z 4-'(1)~-e"'A(1).

X can be extracted by setting 1'=1, 2'=2 and multi-

plying by 2p,'.
Our method for examining the metastability of the

paramagnetic state is to examine the analytic behavior
of the Fourier transform of L. More speci6cally, if we

take an electron gas, which has translational invariance,
and set tl' ——tI, t2'= |I2, L can be written in momentum
space as

&y I L(q~) I
y')

1

lim p ds ee""'—&&(Q p '(y —-'q s)o' e"
oly~hs+44

0 aP

XA(y+l», s)Z 4.'(y'+lq 0)~.s'Vs(y' —'q o)))

(24)

and the total susceptibility as the integral of this
fractional susceptibility

d'p d'p'
X(q~) =2~' &ylL(q~) ly') (23)

(2a)' (2s)'

(y~L(qcu)
~

y') is the electron-hole pair correlation func-
tion between electron-hole pairs of total momentum q,
opposite spin, and relative momenta p and p'. The
statement that L (~) has a pole in the upper half co plane
means that L(t) grows exponentially. In other words,
the paramagnetic state is diGerentially unstable to the
formation of spin density waves of wave number q.

The equation for L is deduced in Appendix A using
Green's-function techniques. The problem divides itself
naturally into two parts: first, an exact integral equation
for L in terms of an exact interaction kernel J between
the electrons and holes,

L(11',22') =Ls(11',22')+ d3d3'd4d4'

&(Le(11',33')J(33',44')L(44', 22'), (2.6)

where fdn is shorthand for fdr„dt and Le is the free
(s=0) electron-hole pair correlation function; second,
an iterative expansion determining the exact electron-
hole interaction kernel J. A consistent and straight-
forward method of characterizing successive approxima-
tions for J or L with necessary conservation and sym-

metry properties' can be based on approximations to
the free energy. Associated with each approximation
to the free energy of the high-density electron gas to
some order in the dimensionless parameter r, =me'/o;P v

[p, is the Fermi momentum; n= (4/9m. )'I'] is a unique

approximation for J which is self-consistent to that
order. It is this approximation which we refer to when
w'e call an equation for L exact to a given order in r, .

6 G. 11aym and L. P. Kadano6, Phys. Rev. 124, 287 (1961};
G. Baym, i'. 127, 139k (1962).
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The 6rst such approximation is the Hartree-Fock ap-
proximation, exact to order 1/r, . To this order, J is
given by the unscreened Coulomb potential. The second
such approximation is a dynamically screened approxi-
mation which is exact to order lnr, . It is in this approxi-
mation that we examine the instability.

The equation for I to a certain order in r, involves the
Coulomb potential v and the single-particle Green's
function or propagator. There exists a well-de6ned
propagator to the correct order in r, which is also
uniquely dictated by the requirement of self-consistency
with the free energy to that order. For the 1/r, ap-
proximation, the propagator contains the familiar
Hartree-Foci& single-particle energy

p' e pi pr' p' p—+pr
EHp(p) = — 2+ ln

25k 2' ppil' i p pp
. (2.7)

In practice, the errors resulting from the use of the free
particle or Hartree energy

Eo(p) =p'/2m (2.g)

play a negligible numerical lole in our consideration to
order 1/r, or lnr, .

Rather than talk in terms of the fractional suscepti-
bility I- (the wave function or Green's function for
electron-hole scattering), it is sometimes more con-
venient to restate the problem in terms of the quantity
T (the scattering matrix for electron-hole scattering}
related to I. by the equation

d2d2'T(11', 22')1.0(22',33')

d2d2 J(11',22')L(22', 33') . (2.9)

T, which satis6es the equation

T(11',22') =J(11',22')+ d3d3'd4d4'

XJ(11',44')L0(44', 33')T(33',22'), (2.10)

is a "generalized pseudopotential" for electron-hole
scattering. %hen we find the Fourier transform of T has
a pole with the imaginary part of or greater than zero, L
will also have this pole and the paramagnetic state will
be unstable. '

7 This should not be confused with the I, approximation for
particle scattering frequently employed at low densities.

The Hartree-Pock Ayyrowimation (for
Arbitrary Temyerature)

From (A15), (A17), and (A22) we see that in the
Hartrce-Pock approximation the electron-hole pair

correlation function satis6es the equation

I:~—AE(p, a)j&P I
L (e~) I

u'&

d3 II

++(u,q) ~(P—1")&1"
I ~(e~) I

p'&
(2m)'

=~(p, il) (2~)'&(ii—ii') (2 11)

I. is a function of only one time di6erence in this ap-
proximation. Fol' convcllicncc thc abbrcvlatcd notation

AE(p, il) =E(u+-'. e)—E(p——',a),
+(P,q) = fLE(P+lq) —~1—fLE(u —2q) —~j

is introduced where ii is the chemical potential and f is
t e Fermifac~or f{x)=tes*+1)-'.

Equation (2.11) is just the Schrodinger-like equation
for the electron-hole pair with momentum q and.
opposite spin created by tr(iP" (y+-,'ii)0 &*if(y ——,'il)). The
interpretation is straightforward. ~ is the time deriva-
tive, AE(p, il) is the energy of the noninteracting
electron-hole pair (measured from the Fermi energy),
and the remaining term on the left is the interaction
term between the electron-hole pair.

Equivalently, T is the solution to the equation'

&P I T(e~) I u) =~(li—ii')

d'p" „ii'(1",a)
~(u —u") „&ii"IT(qM)IP'& (212)

(2m)' AE(p",q) —co

in the Hartree-Fock approximation. It represents the
process where an electron-hole pair of total momentum

q and relative momentum y scatter into an electron-hole
pair of total momentum q and relative momentum y'.
The poles in ~ of the scattering matrix give the energies
of the intermediate states and their decay (or growth)
rates.

We shall not dwell on the fact that &y I
T(q(o) I

y') has
a pole above the real axis when il=2Pp and the tem-
perature is below a certain critical temperature since
this is merely a restatement of Overhauser's (or
Fukuda's) conclusions. We merely remark that the
temperature at which the instability 6rst occurs and the
wave number q at which this happens are the critical
temperature and wave number of the ensuing anti-
ferromagnetic state at the critical temperature. Below
this temperature it is nonsense to discuss the para-
magnetic state since it is unstable (not even metastable)
with respect to the formation of a static spin density
wave with wave number near 2pi . The proof that T
always has such a pole for the unscreened Coulomb
potential is given in Appendix B. The temperature at
which the pole first occurs depends on r, .

'%hile there clearly exists a variational principle for this
equation, whose stationary value is the susceptibility, we have not
found it tractable analytically. %e therefore refrain from dis-
cussing it, referring the reader, if interested, to the doctoral
dissertation of P. A. Fedders, Appendix 3.
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~(r) = ("/r) -p(—rr), (2.13)

where $ is the screening momentum or inverse screening
length. One usually uses the Fermi-Thomas momentum

gpT for its value. We shall first show that there is a
screening length below which the antiferromagnetic
instability does not persist and shall put an upper bound

pc on the inverse length. Furthermore, for all r„gpT
exceeds pc so tllat ail clcctl'oil gas wltll static Fcrxl11-

Thomas screening is always stable. The proof follows.
If there is a pole in T, then, in the neighborhood of

that pole, the finite inhomogeneous term s in (2.12) can
be neglected.

4(y)=—
d'p" ~'(p" q)

o(p —y") „4(p"),
(2m)' AE(p",q) —oi

where $=ResT. For this equation to be satisfmd, there
must be some-value of y, in particular, the y for which
ResT has its maximum value, for which

IE(y) I

=
d'p" (p(y",q)

o(p —y")
(2')' AE(p",q) —oi

(2.14)

is greater than one. Let us therefore see when
I R(y) I

can be largest, letting ~=0, since that is the most
favorable circumstance for the instability. By examining
R as a function of y and g, one may show that R has a
maximum at y=0 and q= 2pr for su%ciently small $.

At the point oo =0, q= 2pr, and y= 0, R is given by

E=ar, /2or {in'(2p r/p) —Z, (—1)
+l~ (-(~/2p. )')) (2»)

ESects of Screening

We have proved that the paramagnetic Hartree-Pock
electron gas is unstable with respect to formation of an
itinerant antiferromagnetic sty. te below a certain critical
temperature. However, the Hartree-Pock approxima-
tion is quite often unrealistic in dealing with Coulomb
interaction problems. The long-range nature of the
potential gives rise to an effective screened potential
which, in general, includes both static and dynamic
e6ects.

Before introducing the equation for T in a dynami-
cally screened approximation which is exact to order
1nr„ let us first consider only static screening. Heuristi-
cally, static screening can be included by introducing a
Yukawa or screened Coulomb potential of the form

TABLE I. Upper bound on inverse screening
length for antiferromagnetism.

gpT/ky 0.82 1.15 1.41 1.63 1.82 2.00
g,/kg 0.06 0.20 0.34 0.46 0.57 0.67

for o &2Pr, where Zo is the dilogarithm Zo(x) =P x"/rP
)c is determined by setting R= 1. From Table I we can
see that Ps T)tc for all values of r, up to 6. For larger
r„tc is bounded by-', fr T Rec. all that R& 1 is a sufFicient
but not a necessary condition for stability. Note further
that the statically screened electron gas is most stable
for small r„ the region where the equation is most valid.
As a 6nal comment, note that the 6rst Fredholm deter-
minant, which would replace the maximum value of E.
by its mean value, would not give a poor estimate of the
requirement for instability when the potential has a
short range. It is this observation which will enable us
to make statements about the dynamically screened
Glter action.

As is mell known, Fermi-Thomas screening is the
zero-frequency limit of the dynamic interparticle screen-
ing. Ke now take into account the dynamically screened
time-dependent interparticle potential. In momentum
space, the latter is equal to the Coulomb potential o(y)
divided by the dynamic dielectric constant o(pa&). It will

be shown that there is still no spin density instability
in an electron gas when the dynamic nature of the
screening is taken into account.

In Appendix A the expected equation for T to order
lnr, is derived. In terms of Feynman diagrams the
equation replaces each Coulomb potential "rung" of the
"ladder" equation by a dynamically screened potential
"rung, " s(y)/oap~(pM); the Coulomb interaction ac-
quires the dynamic screening appropriate to the random-
phase approximation (RPA). The increased screening
from the imaginary part of the frequency-dependent
dielectric constant and the frequency region where the
real part is negative compensate for the reduction in the
real part of the screening at low frequencies. A more
mathematical description will follow. Because of the
complexity of the problem, only the zero-temperature
limit is studied.

From (A18), (A19), and (A22), we see that the
cquRtloil for T corresponding to (2.12) hilt wl'tll

dynamic screening reads

(p~oIT(q~) Iyo~o)=1'. (yo—yo &o—~o)—
dop II

V. (po—po", ~o—~o")
(2ir)'

(po"»"
I T(q~) I

po'~o')

LE(po +oq) —
w
—(~o +o~)lI E(po —oq) —&

—(~o —o~)j
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the singularities in ~ in the propagators and V, being
displaced in the usual fashion. We have introduced

1'.(i) ~)= l'(p)/e»~(p~) .
When we employ a Fredholm expansion

&p~o I
2'(e&) li o'~o }

+(po(oo, Coo&i)o 4 o )= 1 .(i)o—po, (oo—(oo )+
1—D(q(o)

the erst approximation gives back the static screening
result we referred to earlier. ; the denominator is not
more than 2 for any q or ~. A rough estimate of the next
order gives a small correction. Thus the paramagnetic
electron gas remains djdferentially stable with dynamic
screening for all r, for which the high-density approxi-
mations are tenable.

Our argument does not rule out the possibility that
the paramagnetic state is metastable to the spin density
wave state. However, we are unaware of any mathe-
matical or physical argument for expecting the screened
case to diGer from the unscreened case in this respect.
Stated alternatively, we have not ruled out a Grst-order
transition to a state in which a modi6ed screening
resulting from the itincrantly antiferromagnetic spin
wave sustains itself. We merely assert that this is not
the case for the prototype transition proposed by
Overhauser, and no one has proposed any reason for
believing that it should occur and be fundamental in
more accurate theories.

(k ~ ~ )&((sTio) ~ ry&—i(k+io) ~ r2

=E*io (r~+r»h(r, —r„&,—&,) (3.3)

G++(&2) = (k ~ is)&((&+ho). (rr—rm)

(2s)'
=)))(r,—r„&,—],) . (3.4)

Equation (3.1), the Hartree-Fock equation, takes the
form

~.—e+(k) —g(k) &
p() (k,(o„)=-

—g(k) (o,—e (k))
(3.5)

e~(k) = [(kW-,'Q)'/2m] —p, (3 6)

The general solution to these equations takes the form

G ()(rt,r't')

=Z- expL s—Q- (r+r')]f-.«s(r r—', & &—') (3 2)

The paramagnetic solution is the one for which f„ t)(ri)
= 8~,o8,pl's(rf), where Qo= 0. Following Overhauser, ' we
search for a more general solution in which f~&, ()(rt)
=o,s+h(rt) are also nonvanishing and Q~r ——+Q. This
solution represents a circularly polarized spin wave
along the quantization axis. ' To derive the needed
expressions, the following definitions of the Fourier
transforms are used:

3. PROPERTIES OP AN ELECTROÃ-GAS
AÃTIFERRO MAGNET

d'k'
s(k—k')G~ (k',(o„),

(2s)'
(3.7)

In the previous section we proved that an electron
gRs has no Rntlfcrromagnetlc stRtc. Thc sp1n-density
instability in the paramagnetic state of Hartree-Foek
electron gas vanishes when one uses an approximation
which correctly includes screening. In spite of this, it is
instructive to study the properties of an itinerant anti-
ferromagnetic electron gas in the Hartree-Foek ap-
proximation. In this section, we briefly investigate the
consequences of this invalid approximation. We exhibit
the energy spectrum and discuss the speei6c heat and
absorption coe%eient. For the reader who is not
interested in the properties of a nonexistent state, this
section may be omitted.

In order to compute the properties of the antiferro-
magnet, it is nost convenient to use the Green's-function
formalism. Appendix A contains most of the necessary
information. We recall [Eq. (AS)] that the equation of
motion for the matrix Green's function in the Hartree-
Fock RpproxlDlatlon reads

(l0 &') = {(~/») —P[(&/2~)+~]) &(&&')

+)3 (»')O(»'). (3.&)

() is a 2X2 matrix in the spin indices with components
G++(~~')

and energies are measured from the Fermi level. To
f(nd g, we invert (3.5),

(o)„—e (k) g(k) )
~s(k, ,) =-l

E g(k) o)„-e+(k)1

[(~.—~+(k))(~.—~-(k))1 ' (3 S)

~[-'(~(k)—~(k))'+g'(k)l'" (3 9)

As in Sec. 2, we have neglected the Pock part of the
single-particle energies.

The essential feature of the electron gas which gives
rise to the spin density instability in the Hartree-Fock
approximation is the very large weighting of low mo-
mentum states by the bare Coulomb potential. Since
the actual Coulomb potential is diIIicult to use and since
the system is unphysical anyway, we employ the Over-
hauser idealization. The interparticle potential e in the
Rntiferromagnetic state is taken to be a constant 8 in

9 ()verhauser's equations have been cast in the Green's-function
formalism by A. K. Rajagopal, Ph.D. dissertation, Harvard
University, 19()4 (unpubhshed).
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momentum space inside of a cylinder of radius E and
length L. Outside of this cylinder e is taken to be zero.
The direction of Q defines the Z axis. R and L are less
than kg. Thus, in calculations, we shall take e to be a
delta function in configuration space and use the cutouts
E. and L in momentum space.

Assuming, as Overhauser did, that co+(k)&0 and
~ (k) &0 for all kin the region of integration, we recover
the gap energy at zero temperature from (3.7) and (3.8):

gs
——QLL4m sinh (4s'Q/mVR')] —' (3.10)

A. W. Overhauser, Phys. Rev. Letters 13, 190 (1964).
M. H. Kl Naby) Z Physik 174, 267 (1963)."J.J. Hop6eld, Phys. Rev. 139, A419 l1965l,

The energy spectrum and gap equation for the
electron-gap antiferromagnet are quite similar to those
for a superconductor. Thus we expect the specific heat
from the ordered electrons to be exponentially small at
low temperatures and to exhibit a discontinuity at the
transition temperature. The model indeed predicts this,
although we shall not compute C, here.

The fact that the energy spectrum has a gap is
responsible for the exponentially small speci6c heat at
low temperatures. However, this is modified by several
mechanisms. First, because the Fermi surfaces are
complicated and the model applies to only a portion of
the surface, only part has a decreased specific heat.
Second, there can be a mechanism for repopulation
which can lead to an appreciable C„at low temperatures.
So while we expect that an electron-gas antiferromagnet
would have a specific heat somewhat smaller than the
usual electronic and lattice speci6c heat, it would not
necessarily be an easily observable difference.

The presence of a discontinuity in the speci6c heat
at the transition temperature can be inferred from the
similarity of this system with a superconductor. Because
of this and the fact that the calculation is similar to
one later in this paper for a two-band model, we shall

not do it here. It turns out that the jump in C, is only a
few percent of the lattice speci6c heat at the proposed
transition temperature and the anomaly is only a few

degrees wide. Thus, if it did exist, it would be dificult
to find experimentally.

Kith essentially the model which we have described,
Overhauser" has tried to explain the optical absorption
experiments of El Naby. "That is, Overhauser claims
that this model predicts the absorption of light at
frequencies ~& 2g.

Hopfield" has pointed out that Overhauser's calcula-
tion violates conservation of momentum. The absorp-
tion coeKcient has a factor of the matrix element of the
momentum between the initial and final states. How-

ever, since the electron gas possesses full translational
invariance, the total momentum P is conserved and thus
commutes with the Hamiltonian II,

When E,/E~, the matrix element must be zero. There-
fore, there can be no absorption for 6nite co=Sf—E;,
since infrared (k=0) absorption involves this matrix
element.

More precisely, if we introduce X;;"(ka&), the absorp-
tive response function"

and neglect the ionic motion, so that the current is given
by j,= j= (e/m)p (where p is the electronic momentum
density) and if the electron momentum is conserved,
Hopfield's argument then says X;~"(ka) vanishes as
k —+ 0 except at ~=0. When k approaches zero, all the
absorption takes place at &v=0 exhausting the f-sum
rule.

The response when an electric Geld is applied to the
system is described in terms of the (j,j) correlation
function or the two-particle Green's function gs,"

g (11',22') =(T(g(1)$(2)P(2')Pt(1'))&.

Overhauser's calculation sets

bs (11',22') = g (11')g (22') —g (12')g(21') . (3.11)

This approximation is inconsistent with momentum
conservation and does not predict a collective spin-
density mode. To avoid this pitfall, one must calculate

gs as one calculated Gs in Sec. 2, from a conserving ap-
proximation. This requires inclusion of the interaction
between electron-hole pairs which lead to a collective
mode of the system. (The mode describes a slow varia-
tion of the gap or coherent electron-hole pairs. )

Thus the additional interactions Overhauser neglects
are the parallel in the condensed state of the interactions
in the paramagnetic state which give rise to the spin-
density wave in the 6rst place. The antiferromagnetic
mode resulting from a better calculation is analogous to
the collective mode in a neutral superconductor. To
obtain either, one must use a conserving approximation;
(3.11), or its analog for the superconductor, violates the
conservation law and is not sufhcient.

We have calculated the absorption in the "ladder"
approximation which is exact to order 1/r, and have
shown explicitly that in the corrected calculation the
absorption vanishes as k approaches zero for finite ~."
Whether a coupling to a lattice mode or some other
feature suppresses the additional terms we have cal-
culated remains to be seen. Short of such a demonstra-
tion there appears to be no compelling reason for sup-

posing that optical absorption in I could be explained

by an antiferromagnetic (spin-density wave) state.

"See L. P. KadanoB and P. C. Martin, Ann. Phys. (N. Y.) 24,
219 (1963).

'4 The transport coe%cients are given in terms of Green's func-
tions by P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342
(19S9).

"We refer the reader interested in details to P. A. Fedders,
Ph.D. dissertation, Harvard University, 1965 (unpublished).
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4. STABILITY OF A BAND MODEL

From our study of the free-electron gas we conclude
that the itinerant antiferromagnetic behavior of Cr is
not due to the long-range nature of the Coulomb
potential as implied by Overhauser. ' On the other hand,
Lomer' has suggested that it is the exchange coupling
of different sheets of the Fermi surface which is respon-
sible for these properties. In this section, we shall derive
a criterion for the existence of an itinerant antiferro-
magnetic state in a real solid, including screened inter-
band and intraband interactions. This criterion is con-
sistent with antiferromagnetism in Cr by the Lomer
interband coupling but not with antiferromagnetism in
a metal, like K, with a free-electron Fermi surface.

Formally, the precedure is much the same as in Sec. 2,
except that Bloch states and real band energies are used
instead of plane waves and free-particle energies. The
details are more dificult, however, because of umklapp
and interband processes, and because the energies of the
states and the matrix elements for these processes are
not known exactly. Many approximations have there-
fore been made. We neglect umklapp processes in the
exchange interaction and employ a static local screened
potential. A rough examination indicates that the
matrix elements are probably not crucial and that the
stability criterion depends almost entirely on the band
energies. Since we believe that itinerant antiferro-
magnetism occurs because of interband transitions, this
case is stressed in what follows.

The stability of the paramagnetic state is again in-

vestigated through the T matrix. The Hamiltonian for

this system is

H =g d'r p,t (rt)[ &2—/2rn+se(r)]f, (rt)

d'rd'r' P;t(rt)y, .t(r't)

d'r b„(k,r)b„*(k',r) = 8„,„82,k, (43)

where the integral is over all space. b„(k,r) can also be
written as

b„(k,r) =N„(k,r)e'"' (4.4)

where N is the periodic part of b.
From (A17), (A19), and (A25), we see that the Bloch

transform of T satisfies the equation

Xz (r r')f—;(r't)4. (rt), (4.1)

where w(r) is the periodic potential of the lattice and
core electrons. The Bloch functions b„(k,r) used are the
solutions to the Hartree-Pock equation with energies

E„(k),

[—Vs/22n+ V(r)fb„(k, r) =E„(k)b„(k,r), (4.2)

where V(r) is the Hartree-Fock periodic potential. The
functions b„(k,r) are labeled by band indices (n) and
wave vectors (k) reduced to the first Brillouin zone

(B.Z.). All lower case momenta will be taken to belong
to the first B.Z. unless otherwise stated. The normali-
zation is

(kini, ksns ( T(ai) )
ksns., k4n4) (k=&ni ) ksns( z

( ksns j k4n4)

j. f-. (ko') -f-.(k.)g (k]ni j kpnp] v] ksns kp'np ) (kp'np', ksns( T(pp) ) kpnp, k4n4), (45)
0 rto~o' &o&o' E„, (kp') —E„,(kp) —(u

where the Bloch transform of the potential is defined by

(kin i, ksns I
z

I
ksns, k4n&) =0 d'rid'rsb„, "(ki, ri) b»*(ks, rs) z (ri—rs) b» (k„rs)b„,(ks, ri) (4.6)

and f is the Fermi factor f„(k)= [expP(E„(k)—ts)+1] '. Because of the complexity of the problem and its ap-
parent secondary importance, dynamic screening has not been considered. However, screening is included in a
static approximation by using a screened potential z(r).

After some manipulations, (4.6) can be brought into the form

(kini, ksns
~
p

~
ksns ksn4) =Q p([k&—k4)z+K)(k&n&

~
k4+[ki —k4)is —Kn4)

X(k2'n2~ks+[ks —kslis+Kns)bt»-ks)z, [»—& ]z (4 7)

where the sum over K is over all reciprocal lattice vectors and

(kn~k'+Kn') = d'r N„(k,r)st„.*(k'+K, r) = d'r b„(k,r)b„*(k',r)e'&"'+K ~&'. (4 g)
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For a sum of wave vectors each in the first B.Z., the notation

kt+ko ——Lkt+ko]g+t kr+kojg (4 9)

has been introduced, where Pkr+kojs is the reduced part (belonging to the erst B.Z.) and Lkr+ko]g is a reciprocal
lattice vector.

We can take advantage of the momentum-conserving Kronecker delta in (4.7) by relabeling k&, ko, k, , and k4
as follows:

kt ——k+-', q, ko ——k' —-', q, k,=k—-', q, k4 ——k'+-', q. (4.10)

Vmklapp processes may be neglected, since (1) the potential behaves like 4s.e'/
~ p+K ~'+to, where ( is of the order

of the Fermi-Thomas momentum, and is largest for K=O; and (2) the matrix elements in (4.8) are primarily of
interest for I=I' and for

~

k—k'
~

small compared to any reciprocal lattice vector.
We may now therefore simplify our notation defining

(kl~k'n')= d'r b (k,r)b„e(k', r)e'&'"' "'»' (4.11)

and o(k—k') as o(t k—k'jz). Then (4.5) becomes

&"+'q"&' k' 'q»
I &(")I

k—oq&o' k'+'qe4& =o(k k') (k+oq&r I
k'+ rqm4) (k' 'qm&

I
k oq»)

f-. (k"+oq)—f-o(k"—oq)
& (k—k")(k+ z q+t

~

k"+os o') (k"—oq+o
~

k—
o q+o)

Q k" n0n0' E„, (k"+-,'q) —E„,(k"—-,'q) —(o

X(k"+-',qeo', k' ——',qeo
~
T(oo)

~

k"——',qno, k'+-,'qn4) (4.12)

We assume the crystal has inversion symmetry so that
all of the matrix elements (ke~k'e') are real. We also
set co =0, since if T has a pole at co =0 for some tempera-
ture, it should have a pole for imaginary co at slightly
lower temperatures.

As in Sec. 2, it is necessary to examine the kernel of
the equation for T which here contains the positive
definite matrix

r„„(k",q) =r„„(k",-q)
f-(k"+oq) f- (k—" oq)—

(4.13)
E„(k"+-;q)—E„(k"——',q)

describing the phase space and energy denominator of
the interaction between two bands. For simplicity, let
us assume (as appears to be the case in Cr) that there
is only one pair of bands, u and b, for which I' has a
small energy denominator over a non-negligible portion
of phase space. Then, in (4.12), we znay keep only the
two terms with eo'=a, eo=b and mo'=b, no=a in
the sum.

Since the matrix elements between the dNerent bands
tend to vanish, the only large components of the kernel
are the terms with e~——mo' in one band and e2 ——no in
the other. This eliminates the band sum making the
problem identical with that of Sec. 2. The instability
will occur at that go at which

(k+roqn~k +"orqm) over the region where the kernel is
unusually large. p is less than one but is probably not
small. Because of the many approximations, the insta-
bility may occur when R is somewhat larger than one.

We see here, as argued by Lomer, that the presence
of two nearby bands, whose energies are close to each
other over an appreciable part of the sum in (4.14), can
lead to an instability in T. In Fig. 1, two hypothetical
bands are drawn in the (100) plane of reciprocal space
with the occupied part of each shaded. These bands
represent Cr. The occupied region of band u is seen to
be similar in shape to the unoccupied region of band b.
If band b is shifted by q= Q, the energy denominator in
(4.13) is small over an appreciable region, namely, the
area of contact indicated by cross section in Fig. 2. b is
an average distance between the two surfaces. From
the illustrations and from estimates of the band struc-
ture of Cr (see Lomer), the region where the energy
denominator is small has dimensions which are small
compared to a reciprocal lattice vector.

and Q

E= 1/0 P&" e(0)y'r, o(k",qo) (4.14)

first becomes larger than one. In thig expression,
we have inserted the quantity y, the average of

FIG. i. Fermi-surface representative of Cr in (100) plane
(after I,orner},
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j.'"io. 2. Fermi surfaces
displaced by q.

e'y'gA
ln(v/25),

26r'a'Ev (v.+vb)
(4.15)

where v and vb are the Fermi velocities of the two bands,
8 is an average separation of the two surfaces as shown
in Fig. 2, A is the area of close contact of the two sur-
faces (the area shaded in Fig. 2), and u is half the cube
edge in lattice space. v (0) has been set equal to 4ve'/Pp r.

In the above analysis, we have assumed that only one
pair of bands will lead to a large E. %bile there is
nothing to guarantee this in general, it is true for Cr.
If it were not true, the analysis would still be the same
although the matrix inversion would be more compli-
cated. The formula for the one-band itinerant anti-
ferromagnet with constant matrix elements is obtained
by setting a=b. Cr satisfies the criterion for antiferro-
magnetism by interband transitions. While not impos-
sible, it is highly unlikely that this type of antiferro-
magnetism can arise from transitions within a single
band. The Fermi surface of the band would have to be
almost cubical to gain the required phase space for
low-energy transitions.

S. PROPERTIES OF AH ITINERANT
ANTIFERROMAGHET

Having demonstrated that Cr is most probably un-
stable to the formation of spin-density waves, we now
wish to investigate some of the thermodynamic and
electromagnetic properties of the ensuing itinerant anti-
ferromagnetic (spin-density wave) state. From our pre-
ceding analysis, a model which has particular reference
to Cr is chosen. However, the model is not su%.ciently
detailed to apply specilcally to a certain metal. The
results, therefore, apply equally roughly to any metal
which has the type of instability (due to interband
transitions) discussed.

For mathematical simplicity, we assume that the
energies of the two relevant bands (those that are
responsible for the instability) as measured from the
Fermi surface are given by

e.(k) =E.(k)—Eg =v. (k—k.),
(5.1)

et, (k) =Et,(k+Q) —Ep ———vg(k —k,).
v, and v~ are the Fermi velocities of the two bands and
k, is some wave vector in the first B.Z.—a sort of

band b

band a

Since only a small volume near the Fermi surface will
contribute significantly to the sum (4.14), the criterion
can be expressed in terms of the Fermi velocities. (4.15)
is approximately

average Fermi momentum. Q is any one of the wave
vectors which gives the greatest instability.

Of course, we know that this is not a very good ap-
proximation, but it is necessary in order to calculate
some properties of the system. The results should be
qualitatively and semiquantitatively correct, although
behavior depending on the details of the energy bands
will be lost. In a real transition metal, the surfaces of
constant energy are not spheres and the Fermi surfaces
of the two bands are not congruent. In this sense, our
approximation will tend to overestimate the area of close
contact of the Fermi surfaces. The approximation that
the energies are linear in k is not serious, since only the
energy structure near the Fermi surfaces is important.

Thus our crude model is given by (5.1) with two other
simplifications. First, we approximate the first B.Z. by
a sphere of radius E, since the properties of the state
should be relatively insensitive to the shape of the zone.
Second, as earlier, matrix elements of the form (ka

~

k'e)
will be replaced by p. In a real metal, this was justified
by the fact that the volume of close contact of the Fermi
surfaces had dimensions which were small compared to
any reciprocal lattice vector. This is now distorted be-
cause we have taken the Fermi surfaces to be congruent
spheres. The idea of approximating the matrix elements
in this manner is still valid, however. Finally, we note
that in all integrations, the important region will be
near k, . We could have put some cutoff or damping
factor into the matrix elements, but this would compli-
cate the model without appreciably altering the results.

We recall from (4.14) that the condition for the
instability of the paramagnetic system was that R be
greater than one. Kith our model, E is given by

v(0)y' x f(v, (k—k,))—f(—vp(k —k.))
k'dk

2' 0 (v,+v b) (k k,)—
(5.2)

The critical temperature or transition temperature,
denoted, by T~ or p~ ——1/k&T~, is determined by
setting E.= 1.For temperatures above T&, the system is
paramagnetic. Below TN, the paramagnetic state is
unstable to the formation of an antiferromagnetic state
which we shall investigate shortly. Performing the
integration in (5.2), which is similar to the correspond-
ing integral for a superconductor, yields, for E.= 1,

1=XDn(2P~k, y./v. )+(E'+2', 6k/)/2k '—
+0(1/pNEF)],

where we have used the experimental fact that P~Ev))1.
The average velocities v and v, a dimensionless measure
of the potential X, and a momentum k, have been
defined as follows:

v= (v.vg)'~' V=2 V~ Vy

X=y'v(0)kg/2v'v, in', =0.577
(Euler's constant), (5.3)
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k,= [k,(E—k,)]'I'.
Solving for T& yields

kjsTrr = (2y,vk, f/sr) exp( —1/X),

lnf = (K'+2Ek, —6k,')/4k, s. (5.4)

Since the expectation values of operators in a thermal
ensemble of these states obey the usual Quctuation-
dissipation theorem, we can impose the usual thermal
boundary conditions on the Green's functions. Then,
Bloch transforming (5.5) in the manner stated in (5.7),
we Gnd

(b.*(k,r)
g (k M„)= dsrdsr'I

0

0

b,*(1+Q,r)&

b. (k,r')
)(g (rr', co „)

0

0
(5.7)

bb(k+Q, r'))

This, of course, is not the most general kind of pairing
possible. To be thorough, one should consider the
possibilities of pairing between all momenta, spin direc-
tions, and all bands. In other words, the state described
by (5.6) will have lower free energy than the para-
magnetic state and eliminate the instability found
earlier, but it could conceivably be unstable to other
deformations.

Of course, it is senseless to predict T~ from our crude
model because of the exponential dependence on some
of the quantities involved. However, (5.4) is useful in
expressing other quantities in terms of T~ and using the
experimental value of TN= (312+1)'K for Cr.

To deduce any properties of the system below T&, we
must 6nd the correlation functions for a stable itinerant
antiferromagnetic state. As we shall see, there are many
similarities between these functions in the antiferro-
magnetic state and superconducting states. "

From Appendix A we recall the inverted equation of
motion for the one-particle Green's function g in the
Hartree-Fock approximation,

b
—'(11')= (8/Bs p[V—s/2m+is Vlr—(1)])b(11')

+Pe(11')g (11'), (5.5)

where Q is a 2&& 2 matrix in spin space, Vrr is the periodic
potential in the Hartree approximation, and u is a
statically screened Coulomb potential. We seek a self-
consistent solution to (5.5) with a linearly polarized
spin wave in the y direction, mixing bands u and b. The
relevant part of g is then given by

G s(rr', &o„)=+~ {[f,(k&a„)b,(k,r)b.e(k, r')

+fb(ko, )bb(k+ Q, r) bb*(k+ Q, r')]b S

+f(k,a)„)[b,(k,r)bb*(k+Q, r')

+bb(k+Q, r)b.*(k,r')]o.p~») . (5.6)

Ke may therefore introduce

(o„—e.(k) g (k)
~~'(k,~.)= p-

g(k) co,—eb(k))
(5 8)

g(k) =2

~'&(0)s [f(~t(k))-f(Ms(k))]
(2w)s

)&[e'(k —k )'+g']—'I'

where the summation has been performed.
At zero temperature we note that the Fermi factors

are step functions and coj &0, co2&0 for all k. The integral
is easily done if we neglect terms of order g/E& com-
pared to one. Using (5.4) for Tbr, we 6nd

go=g(T=O)=2ek, fe '~"=7reknTrr/y, v. (5.12)

For Cr, this predicts that go is about 2.6)&10 ' eV.
To determine the behavior of the gap for tempera-

tures near the transition temperature, it is more con-
venient to start from (5.9) and (5.10) without perform-
ing the sum. Since g vanishes at TN, we can carry out
an expansion of the denominator of (5.10) in powers
of g obtaining

X (ku I
k'a) (kb I

k'b) . (5.9)

t'bs. —eb(k) g (k)
pB(k,~,)= —

I

g(k) M„-e.(k)/

y [((0„—rot(k))((a„—res(k))] ', (5.10)

where

&ar, s(k) =-', (e.(k)+eb(k))
+[l(e.(k)—es(k))'+g'(k)]'Is (5 11)

in which the minus sign goes with co~ and the plus
With (o2.

The value of the gap g is now computed at zero
temperature and near the transition temperature. In
accordance with our model, the matrix elements in
(5.9) are approximated by p and the potential is taken
to be slowly varying. From (5.8) through (5.11) we see
that the gap equation is

"Many of the equations in this section are similar mathe-
matically to those in the theory of superconductivity. The calcula-
tion of the gap and speci6c heat are similar to those done in A. A.
Abrikosov, L. P. Gor'kov, and I. E. Dzaloshinski, Methods of
Quanta Field Theory in Statistical Mechanics, translated by R. A.
Silverman (Prentice-Hall, Inc. , Englewood Cliffs, New Jersey,
1963), Chap. 7. The collective mode equations closely resemble
those in L. P. KadanoB and P. C. Martin, Phys. Rev. 124, 670
(1961).

1
1=—Z

p v

e(0)V'
(2s )s ((o„—e, (k))(c0„—eb(k))

[(~.-"(k))(~.-eb(k-)]'
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The Grst term is similar to the integral done in obtaining
TN. For the second term, it is easiest to integrate before
summing and to neglect terms of order ksT~/EP with
respect to one. We find, on combining results,

g= r~BTbr(8'/7pof (3))1/2L1—(T/TN)gl/2

Tbr —T«T& Tbr v (5.13)

3'(3) is the Riernann zeta function of argument three.
The gap varies with temperature as in a superconduc-

tor. Neutron-diffraction experiments'~ seem to verify
that this is the general shape of the gap although they
give a small tail which goes past TN. This tail is only 3%
of the total intensity for single crystals of Cr but be-
comes significantly larger for more Gnely granulated
samples. It is not present in this theory. The
(1—T/ Tb)r'~' behavior of the gap is characteristic of an
effective Geld approximation. The exponent is probably
not —,

' in the exact theory.
Any of the thermodynamic derivatives characterizing

the antiferromagnetic state can be found from the
thermodynamic potential Q=(H IcX), wh—ich can be
expressed in terms of the interaction Hamiltonian by

where

d4cE4'o(44') g (14)Z(44', 2)g (4'1'), (5.19)

This is the addition to the speciac heat per unit volume
from the antiferromagnetic state to Grst order. To Gnd

Cv just below TN one needs the term to order g' in the
expression for T~. The value of the discontinuity in the
specific heat at T& is compatible with the value given by
experiment. ""The discontinuity is only a few percent
of the total. %e have not computed the contribution to
C& at lower temperatures. It would be very difficult to
compare to experiment, in any case, because of the
contributions from the other bands.

As one would expect, the antiferromagnetic state has
a collective mode in the form of a dynamic spin-density
wave which has a soundlike dispersion relation. The
mode manifests itself in the form of a pole in the spin-
density correlation function and the fractional suscepti-
bility along the s direction.

From (A15), we take the equation for the fractional
susceptibility as a matrix in the spin indices 1 and 1'.

2 (11', 2) =2'(11', 2)

n=O, + dz/X(H;. ,). (5.14) L '(11', 2)= —Q G p (12)7pp c'&Gp (21').
PP'

) is the coupling strength and 00 is the thermodynamic
potential of the noninteracting system. We shall com-
pute only that part of 0 due to bands u and b. In terms
of the Green's functions, (H;„b) is easily obtained from
the spectral function A.

d'k dao—{(co+o, (k) )A++ (kco)
(2')' 2'

The spin-density correlation function is given by

Q o c'&L (11;2)
ea'

=(THe+(1)—e (1))(ac~(2)—vb (2)))). (5.20)

After Bloch transforming, taking the potential to be
short ranged, restricting to two bands, and using our
approximation on the matrix elements, we obtain, for
the transform of L(1;2),

+(coyob(k))A (kco)}f(M), (5.15)

Ag~(kco) =PPG~~(k, co+io) Ggg(k—, co io)j.— z(k, co,)= —Q
vp

d'ko
g(ko+ k cd + cd )cr(z)

(2s)'
Since our model is far too crude to calculate accurate
values of 0 for the paramagnetic state, we only compute
the contribution to 0 due to the difference of the anti-
ferromagnetic state Q~p and the paramagnetic state Qp.
The contribution to II;„t,is

Xg(ko —-', k, co„,—-',co„)—P P
&0

Xg (ko+-', k, co„,+-',M„)Z (k,co„,)

Xg(ko ——,'k, co„,——,'co„) . (5.21)

d'ko
8;;= lim P g o(0)yoG~;~(ko+~~k, co„,+~~co„)

alv zv+cz vo (2~)o

XG(;) (ko—-,'k, co„,—-,'co„),

{o}=+—or —+, {+}=++,{—}=——.(5.22)
' R. H. Beaumont, H. Chihara, and J.A. Morrison, phil. Mag.

5, 188 (1960).
"We refer the reader interested in the details of this and other

calculations in this section to the doctoral dissertation submitted
by P. A. Fedders to the Physics Department of Harvard U'ni-
versity, 1965 (unpublished).

0,'8' ( 1 ) "7t(3)g'-
2w'o's 4hgT/ 8

(5.17)

Substituting the value for g from (5.13) and taking
the appropriate derivative yields the specific heat of the
system at T&..

(Cv)AP (Cv)P 8'vk ka'TN/7{ (3)P. (5.1g)
"G. E. Bacon, Acta Cryst. 14, 823 (1961).

(Hc c)Ap (Hz~c)p — k ogo/so& (5.16)
Equation (5.21) is a 2X2 algebraic matrix equation.

Changing the variable of integration from X to g in To solve for 2, we need the convolutions
(5.14) gives us the addition to the free energy of the
system



P. A. FEDDERS AND P. C. MARTIN

These convolutions have been evaluated in the lovr-

frequency, low-vrave-number limit to second order in
~/g and vq/g. At Gnite temperatures, the 8's are very
complicated. Thus, to look for the collective modes, we'

Grst examine the zero-temperature limit. In this limit,
the 8's are relatively simple. Their values are

&+o,p+= —&~, o= (~/4g)L+~+ (4g'/». )»(»k./g)3

(where the + sign goes with the left-hand pair of
subscripts and the —sign with the right),

1+B~p —8pp ——(X/4g2) Leos —c'k'

Wco(2g'/vk, ) In(2vk, /g) j, (5.23)

G = 3&a&b —3f-.1 1,—,2

E2—e2+ g2

e=v(k —k,). (5.26)

Ke shall compute X„only. in the interesting region
near T2t. In this region, the first part of (5.25) is smalL
The second integral is most: easily done by computing
X{TIo)and X(T)—X(TIKI) to obtain X(T).At TIo. the gap
vanishes, and X is given by

depends on v,—vs. From (A12), we see that

Pk g2 g2 8
X..=2&2 —tanh-,'PE—(tanh-', PE)

(22r)2 E' E' BE

dek 8
+211 (taW-;PE), (5.25)

(22r) 2 BE

Because of the equality of many of the 8's in this limit,
L++=L . L++ is given by

x„(TIo)=x,.(TN) = 2112k,2/212v.

Fol T~—TQQTQ T~~

{5.27)

'y v(0)I++)1+/ 'v(0)Lyy] —XC k t(lP c k j . (5.24) x (T) x (T) x (T ){f 2[) (T/T )$} (5 2g)

where c ls the velocity of the collective mode. Thus at
zero temperature, the tvro-band itinerant antiferro-
magnet possesses a collective mode vrith a sound-like
dispersion law, if cv and ck are less than the gap energy g.
The collective mode dominates the response, and it may
be observable in neutron-di8raction experiments in
spite of the small total moment. This result is hardly
surprising. At vanishing temperatures and long vrave-

lengths, the spin waves in an itinerant antiferromagnet
are like those of an insulating antiferromagnet just as in
the paraIIel ferromagnetic examples.

Equation (5.24) is valid only for T((T&, at tempera-
tures above absolute zero, the coeScients 8 become
much more complicated and have an imaginary part
vrhich is of order e—&g compared to the real terms. These
terms represent the Landau damping of the thermally
excited quasiparticles. For temperatures near T~, the
collective mode is essentially damped out. The damping
vrill also be increased by the lovr-lying excitations of a
more realistic model. A similar phenomenon occurs in
the itinerant antiferromagnet.

Since there is a gap energy g keeping the spins anti-
ferromagnetic, the magnetic susceptibility should be
depressed belovr the transition temperature. As the
temperature approaches the transition temperature, vre

expect the susceptibility to rise quite sharply since the

gap is diminishing rapidly. Above T~, vre expect the
susceptibility to be relatively constant. Again, more
complicated surfaces will make the effect less dra-
matic. ,

%e novr investigate these questions quantitatively,
recognizing that the static susceptibility is given by
limo~2 1lIIl~~p X{kCp). Ill order to do tllc required llltc-

grals, we shall assume that v, = vb
——e. This should not

affect the results greatly, since nothing in the theory

Also, X» is given by

d'k 8
Xyy= 2p, (taW-', PE) .

(22r) 2 BE
(5.29)

Near the transition temperature X»——X„, vrhile at
near-zero temperature X» vanishes as t,

—t'g.

Above T~ our model predicts a constant susceptibility
to the order we are calculating. It is useless to calculate
to the next order, since presumably the chemical poten-
tial changes to order T'. The rest of the bands should
contribute only a slowly varying amount to the total
susceptibility and thus a kink should be observed in X.
Lingelback" has made measurements on pure Cr vrhich

agree with our analysis. Hovrever, our results are not
compatible with measurements contradicting those of
Lingelback made by Collings, Hedgcock, and Seddiqi. "
Because of the contributions from the other bands,
further quantitative checks cannot be made.

%e anally calculate the absorption coeKcient for the
two-band Inodel at long wavelengths. For the longi-
tudinal conductivity, we 6nd an absorption edge at
so= 2g. %e only compute that part of the absorption due
to band u and b and neglect umklapp processes. Since
there is no momentum conservation and the collective
mode is insigni6cant, vre 6nd that the long-vravelength
complex conductivity is

d'ko
lim 82re2P Q

k2 Qll ~61+4 po (22r) 8

&&tr{8(&o+2ir, ~„+2pI,)8(&o—-', &, ~„—2~ )}.(5.30)

22 R. Lillgelback, Z. Phys. Chem. 14, 1 (1958)."E.W. Collings, I'. T. Hedgcoek, and A. Seddiqi, Phil. Mag. 6,
1955 (19tl1).
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at least one of the eigenvalues E„,must be greater than
zero, since

If we take Q as

Since E electively decreases continuously with increas-
ing temperature, we expect the eigenvalues to decrease
continuously as the temperature increases. Thus, if
E~(T=O)) 1, there will be a temperature Ts at which

E„e(Ts)= 1.At this temperature f„e(Te) satis6es (84').

=0, p&lspr, p&elsps,

ppp&p&elspe

(35)

it is easily seen that pEp is proportional to Inls for
suKciently small p, . This completes the proof.
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The autocorrelation function of the transversal magnetic moment is investigated in the presence of
dipole-dipole interaction. For that purpose an integrodifferential equation is derived which is exact in all
orders of the perturbation. The resulting equation is simplified with the aid of a linearity and Gaussian
assumption and is solved numerically. Good agreement is thereby found with the experimental situation.
In particular, it is shown that the physical nature of the oscillations found in the free-induction-decay
experiments of Lowe and Norberg can be understood as a precession around an average internal magnetic
field.

I. INTRODUCTION

''N the calculations of the resonance linewidth in
& ~ paramagnetic systems with dipole-dipole inter-
action one in general makes use of the Gaussian assump-
tion for the line shape. "This has clearly the advantage
that the method of moments can be applied in a simple
way. On the other hand, it is experimentally demon-
strated by Lowe and Norberg' using the free-induction-
decay method, that the decay curves are of an oscil-
latory nature (in contrast to the monotonic decrease of
a Gaussian function).

The autocorrelation function C (t) of the transversal
magnetic moment, which essentially determines the
decay curves, has also been evaluated by Lowe and
Norberg. Their calculation is based on a power-series
expansion of the form

C(l)= P l"P.(l),
n-0

in lowest order of which the Ising and exchange parts
of the dipole-dipole interaction are assumed to commute.
Because of the mathematical complications only the
terms up to n=4 have been calculated. Remarkable

*Work supported in part by the U. S. Atomic Energy Com-
mission.

t On leave from the University of Nijmegen, The Netherlands.' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).' B. Herzog and E. L. Hahn, Phys. Rev. 103, 148 (1956).' I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957).

agreement is thereby found with the experimental
situation. It is, however, not clear from the theoretical
point of view whether the higher order terms can be
neglected.

The present paper is devoted to the study of the
autocorrelation function within the framework of a
formalism which has been developed previously4 and
which is based on a many-particle treatment of the
spin system. From the present treatment the physical
mechanism of the oscillatory behavior in time can, at
least qualitatively, be understood.

%e 6rst shall be concerned with a derivation of an
integrodi6erential equation for the autocorrelation
function with the use of a power-series expansion in
terms of the Ising part of the interaction Hamiltonian.
Subsequently, the resulting equation is simpli6ed with
the aid of a linearity condition. Finally, it is solved
numerically and a comparison is made with experiment.

II. FORMULATION OF THE PROBLEM

In this section we briefly recall some details for
further reference. Consider for de6niteness a crystal of
identical paramagnetic ions with spin 2 which is placed
in a large external magnetic 6eld H. The 6eld H is
supposed to be along the s axis. Furthermore, let us
con6ne ourselves to the situation that we may neglect

J.A. Tjon, Physics 30, 1341 (1964) (hereafter to be referred to
as I).


