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When account is taken of the damping of dislocations by electrons —i.e., by electron viscosity —it is shown
that the energy losses due to this source are appreciable and are different in the normal and in the super-
conducting states. By subtracting off these two losses for the acoustic attenuation measured for these two
states, and using the relation between the residual attenuations for the two states determined from the BCS
theory, a much better determination of the energy gaps for superconductors is obtained. For lead the value
is 2&0 ——(4.1~0.1)kT„ in good agreement with other methods for measuring the gap. The electron damping
of dislocations accounts also for the amplitude e8ect in the superconducting range Grst observed by Love
and Shaw. Theoretical calculations by Tsuneto have indicated that the ratio of the attenuation in the
superconducting to that in the normal state for longitudinal waves should be the same for the region qk(1
as that which has been found by BCS in the region qt))1. When account is taken of the dislocation damping
eBect, it is shown that existing data con6rm this calculation.

I. INTRODUCTION: EXPERIMENTAL DATA
INDICATING ELECTRON DAMPING

OF DISLOCATIONS

N ERGY-gap determinations for superconducting
metals, made by the use of acoustic attenuation

measurements, use the equation derived for longitudinal
waves by Sardeen, Cooper, and Schrieffer, ' which has
the form

crs/rrrr =2/(1+e'~"r)

where ng and n~ are the attenuations in the super-
conducting and normal states due to electronic damping,
and e is half the energy gap between the two states at
the temperature T. In obtaining this r'atio it has been
usual to subtract off a constant attenuation from both
normal and super conducting states equal to the
attenuation in the superconducting state measured
at the lowest temperature. This procedure neglects the
fact that there is another source of attenuation which
also changes between the normal and the supercon-
ducting state. Hence, to obtain a good measurement,
this source —i.e., attenuation caused by dislocations
damped by electrons —has to be evaluated.

This effect was probably first indicated by the
measurements of Landauer' and of Welber and Quimby'
but was not recognized as a dislocation damping effect.
These measurements showed a decrease in Young's
modulus of about 30 parts in 10' at a measuring fre-
quency of 50000 cps when a lead sample was taken
from the normal state to the superconducting state. A
small decrease in the internal-friction parameter Q

'
also occurred. This change in modulus is much larger
than the expected thermodynamic change (Mason' ),

' J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
106, 162 (1957); 108, 1175 (1957).' J. K. Landauer, Phys. Rev. 96, 296 (1954).' B. Welber and S. Quimby, Acta Met. 6, 55 {1958).

4 See W. P. Mason, I'hysical Acoustics and the Proper@'es of
Solids (D. Van Nostrand, Inc., Princeton, New Jersey, 1958),
Chap. XI.

FIG. 1. Attenu-
ation in lead single
crystal for longitudi-
nal waves at 50
Mc/sec as a function
of the temperature
and voltage applied
to the transducer
(after Love, Shaw,
and Fate).
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' R. K. Love and R. W. Shaw, Rev. Mod. Phys. 34, 260 (1964};
R. K. Love, R. W. Shaw, and W. A. Fate, Phys. Rev. 138, A1453
(1965).' B. R. Tittmann and H. K. Bommel, Phys. Rev. Letters, 14,
296 (196S).' W. P. Mason, Appl. Phys. Letters 6, 111 (1965}.
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but is consistent with the ilnlnobilization of dislocation
loop lengths longer than about 10 cm by a large
electron damping of the dislocations in the normal state.
Very pure crystals are expected to have dislocation
loops this long as part of the tail of a distribution
peaked at around 0.2 to 0.3X10 4 cm.

A more definite indication of the presence of electron
damping of dislocations was provided by the work of
Love and Shaw. ' As shown by Fig. 1, the attenuation
in the superconducting region of lead shows an ampli-
tude-dependent attenuation while that in the normal
region —maintained by a magnetic field greater than
800 t -- does not show an amplitude effect over a voltage
range of 30 to 1. The attenuation loss at the highest
stress level is larger than that in the normal state. It
was first pointed out by Tittmann and Sommel' that
this effect could be explained by a higher electron
damping in the normal region than in the supercon-
ducting region, but no quantitative results were given.
The writer (Masonr) first calculated the drag coefIicient
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from electron-viscosity theory and showed that it
accounted quantitatively for the difference in the two
regions. The present paper extends these calculations
into the low-amplitude region and shows that better
energy-gap determinations can be obtained.

II. CALCULATION OF ELECTRON DRAG

According to the Granato-Liicke theory of dis-
location damping, there is a region —the linear, low-
amplitude region —for which the average displacement
is proportional to the applied stress. It is generally
believed that this motion is the result of the displace-
ment of segments of dislocations, called kinks, which
connect straight-line portions of the dislocations which
lie in minimum energy positions. These kinks lie across
Peierl's energy barriers but they do not require thermal
activation to move since the periodic character of the
Peierls' energy barrier is smeared out for a dislocation
kink of appreciable width. Hence, the total displace-
ment is very similar to that calculated by considering
a dislocation as a straight line between pinning points
with a line tension which is usually taken to be ~pb'
for isotropic material, where p is the shearing modulus
in the glide plane and b the Burger's vector.

These dislocations have a mass per unit length which
is usually taken as pb', where p is the density of the
material. These dislocations are damped by an effective
drag constant 8 which produces a dragging force pro-
portional to the velocity with which the dislocation is
dragged through the material. Since the dislocation is
assumed to be traversing perfect material, the inter-
action has to be with the waves present in the crystal,
i.e., the phonons and electrons. Phonon damping has
been discussed in several papers and the principal
mechanisms suggested for damping are thermoelastic
effects (Eshelbys), radiation pressure (Leibfried') and
phonon viscosity (Mason" ).

Electrons are scattered by dislocations and the
scattering contributes to thermal resistance. However,
since electron velocities are about 300 times larger than
sound velocities, it does not appear that there should
be any appreciable difference in the scattering caused

by the motion of the dislocation. If such an effect
existed it should be independent of the temperature
since the electron numbers and velocities are tempera-
ture-independent in a metal. This is not in agreement
with the measured drag coeS.cients of electron damped
dislocations. Hence, the only mechanism which appears
to account for electron damping of dislocations is one
connected with electron viscosity.

As discussed by Pippard" the electric and magnetic
fields produced by a strain wave in a metal cause the
electrons to move in such a way as to establish current

' J. D. Eshelby, Proc. Roy. $oc. (London) A197, 396 (1949).
9 G. Leibfried, Z. Physik 127, 344 (1950).' W. P. Mason, J. Appl. Phys. 35, 2779 (1964).
» A. B. .Pjppard, Phil. Mag. 46, 1104 (1955);Advan. Phys. 9,

176 (1960).

neutrality. The result is that the electrons are given a
velocity equal to the particle velocity of the acoustic
wave. The momentum imparted to the electrons can be
exchanged between surfaces moving with slightly
different velocities and produces an electron viscosity
which can attenuate a longitudinal or shear acoustic
wave propagated through the metal. The value of the
viscosity has been discussed for a spherical Fermi
surface and has been shown by Mason" Morse" and
Pippard" to be given by the equation

9= 9X10"ts'(3s'E)'i'/Se'p (2)

where A is Planck's constant h divided by 2x, X is the
number of electrons per cc, e is the electronic charge in

cgs units and p is the resistivity in ohm cm. As sum-
marized by Mason Morse, "and Pippard, " this equa-
tion is in fair agreement with experiment for a number
of metals whose Fermi surfaces can be approximated
by the free-electron spherical Fermi surface. These
metals include copper, lead, tin, indium, and sodium.
On the other hand, it is found that this formula under-
estimates the attenuation of tungsten and molybdenum
for which the Fermi surface departs markedly from
the spherical surface (Jones and Rayne").

A dislocation is surrounded by a strain field and as
it moves through the crystal the strain at any point
changes as a function of the time. By virtue of the
viscosity of the electrons this rate of change of strain
produces a thermal loss which, when integrated over
the whole space surrounding the dislocation, results in
a dragging force which is proportional to the velocity
of the dislocation. As with the phonon drag coefIicient
due to phonon viscosity" the easiest case to consider
is the screw dislocation. This dislocation is surrounded

by a shearing strain field of the form

Ss,= b/27rr, (3)

ra = rr L1—cosHNdt/rrg,

I being the velocity of motion of the dislocation and
dt is the time between the measurements of r2 and r~.

Inserting the value of rs in (4), the rate of change of the

~ W. P. Mason, Phys. Rev. 97, 557 (1955).
"R.W. Morse, Phys. Rev. 97, 1716 (1955)."R. W. Morse, Progress in Cryogenics (Academic Press Inc. ,

New York, 1959) pp. 221—259.
"C.K. Jones and J. Rayne, Phys. Letters 14, 282 (1964).

where b is the Burger's vector and r the distance from
the center of the dislocation. If we consider an element
of volume at a distance ri from the center of the dis-
location and at an angle 8 with the direction of motion
of the dislocation, the rate of change of the shearing
strain is given by the equation

Ss„—Ss„(b/2rr) (1/re —1/rr)

dt dt

where
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shearing strain is

Sp,=bl cos8/2mr'.

~0-2- ~O-4

The energy dissipated is the stress T&, times the strain
rate or

Tp,8p.=ri(8p.)'. (6)

hence

p'= Is+= bplsrl/Ss gps ~

8= b'ri/87raps.

(9a)

(9b)

A very similar expression is obtained for edge dis-
locations, namely,

8= ps(b'ri/Se (1—o)'ap'), (10)

where 0 is Poisson's ratio.
The value of B depends on the cutoff radius uo.

Since the strain near the dislocation becomes very large,
we can expect nonlinearities in the deformation po-
tential which cause a saturation of the drag effect
(Blount" ). To calculate the radius exactly requires a
knowledge of the Fermi surface and the changes in
the surface with respect to the Brillouin zone due to
the applied strain. These quantities are not known for
lead. In the case of copper, for which the Fermi surface
is known, "it is evident that strains as high as 5X 10 '—
corresponding to radii ra=10 ' cm—and deformation
potentials in the order of 4.5 eV (those usually asso-
ciated with a spherical surface) will cause a considerable
part of the Fermi surface to be pushed through the
Brillouin zone. Since the effect of this is equivalent to
bringing the displaced part inside the first zone, it can
be seen that the effect saturates. The same conclusions
are obtained from the calculations of Blount, "which
indicates that saturation occurs for the condition
ql+E/ms'=1. For the conditions holding for lead, this
results in a strain S of about 5&10 ' equivalent to
r()= 10—' cm.

Hence it appears that 10—' cm is a reasonable cutoff
radius. With this value the drag coefficient becomes

8=4.9X10 'ri=4.2X10 "/p for lead, (11)
rs E. I. Blount, Phys. Rev. 114, 418 (1959).

Performing the integration over a cylinder of unit
length surrounding the dislocation we find

PN2$ o 2~ cos28 PN2
TY= rdr d8= . (7)

4x' „0 r' smeo'

To determine the drag coeNcient, denoted by the letter
8, we note that the velocity attained by the dislocation
is determined by the equation

Il = Tg3b=NB,

where P is the force per unit length on the dislocation
determined by the product of the shearing stress T»
times the Burger's vector b. The energy dissipated is
equal to the force times the velocity I and hence we
have
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FIG. 2. Drag coeScients for electron damping in the normal and
superconducting ranges. Other curves show resistivity of lead and
phonon damping of dislocations calculated from the thermal
conductivity curve shown.

assuming that the number of electrons equals the
number of atoms, i.e., 3.3X1022 per cc. Figure 2 shows
a plot of the electron and also the phonon drag coeN-
cients for lead as a function of the temperature. The
sum of the electron and phonon damping produces a
plateau between 15 and 40'K which is in agreement
with recent measurements. '~

In the superconducting range, the number of elec-
trons which can transfer momentum decreases rapidly
as the temperature becomes lower than the super-
conducting temperature. Since the attenuation in the
superconducting range determines the amount of mo-
mentum transfer, the rate for which the drag coeNcient
should decrease is the same as the attenuation decrease.
Using the ratios shown by Fig. 3, the drag coeNcient
in the superconducting range is shown by the dashed
line of Fig. 2.

"K. Lucke (private communication).

III. ATTENUATION IN THE HIGH-AMPLITUDE
RANGE DUE TO ELECTRON DAMPING

The attenuation introduced by dislocations has
several amplitude ranges, as shown by Fig. 4, due to
Granato and Liicke. In the low amplitude region, dis-
locations are pinned by both impurity atoms and
network joins. The effect of a stress is to bow out the
dislocations as shown by Figs. 4(B) and 4(C). In this
region attenuation is caused by the conversion of dis-
location motion to heat by interaction with phonons or
electrons. This interaction determines the drag co-
eNcient B calculated for electrons in the last section.
As the applied stress becomes larger, the dislocation is
bent at such an angle with respect to the impurity that
enough force is exerted to pull the dislocation away
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from BCS theory plotted as a ratio of TfT,. (15b)

from the pinning atom. When this occurs for one loop,
the free loop becomes larger and the dislocation will

then be tom away up to the network pinning points.
It was shown by Granato and Lucke" that this break-
away was the source of an acoustic loss which varies
with amplitude and it is this loss which causes the
nonlinear attenuation occurring in Fig. 1. The force
required to produce this breakaway is higher in the
normal region since on account of the higher drag
coeAicient B it takes a larger force to bow the dis-
loc'ation out to the critical angle than it does in the
relatively undamped superconducting state.

This effect can be shown from the well known equa-
tions for the dislocation-string model'"

8 $8$8 $
M +8 T=Force=—T—I~b,

Bt2 Bf By2
(12)

a=A (/y —y') . (13)

where M is the mass per unit length, usually taken as
pb', where p is the density of the material and b the
Burger's vector, B is the drag coeS.cient and T is the
tension usually taken as —,'pb' for an isotropic material,
where p is the shearing modulus. For all the frequencies
considered here the mass M can be neglected. For a
static or slowly varying shear stress T» in the glide
plane, the displacement $ at any distance y from a
pinning point, separated from the next by the distance
l is

The slope of the dislocation at the pinning points is

dx/dy)„O„I=aA/ (16)

introducing the value of A from (15), the critical
stress to produce breakaway is proportional to

T»oI(gb//) [1+j(uB/2/61Jb' j. (17)

EXPONENT I AL
LOOP LENGTH

.0.1

NO

CL'
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I
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For an exponential loop-length distribution, significant
differences in the shearing stress occur when the con-
stant in the denominator is 0.5 rather than 6.0. For a
damping constant of 8=9X 10 ', co= 2m f=3.14X10;
/=10 ' cm; p=7.3X10"dynes/cm' and b=3.5X10
cm, the last term of Eq. (17) is over 50 times larger
than unity. In the superconducting range the damping
constant B is much less as can be seen from Fig. 2 and
hence it requires a smaller stress and a smaller voltage
applied to the transducer to produce breakaway eGects.
The ratio of about 30 to 1, shown by Fig. 1, is in the
order of that to be expected. Tittmann and Sommel'
have made a Granato-Lucke plot of strain-amplitude
times the decrement plotted against the inverse strain

Substituting this expression in (12) and integrating
with respect to y from 0 to l, the constant 2 takes the
form for a sinusoidally applied stress

pb'A/+ ~sj ~BA/I = TLIb/.

0.001
10-2 10-1 .

1 10

NORMAL IZED FREQUENCY cI)/ado cI10=
p,b2

Ql 2

102 ' 103

FIG. 5. Ratio of Q ' to EElo~ plotted as a function of u/u0.
18 A. Granato and K. I ucke, J. Appl. Phys. 27, 583 (1956); Single-loop-length model and exponential-loop model are shown

27, 789 (1956). {after Oen, Holmes, and Robinson).
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and find nearly a straight line. Hence, there appears
little doubt that the amplitude eRect observed is due
to dislocation breakaway and that the diRerence is due
to the different damping constants found for the normal
and superconducting states.

Equation (17) indicates that at lower frequencies
the diRerence between breakaway loss in the normal
and the superconducting states should be much smaller.
This is confirmed by the measurements of Welber and
Quimby' made at 50 kc/sec. The difference between
the onset of breakaway loss in the normal and super-
conducting ranges is only a few percent and is probably
accounted for by the tail of the dislocation distribution
with loop lengths longer than 10 4 cm.

IV. EFFECT OF LOVE-AMPLITUDE DISLOCA-
TION DAMPING ON SUPERCONDUCTING

ENERGY-GAP DETERMINATIONS

By adding the plastic strain due to the dislocation
motion to the elastic strain and calculating the resulting
internal friction factor it is readily shown' that the
internal friction for one slip system energized by the
shearing strain in this system is given by

Ã/ (o)BP/6pb')
(18)

6 1+(ppBP/6pb')P

To take account of other types of stresses and the
distribution of Burger's vectors it is usual to introduce
an orientation factor E which depends on the type and
direction of propagation. The factor E. usually varies
from about 0.08 to 0.2. Inserting this factor and
defining a relaxation angular frequency ~0 equal to

cup
——pb'/BP

this expression becomes

NAP ((o/6' p)

Q
—1—

6L1+ (o)/6pp p)'j

A plot of this equation is shown by Fig. 5.
Actually, the dislocation loop distribution is not in

the form of a single loop since the pinning positions are
random and in general it is assumed (Koehler") that
the loop-length distribution takes the form

N(l)dl= (N/l~')e '"~dl, (21)

where l~ is now the average pinned-loop length. The
integral of this equation shows that Mg=/, vrhere Ã
is the total number of loops of all lengths and X the
total length of dislocations per cubic cm.

The effect of an exponential distribution of loop
lengths on the internal friction has been investiga, ted
by Oen, Holmes, and Robinson20 and they were able to

» J. S. Koehler, in Imperfeckols iN Pearly I'erfecf Crystojs,
edited by W. Shockley, J. H. Hollomon, R. Mauer, and F. Seitz
(John Wiley k Sons, Inc. , ¹wYork, 1952), Chap. 7.

'0 Q. S. Qen, D. K. Holmes, and M. T. Robinson, U. S. Atomic
Energy Commission Report ORNL-3017, 1960, p. 3- (unpublished).

tg= 2.74X10—' cm, (22)

which a,ppears to be a reasonable value for a strained
crystal. The attenuation at 3'K, i.e., 5.25 dB, deter-
mines the dislocation density according to the equation

8.68XQ '
Q= dB/cm

8.68X+El~'X0.33X3.14X10'

2X2.35X10
dB/cm

=5.25 dB/cm, (23)

where the velocity along the (111)direction of measure-
rnent is 2.35X10' cm/sec. Solving this equation for
NE, using i~2=7.5X10 io we find FR=3.8X106. With
a reasonable value of E.=0.1 this corresponds to a
dislocation density of 3.8X107 per cc which is typical
of a strained sample. Table I shows the values of the
correction terms for both the normal and the super-
conducting states using the drag coeKcients shown by
Fig. 2.

The eRect of these correction terms is shown by the
dashed lines of I'ig. 1. Using the dashed lines as the
corrected attenuation due to the energy-gap effect, the
energy gap as a function of temperature is shown by

obtain a solution in closed form, the results of which
are shown plotted on Fig. 5, w'here lo is now equal to
4. The result of this distribution is to spread the
internal-fraction peak. over a broader frequency range
and to increase the value at low frequencies by a factor
of 100.

In evaluating the eRect of dislocation damping, it
is assumed that most of the residual loss in the super-
conducting range is due to this eRect. This seems to be
reasonable since measurements on silicon, germanium
and quartz in the low-temperature range give nearly a
zero loss. Hence, seal losses and sound-diffraction losses
must be very smaH. , It is also seen that below about
3'K the attentuation in the superconducting range
becomes very Rat. Since we do not know the distribution
of loop lengths or the number of dislocations, about the
only process available is to fit the curve in the Oat
region by the dislocation loss exhibited in Fig. 5 and
see whether the average loop length and number of
dislocations is simi1ar to that obtained by other
processes.

The data of Love and Shaw, given by Fig. 1—low-
amplitude region —can be fitted reasonably w'ell by
assuming cv/cop=0. 4 at 3'K where the drag coeKcient
B is 1.5X10-4 dynesXsec/cm' from Fig. 2. Since
co= 3.14X10', ~0= 7.85X 10' and

p,b2 7.2X 10iox12.25 X10—~6

~A 75X10 'oem
«8 7.85X 108X1.5X10-4
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Taax,E I. Correction terms for ultrasonic attenuation in lead.

Sup erconducting

(dB/cm) C00

Normal

Go/cop P (dB/cml

2.5
3.0
4.0
5.0
5.5
6.0
6.5
.7.0
7.2

91X10 5

15X10 4

294X10 4

44
5.6
7.25
1X10 s

1.43X10 '
2X10-'

1 29X 10'
7 85X10'
4-QX 10'
2 67X10s
2.1X10s
1.62 X10s
1.175X10s
8 2X10'
5 86X107

0.242 0.325
0.4 0.33
0.785 0.305
1.18 0.27
1.5 0.24
1.94 0.215
2.68 0.18
3.83 0.15
5.35 0.12

5.06
5.14
4.75
4.2
3.74
3.35
2.8
2.33
1.87

85X10 '
7.5
6.15
4.55
3.74
3.0
2.38
2.13
2.0

1.4X10'
1.57X107
1.91
2.58
3.14
3.92
4 94
5.51
5.86

22.6 0.038
20.0 0.042
16.4 0.05
12.1 0.064
10.0 0.076
8.0 0.091
6.36 0.106
5.7 0.115
5.36 0.12

0.592
0.655
0.78
1.0
1.18
1.42
1.66
1.79
1.87

Fig. 6. All the points lie very close to the theoretical
curve with eo/kT, =2.0 at T=O'K. If we had sub-
tracted off a constant attenuation, the indicated value
would be about eo/kTc= 2.84 with the points not being
in very good agreement with the theoretical curve.

Another set of data was obtained by Tittmann and
Bommel' which requires less correction. The measured
and corrected values are shown by Fig. 7. The best 6t
is obtained by letting

)~——3.56X10-' cm; NE= 5.85X 10';
X='5.85X 10'. (24)

eo = (2.05+0.05)k T.. (25)

This increase of the value of l~ and the decrease in
the"number of dislocations are both consistent with
less deformation of the crystal by cold work. Figure 6
shows the corrected value of the energy gap which is
best matched by a value co= 2.1 kT.. Hence to the order
of accuracy obtained here, the energy gap is
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(Leslie and Ginsberg"), tunneling (Giaever" el al.
and thermal conductivity (Morris" el al.).

If one plots the correction curves to lower tempera-
tures it appears that the correction losses should go
down againllwhich is somewhat contrary to measure-
ments carried out at the lowest temperatures. These
indicate that the added loss remains constant for as
low temperatures as have been measured. It is believed
that the dislocation is damped by irregularities and

This is larger than the BCS theoretical energy gap but
is consistent with other determinations such as infrared
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Fzo. 6. Evaluation of energy gap taking account of dislocation
damping corrections. Top curve shows effect of subtracting a
constant loss from both normal and superconducting states.

Fxo. 8. Comparison of drop in attenuation in the supercon-
ducting range with that predicted from BCS theory. Triangles
show effect of taking account of dislocation damping.

' J. D. Leslie and D. M. Ginsberg, Phys. Rev. 133, A362
(1964)."I.Giaever, H. R. Hart, and K. Megerle, Phys. Rev. 126, 941
(1962).

2' D. E. Morris and M. Tinkham, Phys. Rev. 134, A1154 {1964).



Pro. 9. Calculated ratio of
n&/~z for three values of the
quantity q/, .
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imperfections in the solid. This is consistent with the
fact that the attenuation at 1000 Mc/sec is in the order
of 0.05 dB per cm for such materials as crystal quartz
in the temperature range from 2.0 to 20'K. An eRective
scattering viscosity of 10 ' poises is indicated with a
scattel'lllg drag coefflclcnt of B=10 (dylle sec/cln ).
In order to obtain a constant loss down to low tempera-
tures, the order of magnitude of the constant drag
would be 8=5X10 ' for the deformed sample of Love
and Shaw and about 10—' for the pure sample of Titt-
mann and Bommel.

The electron drag correction for the attenuation can
also account for the difference found between the
acoustically determined energy gap and the theoretical
BCS gap, which is evident from the curves of Fig. 8.'4
At low ratios of T/T. , where the subtracted loss and
the dislocation damping loss are both independent of
the temperature, the calculated curve and the measured
points agree. However, for values above T/T, =0.6,
the measured points appear to be above the theoretical
values. If, however, the corrections due to dislocation
damping of the form shown by Figs. 1 and 7 are taken
account of, the measured points agree much better
with the theoretical curve. The squares of Fig. 8 were
obtained from the data of Morse by 6tting a dislocation
damping correction to the residual loss assuming values
of the damping constant for tin consistent with q/. &10
and /~=2+10 cm. The loss at the h1ghest point
determines the product FR=3&10'. For 8=0.1, this
gives a dislocation density of /=3&10'. Hence it is
evident that the diRerence between the dislocation
damping by electrons in the normal state and in the
superconducting state has to be taken account of in
determining the energy gap in superconducting metals.

Theoretically" the ratio of the attenuation of longi-

~ See Ref. 4, Fig. 11.11.
»X'. rsuneto, Phy . Rev. 121, 402 (1960); see also, J. R..

SchrieBer, Theory of "SNperooadgctr'yjty" (W. A. Benjamin, Inc.,¹wYork, 1964), pp. 62-69.

tudinal waves in the superconducting state to that in
the normal state should be independent of the product
of q/„where /, is the mean free path for electrons, and
should be given by Eq. (1). The best experimental
evidence" indicates that the drop oR from the BCS
theory is larger when q/, is small than when it is large.
These data were obtained for polycrystalline indium
for the cases that q/, =0.7 and q/. =6.8. To see if the
damping by dislocations can account for this eRect, the
following constants were assumed. From the con-
ductivity measurements, 8 can be calculated to be
about 2X10-' dynes sec/cm' in the normal state.
Taking /g=3. 5/10—' cm, XX=6.2&10' and using
the measured data from Morse, " Fig. 9 shows the
calculated ratio of ns/rr~. It is evident that the three
values calculated do not diRer much and are probably
within the experimental error with respect to the BCS
theoretical curve.

Since it is di6icult to evaluate the total dislocation
damping without knowing the loop-length distribution
and the number of dislocations, it appears that the best
way to Ininimize this eRect is by going to higher fre-
quencies. As seen from Eq. (20), and from Fig. 5, the
internal friction decreases as 1/OI when ~))coo. Hence,
the attenuation approaches a constant equal to

a= (XRpb2/2BV) Np/cm. . (26)

Hence, for any of the drag coeScient values given by
Fig. 2, the attenuation is in the order of 5 dB or less.
On the other hand, the acoustic loss due to electron
damping of acoustic waves may be as high'" as 400
bB/cm for frequencies in the 1000-Mc/sec range.
Hence, the correction due to the dislocation attenu-
ation becomes quite small and energy gaps approach
their theoretical values, with some deviations for
anlsotropy.

~'See Ref 14 Figs 10 12 and 16
» F.R. Dobbs and J.M. Perz, Rev. Mod. Phys. 34, 257 (1964).


